

## SCHWERPUNKTE DER TAUCHFORSCHUNG

\author{

- ENTSTEHUNG KLASSISCHER AUSTAUCHTABELLEN <br> Christoph Hofmann
}


# - ENTWICKLUNG NEUER TAUCHFORMEN BEIM MODERNEN TIEFSEETAUCHEN ZUR VERMEIDUNG VON KOMPRESSIONS- UND DEKOMPRESSIONSERSCHEINUNGEN IM MENSCHLICHEN KÖRPER Christoph Hofmann 

Verlag Stephanie Naglschmid

Walter-Druck GmbH
St. Pöltener Straße $70 \cdot 7000$ Stuttgar 30
Telefon (07 11) 850896

Verlag Stephanie Naglschmid


$$
111_{\sec +10}^{2}
$$




## VORWORT

Viele wissenschaftliche Arbeiten sind meist nur einem kleinen Kreis von Wissenschaftlern zugängig, obwohl die veröffentlichten Untersuchungen Ergebnisse oder Reports weitreichende Einblicke in besondere Fachgebiete vermitteln. Mit dieser Reihe, die wir mit diesem, mittlerweile in 2.Auflage erschienenen Band 1982 gestartet haben, möchten wir versuchen, solche Arbeiten auch außerhalb der Universitäten und Forschungsinstitute zugängig zu machen. Wir haben dabei bewußt auf aufwendige Druckweisen verzichtet, um die Reihe trotz geringer Auflagenzahlen so preiswert wie möglich zu gestalten.
Die vorliegende Arbeit wurde an der Universität Regensburg im Institut für Sportwissenschaft als Zulassungsarbeit für das Fach Sport für das Lehramt an Gymnasien angefertigt. Die Arbeit wurde von Herrn Akademischen Direktor Dr. Wolfgang Usinger betreut.

Stuttgart 1982,1986
Dr.Friedrich Naglschmid

## VERLAG STEPHANIE NAGLSCHMID STUTTGART

## SCHWERPUNKTE DER TAUCHFORSCHUNG

Wissenschaftliche Beiträge aus allen Bereichen der Erforschung der Meere und Binnengewässer, des Tauchens und des Gewässerschutzes
-Entstehung klassischer Austauchtabellen Christoph Hofmann
-Entwicklung neuer Tauchformen beim modernen Tiefseetauchen zur Vermeidung von Kompres-sions- und Dekompressionserscheinungen im menschlichen Körper. Christoph Hofmann

EDITION FREIZEIT UND WISSEN
Herausgeber: Dr. Friedrich Naglschmid

Christoph Hofmann
über Verlag
Stephanie Naglschmid
D- 7000 Stuttgart 1
Augustenstr. 50

Titelgestaltung: Stephanie Naglschmid
Titellitho
: Dr. Friedrich Naglschmid

Schwerpunkte Bd 1/1982
2.Auflage 1986 Stuttgart - S. Naglschmid

Geschützte Warennamen (Warenzeichen) werden nicht besonders gekennzeichnet. Aus dem Fehlen solcher Hinweise kann also nicht geschlossen werden, daß es sich um einen freien Warennamen handelt.
Alle Rechte, insbesonders das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (durch Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert werden oder unter Verwendung elektronischer systeme verarbeitet, vervielfältigt oder verbreitet werden.
COPYRIGHT 1986 Verlag Stephanie Naglschmid Augustenstr. 50, D- 7000 Stuttgart. Printed in Germany. Walter Druck GmbH, Stuttgart 30.

Die Verfasser sind für den Inhalt ihrer Beiträge selbst verantwortlich.
Für unverlangt eingesandte Manuskripte wird keine Haftung übernommen.
O. Vorbenerkung ..... 1

1. Definitionen und Begriffserklärungen ..... 1
1.1. Austauchen ..... 1
1.2. Dekompression ..... 9
1.3. Druckeinheiten ..... 2
1.4. Dekompressionserscheinungen ..... 2
1.5. Synonyme für Dekompressionserscheinungen ..... 4
2. Theorien uber die Dekompressionserkrankungen bis HaLDAME ..... 5
3. Haidanes Vorgehen zur Entstehung der Aus- tauchtabellen ..... 9
3.1. Voraussetzungen ..... 9
3.2. Kalkulation des Sättigungsprozesses ..... 11
3.2.1. Berechnung der Kreisläufe bis zur Sättigung ..... 11
3.2.2. Berechnung der Sättigungszeit ..... 14
3.3. Halbwertszeiten und theoretisches Gewebe ..... 15
3.4. Auswahl der Versuchstiere ..... 16
3.5. Verfahren zur Bestimmung der längsten Halb- wertszeit ..... 17
3.6. Entsättigungsvorgang ..... 17
3.6.1. Enjstehung von Gasbläschen ..... 18
3.6.2. Geíahren und Schädigungen durch Gasblasen ..... 19
3.6.3. Berec’nung der Gewebsspannung bei Eleich- mäßiger Dekompression ..... 20
3.6.4. Beschleunigung der Entsättigung ..... 21
3.7. HALDANEs "2:1 - Theorie" ..... 22
3.8. Tauchzeitberechnung und Austauchvorgang mit stufenweiser Dekompression ..... 24
3.9. toerlegungen für kurze Aufenthalte in der Tiefe ..... 27
3.10. Mehrere Tauchgänge hintereinander ..... 30
3.11. Untersucbte Variablen zur Evaluierung der Austauchtabellen ..... 31
3.12. Die Austauchtabellen von HALDANE ..... 34
3.13. Zusammengefaßte Ergeknisse aus HAIDANEs Untersucbungen ..... 40
4. Entwicklungen und Neuerungen des Tauchens seit HALDANE ..... 43
4.1. Verbesserungen und Unterschiede der ein- zelnen Austauchtabellen ..... 44
4.2. Sauerstoffatnung und kinstliche Gasge- mische ..... 47
4.2.1. Toxische lirkungen des Sauerstoffs ..... 47
4.2.2. Zusatz von Inertgasen ..... 50
4.2.2.1. Narkotische Wirkung und Löslichkeit ..... 51
4.2.2.2. Heliua - Sauerstoff Gemische ..... 53
5. Sättigungstauchen ..... 54
5.1. Entstehung des Sättigungstauchens ..... 55
5.2. Unterneheungen und Vorversuche ..... 55
5.3. Ergebnisse ..... 56
5.4. Dekompression nach Sättigung ..... 56
5.5. Zusammenfassung ..... 61
6. Das Hochdruck - Nervensyndroo (HPNS) ..... 62
6.1. Erscheinungsformen des HPNS ..... 62
6.2. Zusammenhang zwischen HPNS und Kompres- sionsgescbwindigkeit ..... 64
6.3. Narkosetheorie zur Prävention des HPNS ..... 67
6.4. Zusamnenfassung und Ergänzung der Theorie zur Prävention des KPNS ..... 71
7. Flissigkeitsatmung ..... 74
7.1. Vorteile der Flüssigkeitsatmung ..... 75
7.2. Hindernisse und Probleme der Flüssigkeits- atmung ..... 76
7.2.1. Koblendioxidretention und Strömungege- scbwindigkeit ..... 76
7.2.2. Iungenschäden ..... 77
7.2.3. Realisierung oeim Menschen ..... 77
8. Gepanzerte Tauchanzüge ..... 78
9. Grenzen des Tauchens ..... 80
9.1. Grenzen durch physiologische Druckauswir- kungen im Körper ..... 80
9.2. Grenzen aus ökonomischer Sicht ..... 81
10. Zusammenfassung und Scbluß ..... 82
Anbang I ..... 85
Anhang II ..... 90
Anhang III ..... 92
I. Teil

Die Entstehung der klassischen Austauchtabellen nach FAIDANE zur Vermeidung von Dekompressionserscheinungen im menschlichen Körper.
O. Vorbemerkung

Die vorliegende Arbeit beschäftigt sich in erster Linie mit der Entstebung der klassischen Austauchtabellen nach HALDANE, gibt einen Uberblick uber die heute angewandten Methoden des Tiefseetauchens und zeigt, mit welchen Mitteln man versucht, in extreme Tiefen vorzudringen und wieder davon herauszukommen.

1. Definitionen und Begriffserklärungen

Zum besseren Verständnis und aus Gründen der Vereinfachung seien einige oft gebrauchte Begriffe und Definitionen vorweggenommen, die spëter im Text nicht mehr näber erläutert werden.

### 1.1. Austauchen

Unter $A u s t a \operatorname{c} u$ e $n$ versteht man einen längerdauernden, meist stufenweisen Auftauchvorgang aus der größten erreichten Tiefe an die Wasseroberfläche zur Vermeidung von cbarakteristischen Schädigungen oder Krankbeitserscheinungen. Bei jeder aus den A us $t a u c b t a b e l l e n z u$ entrebmenden Stufe (entspricht einer bestimmten Wassertiefe) muß man eine festgelegte Zeit (Austauchzeit) verweilen, bevor man die nächste Etappe emportaucben darf. Die Gesamtaustauchzeit setzt sicb aus den einzelnen Austauchzeiten und der Zeit zur Erreichung der einzelnen Stufen zusammen.

### 1.2. Dekompression

Onter Dekompreseion (abgekïrzt: Deko.) versteht man allgemein die Verminderung des Drucks. Beim Tauchen geschieht dies automatisch mit dem Emportauchen zur Oberfläche, bei Druckkamnerversuchen durch Ablassen
des komprimierten Atemgases. Die Dekompression kann unterschiedlich schnell erfolgen, je nachdem wie grol die Dekompressionsrate (Deko.rate) ist. Diese wird in Einheiten von Zeit pro Druckeinheit oder im reziproken Wert angegeben, z.B. lata/20mine

### 1.3. Druckeinheiten

Obwohl die Berechnung der Austauchzeiten eine exakte Umrechnung von Wassertiefe in Druck erfordert, wird im folgenden zur bequemeren und leicbteren Umrechnung die auch von Tauchern benutzte Näherung verwendetl' Sie beinhaltet gleichzeitig einen gewissen Sicherheitsfaktor. Eine Atmosphäre ( $a t m$ ) ist der Druck, den eine 10 m hohe Wassersäule ausübt und entspricbt dem Iuftdruck in Meeresböbe. In 10m Wassertiefe berrscht demnach ein Uberdruck von einer Atmosphäre (atii) bzw. ein absoluter Druck von zwei Atmospbären (ata).
Beispiel:
Einer Wassertiefe von 61m entspricht ein Druck von 61msw (Meter Seewassersäule) bzw. von 6,1atui oder 7,1ata.
1.4. Dekompressionserscheinungen

Eine zu schnell ausgeführte Dekompression verursacht eine Reihe von Simptomen, die einer einzigen Ursache zuzuschreiben sind. Die Beschreibungen der pathologischen Effekte beinhalten Muskelschmerzen, allgemeine Gliederschmerzen, Schmerzen an Gelenken, besonders an der Schulter und an den K̃niegelenken, rötliche Hautflecken und einen seltsamen Juckreiz auf der Haut. Die Gelenk-, Mus-kel- und Gliederschmerzen werden im Fachjargon mit "bends" bezeichnet. Dieser Ausdruck stammt von Caissonarbeitern und Tauchern, die um die Jahrhundertwende bei Brückenbauarbeiten eingesetzt wurden. Die Bezeichnung "bends" (engl. to bend $=$ beugen) fir diese schmerghaften Erschei-

1) D1e oxakten Definitionen und Omrechnuggen sind im Anhang $I, 9$ aachzulesen.
nungen ist wohl aus der gebeugten Schonhaltung der befallenen Gliedmaßen entstanden.


Abb. 1
"Bends" im linken Vorderbein der Ziege. Die gebeugte Scbonhaltung ist deutlich zu erkennen. (aus: HALDANE, 1922)

HATDANE benutzte für die oben beschriebenen Scbmerzen meist den Ausdruck "symptoms", womit die zwar schmerzhaften aber weniger gefäbrlicben pathologiscben Effekte gemeint sino (vgl. HAIDANE et al.,1908). Im folgenden wird in Anlehnung an diese Arbeit der Begriff "Symptome" verallgemeinernd für alle sichtbaren und spürbaren Deko.erscheinungen verwendet. Darunter fallen sowohl die oben aufgezählten als auch einige der folgenden, weniger ungefährlichen Krankheitsmerkmale:
Erbrechen, Schwindelanfalle, Gefubllosigkeit der oberen Extremitäten, Lähmung oder Mattigkeit der Gliedma3en, Kurzatmigkeit, Kopfschmerzen, Sehbeeinträchtigung, unre-
gelmäßiger Puls, Kollaps, Bewußtlosigkeit, Tod. Chronische Spätschäden, wie Knochennekrose, wurden erst später als schädliche Auswirkungen der Deko. erkannt und fallen desbalb nicht unter diesen Begriff.

### 1.5. Synonyre für Dekompressionserscbeinungez

Die vermatlich älteste Bezeichnung dafur dürfte "Caissonkrankheit" sein - ein etwas irrefuhrender Name fur eine Erkrankung, deren Ursache man damals nur im Zusammenhang mit der Arbeit in Caisson sah. Der Ausdruck "Druckluftkrankheit" (engl. compressed-air illness) sagt schon mebr Uber die Herkunft der Erkrankung aus. Treffender scheinen die Wörter "Dekompressionskrankheit" oder "Druckfallerkrankung" (engl. decompression sickness) zu sein, da sie den Kern der Sache am genauesten treffen, wie nacbfolgend gezeigt wird.


Abb. 2 zeigt einen Caisson (Senkkasten). Der Arbetter kann in trockener Umgebung graben, da der bohe Luftdruck das Eindringen des Wassers verbindert.
Caissons dieser Art werden nach Beendigung der Arbeiten mit Beton gefilllt und bilden das Fundament von Brükkenpfeilern.
(aus: BERT,1878)
2. Theorien ひ̈ber die Dekompressionserkrankungen bis HALDANE (1908)

Die ersten Beschreibungen der Krankheitserscheinungen stammen aus Arbeitsberichten von Ingenieuren, die mit der Errichtung von Brückenpfeilern oder der Befestigung von Pieranlagen beauftragt waren. Für diese Aufgaben wurden Senkkästen (siehe Abb. 2) verwendet, in denen die Arbeiter unter Wasser in trockener Umgebung Graharbeiten verrichten konnten. Um das Eindringen von Wasser in diese technisch weiterentwickelte Taucherglocke zu verhindern,muB der Luftdruck im Caisson mindestens genauso Erob sein wie der Wasserdruck am unten offenen Ende des Caissons. Aus diesem Grund ist es gleichguiltig, ob die Beobachtungen der Deko.erscheinungen an Caissonarbeitern oder an Tauchern gemacht werden.
Erstmals erscheint in einem Bericht des französischen Ingenieurs TRIGER (1845) die Beschreibung von Symptomen $\nabla 0 n$ zwei Arbeitern, die nacb einigen Stunden Arbeit bei einem Druck von drei Atmosphären - der Caisson endete also in 20 m Tiefe - aus der Taucherglocke kamen. Eine halbe Stunde nachdem sie aus dem Caisson gestiegen waren, kiagte einer uber starke Schmerzen an den Gelenken des linken Armes, der andere uber Schmerzen an den Knien und an den Schultern. Ähnliche Berichte üher die unerklärlichen Merkmale der "Caissonkrankheit" häufen sich. Nicht selten werden auch Todesfälle von Tauchern oder Caissonarbeitern, die in entsprechenden Tiefen gearbeitet batten, geschildert.
Man sucht nach einer Ursache für diese Erkrankungen. Zuallererst glaubt man, das die komprimjerte Luft, der sowohl Taucher als auch Caissonarbeiter ausgesetzt sind, schuld an den Schmerzen sei. HERVIER/LAGER (1840) vertreten die These, daß wegen des hohen Lufturucks eine vermehrte organische Verbrennung im Körper stattfindet
und diese, kombiniert mit einem erhöhten Kohlendioxidgehalt in der Umgebungsluft als Folge schlechter Entluftung, fur die Schmerzen ursächlich in Frage kommt. Die ersten, die durch ibre Beobachtungen einen brauchbaren Beitrag zur Erforschung der Deko.symptome leisten, sind die beiden französischen Ärzte POL und waTELLE (1854). Sie machen bei der Ausschachtung von Steinkohlegruben zahlreiche Aufzeichnungen, aber ohne Plan, ohne System und Programm und nur in der Hoffnung, ibre Beobacbtungen könnten bei äbnlicben Unternehmungen nützlich sein (vgl. POI/WATELLE, 1854). Die grobe Bedeutung ihrer Arbeit liegt in der Erkenntnis des Zeitpunkts, wann die Deko.erscheinungen einsetzen. "On ne paie qu'en sortant" (POL/WATELLE, 1854). 'Man zablt erst, wenn man geht.' Dieser Satz druckt prägnant aus, wann die Symptome einzusetzen beginnen: mit dem Verlassen der Hocbdruckatmospbäre. Sie deuten die Symptome als Folge einer zu scbnellen Dekompression und machen deutlich, daE nicht der Druck an sich zu furchten sei, sondern die Verminderung des Drucks. Heitere Feststellungen, die bis dabin unbekannt waren, finden sich in ihrem Artikel, so z.B., daß die Gefahr der Erkrankungen mit der Höbe des Drucks und der Schnelligkeit der Druckverminderung wächst. Die geringste Anfälligkeit für Symptome zeigen nicht Manner zwiscben 30 und 50 Jahren, wenn die Kraft maximal entwickelt ist, sondern solche zwischen 18 und 26 Jahren. Diese Tatsache mus im Zusammenhang mit dem erhöhten Fettanteil ab einem gewissen Alter gesehen werden, was aber erst etwa 50 Jahre später nacbgewiesen wurde.
Zur Prävention der "Caisson - Krankbeit" empfehlen sie eine Verlängerung der Deko.zeit auf 30 Minuten aus einem Druck von $41 / 4$ Atmosphären, statt bisher 3-4 Minuten. Beim ersten Auftreten von Symptomen schreithen sie eine sofortige Rekompression vor bis die Schmerzen gelindert
sind und anschließend eine noch langsamere Druckverminderung.
Uber die Ursachen der Schmerzen mutmaßen sie, daß das Blut bei der Deko. mit Sauerstoff ubersättigt werde und dies eine schädigende Wirkung auf das Nervensystem hätte (vgl. POI/WATELLE, 1854).
GUERARD (1854) vertritt die Ansicht, daB die Schmerzen an den Gelenken rheumatischer Natur sind. Er begründet seine Hypothese damit, daß sich durch die schnelle Druckverminderung die Luft stark abkühlt und somit die Entstehung der rheumatischen Gelenk- und Muskelschmerzen fördert.
HOPPE (1857) komnt der tatsächlichen Ursache der Deko.symptome schon näher. Bei Tieren, die durch plöむzlichen Unterdruck getötet wurden, stellt ex Luftbläschen in den Blutgefäben fest und macht diese für den Tod verantwortlich. Dieselbe Erklärung điberträgt er auf die Deko. aus einer Uberdruckatnosphäre, ohne allerdings Versuche darüber gemacht $z u$ haben. Seiner Meinung nach heben die Iungen keine Zeit, den tberschuß an freigesetztem Gas loszuwerden. Es muß sich folglich in den Blutgefäßen stauen und verursacht dadurch den Tod.(vgl. HOPPE,1857). Diese Erklärung geht, wie HEILER zu berichten weiß, auf Beobachtungen von BOYLE zurück, der an verschiedenen Tieren, die sich in einer Unterdruckatmosphäre befunden hatten, Untersuchungen machte (vgl. BOYLE in HELLER et al., 1900, S. 388).
BERT, dessen Buch: La Pression Barometrique beute noch kaum an Aktualität eingebiißt hat, untersucht die Druckwirkungen sehr gewissenhaft und umfassend. Er unterscheidet zwischen Kompressions- und Dekompressionseffekten und zeigt als erster, dab die Deko.krankheit immer zusammen mit Stickstoffblasen im Blut und in verschiedenen Geweben auftritt. Obwohl er Versuche mit stufenweiser Deko. durchführt, empfiehlt er zur Vermeidung von Symp-
tomen eine langsame, gleichmäáge Dekompression, da er keine Vorteile an der stufenweisen finden kann (vgl.BERT, 1878,S.961). Dies liegt aber offenbar an der falsch gewählten Abstufung der Druckdifferenzen und an den unzureichenden Pausen bei den einzelnen Etappen. Zur Behandlung der Symptome wendet er, wie scbon vor inm POL/WATELIE, sofortige Rekompression bis zum Verschwinden der Schmerzen. an. Zusätzlich zu deren Erisenntnissen findet BERT, daß bis zu einem Druck von zwei Atmosphären keine Symptome nach schneller Deko. auftreten. Dariberhinaus gibt BERT den Rat, da3 sich der Sauerstoffanteil der Einatemluft nur wenig ändern soll und daß deshalb in großen Tiefen der Sauerstoffanteil zu verringern ist(vgl.BERT, 1878,S.1178). Diese gerade fur das Tieftauchen wichtige Tatsache kam erst sehr viel später zur Anwendung.
Experimente an Hunden und Katzen bringen zu Tage, das die Anfalligkeit für Symptome sowohl zwischen den einzelnen Individuen stark variiert als auch, daß das einzelne Individuum bei verschiedenen körperlichen Zuständen (Krankbeit, Midigkeit, Hunger etc.) unterschiedlich reagiert (vgl. BERT, 1878, S.1033).
Trotz seiner großen Verdienste um die hyperbare und hypobare Medizin gibt BERT eine vollig unzureichende Anweisung für die Dekompression. Seiner Meinung nach genügt eine Rate von 12 Minuten pro Atmosphäre therdruck, um Symptome der Deko. zu verhindern (vgl.BERT,1878,S.981). Deko.unfalle bleiben bei Tauch- bzw. Caissonarbeitern an der Tagesordnung. Daran ändert auch die etwas sicherere Deko.rate von HELIER nichts. Die Annahme, eine Deko.zeit von 20 Minuten pro Atmosphäre wäre in jedem Fall sicher (vgl. HELLER et al., $1900, \mathrm{~S} . \Omega 07$ ), erweist sich fur geringe Dricke zwar als richtig, eber auch als ausgesprochen langsam und unökonomisch, fir höhere Drücke muß diese Rate m.E. als völlig unzureichend angeseben werden.

Erst die beruhmt gewordenen $A$ u stauch c a belle $n$ von HAIDANE leisteten den wichtigsten Beitrag zur Verringerung des Risikos bei der Dekompression. Die durchdacbte und begrindete Theorie wurde in Tier- und Menscbenexperimenten erprobt und endete mit der Anfertigung der Tabellen. Der folgende Teil dieser Arbeit versucht die Entstehung dieser Tabellen nachzuvollziehen.
3. HALDANEs Vorgehen zur Entstehung der Austauchtabellen HALDANE und seine Mitarbeiter BOYCOTT und DAMANT (vgl.HALDANE et al., 1908$)^{1}$ sind die ersten, die sich mit wissenschaftlicher Grüdlichkeit darfiber Gedanken machen, wie und auf welchem Wege das eingeatmete Gas vom Körper aufgenommen und wie es wieder abgegeben wird. Sie erstellen eine Theorie mit matbematisch formulierten Vorgängen und versucben, die berechneten Werte für eine sichere Deko. im Experiment zu bestätigen.
Die Theorie der Sättigung und Entsättigung des Gewebes mit Stickstoff basiert auf therlegungen und Annahren, die sie teilweise von anderen Autoren ibernehmen.
3.1. Voraussetzungen

Zurückgreifend auf Untersucbungen von BERT, HIIL/GREENWOOD und auf eigene Untersuchungen wird angenommen, dad sich der Kohlendioxidgehalt in der alveolären Iuft und im Blut auch bei steigendem Druck nicht ändert. Der Sauerstoffpartialdruck steigt im arteriellen Blut im gleichen Verbältnis wie der alveoläre Druck. Aber der dadurch zuviel gelöste Sauerstoff ist nur ein kleiner Teil des insgesamt im arteriellen Blut zur Verfiugung stebenden und wird größtenteils verbraucht oder chemisch gebunden, so daß in den Geweben und im venösen Blut nur ein sehr

1) Im folgenden wird mit dem Namen HAIDANE auf diese Schrift Bezug genommen, sofern nichts anderes angegeben ist.
geringer Anstieg des Sauerstoffpartialdrucks zu verzeichnen 1st, was man aber, wie den $\mathrm{CO}_{2}$-Partialdruck, vernachlässigen kann. Man braucht also bei der Sättigung und Entsättigung von Blut und Geweben nur den Stickstoff ( $\mathrm{N}_{2}$ ) in Betracht zu ziehen. Die Sättigung des Blutes und der Gewebe geschieht iber die Aufnahme des Atergases (Luft) in den Alveolen. Das Blut wird beim DurchflieBen der Lungenkapillaren augenblicklicb mit demselben Stickstoffdruck versehen, der in der Alveolarluft herrscht und setzt sich Ins venöse Blut fort, wenn alle Gewebe bei dem momentanen Druck gesättigt sind. Steigt von einem bestimmten Zeitpunkt an der $\mathrm{N}_{2}$-Partialdruck an, z.B. indem der Gesamtluftdruck erböht wird, dann wird nach dem Gesetz von HENRY Vermebrt Stickstoff ins arterielle Blut aufgenommen und an die fur diesen erböbten Druck noch nicht gesättigten Gewebe durch Diffusion abgegeben. Bei jedem Kreislauf nimmt das Blut eine neue Ladung Stickstoff auf und gibt sie an das Gewebe ab. Auf diese Weise wird das Gewebe, und letztlich auch das venöse Blut, nach und nach auf den gleichen Stickstoffdruck gebracht, der in der Einatemluft berrscht. Die verschiedenen Gewebe weisen zwar eine unterschiediche Kapillarisierung auf und sättigen deshalb
) nicbt gleich stark und gleich schnell, aber für die theoretische tberlegung genügt es anzunebmen, dab das Blut überall im Körper gleich verteilt ist und die Gewebe die gleicben Eigenschaften besitzen.
Zu diesen Eigenschaften zählt die Stickstofflöslichkeit das ist die Fähigkeit, Stickstoff in diesem Gewebe physikalisch zu lösen -, die HALDANE fur Blut und balbfluissige Gewebe als gleich annimmt. $1000 \mathrm{~cm}^{3}$ Blut oder halbflussiges Gewebe nimmt pro Atmosphäre Druck etwa $8,7 \mathrm{~cm}^{3}$ Stickstoff auf. Der Anteil von Blut und halbflissigem Gewebe am Körpergewicht wird mit $25 \%$ angenommen. Die restlichen $15 \%$ besteben aus Fettgewebe, welches sechsmal so viel
Stickstoff aufnehmen kann als Blut. $1000 \mathrm{~cm}^{3}$ Fett lösen
also 52,2cm ${ }^{3}$ Stickstoff. Mit diesen Angaben kann man abschätzen, daß jede Gewichtseinheit des gesamten Körpers im Durchschnutt ca. 70\% mebr Stickstoff löst, als die gleiche Menge an Blut. Bei einem Körpergewicht von 70 kg beträgt die gelöste Stickstoffmenge etwa 11 pro Atmosphäre Druck. (Recbengang siebe Anhang I, 1). Mit diesen Werten läßt sich die Sättigung berecbnen.
3.2. Kalkulation des Sättigungsprozesses

Bevor man beginnt, die Zeit zu berechnen, die für eine vollige Sättigung notwendig ist, muß man einige Voriberlegungen macben.
3.2.1. Berechnung der Kreisläufe bis zur Sättigung

Man gebt $\nabla$ on der Annahme aus, daß der Körper bei einem bestimmten Druck völlig mit Stickstoff gesättigt ist. In diesem Fall ist die gelöste Stickstoffmenge im gesamten Körper ca. 26 mal größer als die gelöste Menge im Blut, wenn die Blutmenge 6,5\% des Körpergewichts beträgt. (Rechengang siehe Anhang $I, 2$ ).
Wird der Körper plötzlich einem bestimmten bohen Druck ausgesetzt, dann erhält er nach einem vollständigen Blutkreislauf den 26sten Teil der Stickstoffmenge, die zur Sättigung bei diesem Druck nötig ist (vgl.Abb.3a). Beim zweiten Rreislauf wird wieder $1 / 26$ des verbleibenden Defizits bis zur Sättigung binzugefuigt, des ist (1/26 x 25/26) (vgl.Abb. 3b). Der dritte Kreislauf fubrt den Körpergeweben wieder $1 / 26$ der noch aufzufullenden Stickstoffmenge zu, nämlicb $1 / 26 \times(25 / 26 \times 25 / 26)$ und so fort. Dieses physikalische Sättigungsgegetz läßt sich auch so formulieren:

Die Änderung des Gasdrucks im Gewebe mit der Zeit ist proportional der Differenz zwischen dem Druck des eingeatmeten Gases und dem monentanen Wert des Gesdrucks in Gewebe.


Abb.3a Der durch erhöhten Umgebungsdruck entstandene Stickstoffüberdruck wird vom Blut ins Gewebe übertragen. Das Gewebe bat nach einem Kreislauf $1 / 26$ des zur Sättigung nötigen Drucks erhalten.


Abb. 3b Nach dem zweiten Kreislauf hat das Gewebe wieder 1/26 der zur Sättigung nötigen Stickstoffmenge erhalten.


Abb. 3c Der Transportvorgang (Sättigungsprozel) ist beendet, wenn im Gewebe der gleiche $N_{2}$-Druck herrscht wie in der Alveolarluft.

Die in der Formel

$$
\frac{d P}{d t}=k\left(P_{1}-P\right)
$$

mit
P: Gewebsdruck (Gasdruck im Gewebe) nach der Zeit t $P_{1}$ : Umgebungsdruck nach der Zeit $t$
$t:$ Zeit, nach der der Gewebsdruck berechnet wird
k: Konstante
ausgedruickte Differentialgleichung ergibt als grafische Darstellung eine logarithmische Kurve, wie sie in Abbildung 4 aufgezeichnet ist.
Der oben beschriebene Sättigungsverlauf wurde in der Weise erstmals von 2UNTZ (1897) für die Gewebssättigung formuliert und von HAIDANE ubernommen.


Abb. 4 zeigt den logarithmischen Verlauf der Gewebssättigung bei konstant gehaltenem tberdruck.

Mit folgenden Pormeln läßt sicb die prozentuale Sättigung bzw. die Anzahl der Kreisläufe bis zu dieser Sättigung errechnen. (Rechenbeisplel siehe Anhang I, 3 ).
a)

$$
y=1-\left(\frac{a-1}{a}\right)^{n}
$$

b)

$$
n=\frac{\log (1-y)}{\log \frac{(a-1)}{a}}
$$

mit
a: reziproke Sättigungsrate
n: Anzahl der Kreisläufe
F: Sättigung in $\%(100 \%=1 ; 50 \%=0,5 ; \ldots)$
Nach etwa 18 Kreisläufen ist die Hälfte der Stlckstoffmenge, die zur völligen Sättigung notwendig ist, bereits in den Körper eingedrungen; nach $35 \mathrm{Kreisläufen} \mathrm{sind} \mathrm{es} \mathrm{75} \mathrm{\%}$. Vollkommene Sättigung (100;6) könnte erst nach unendicb langer Zeit erfolgen, jedocb spricbt man ab etwa 95\% von gesättigtem Gewebe.
3.2.2. Berechnung der Sättigungszeit

HALDANE nimmt die Blutmenge, die pro Minute durch die Lungen flie日t, mit 3,51 an und die Gesamtblutmenge vereinfachend ebenfalls mit 3,51. Somit durchläuft die gesamte Blutmenge einmal in der Minute die Lungen. Mach obiger Rechnung dauert es also 18 Minuten bis der Körper balb mit Stickstoff gesättigt ist, wenn er glötzlich einem bestimmten therdruck ausgesetzt wurde.
Mit diesen Angaben läßt sich für ein einzelnes Gewebe der Sättigungszustand und die Dauer bis zu einem bestimmten Sättigungsgrad herausfinden.
3.3. Halbwertszeiten und theoretisches Gewebe

Da die Zeit bis zum Erreichen der völligen Sättigung nicbt berechenbar und ebensowenig feststellbar ist, bat man das theoretische $G$ e webe eingefuhrt, das sich genau in der formelmäßig beschriebenen Weise sättigen soll. Mit dieser Eigenschaft läßt sich genau berechnen, wann ein Gewebe zu 50\% gesättigt ist. Die Zeit bis zum Erreichen der halben Sättigung nennt man "Halbsättigungszeit" oder H a l b werts zeit. Zur Berechnung sicherer Austauchtabellen ist es notwendig, Gewebe mit verschiedenen Halbwertszeiten zu beriucksicbtigen. Aus früberen Experimenten ist bekannt, daß sehr scbnell sättigende Gewebe existieren. Nach Angaben von HILI/GREENWOOD (1907,zit. nacb HAIDANE et al.,1908) sind die Nieren nach 10 Minuten praktisch völlig gesättigt.
Die Vermutung, daBes auch Gewebe gibt, die sich nur extrem langsam sättigen, zog HAIDANE aus der langjährigen Erfabrung von Brucken- und Tunnelbauingenieuren, die feststellten, daB nach der Deko. aus einem toerdruck von $21 / 4$ Atmosphären und einer Aufenthaltszeit von drei Stunden so gut wie keine Deko.symptome vorkamen. Folglicb - so HALDANE - muß es Gewebe geben, die nach dieser Zeit nocb nicht gesättigt sind, denn sonst müßten mehr bzw. schwerere Symptome auftreten.
Zur Berechnung der Austauchzeiten unterteilt HAIDANE schließlich den Körper in unterschiediche theoretische Gewebe mit Halbwertszeiten von $5,10,20,40$ und 75 Minuten. Da für die Berechnung der Deko.zeit nach längerem Aufenthalt gerade das sich am langsamsten sättigende Gewebe (langsames Gewebe) in Betracht gezogen werden mab, darf die Halbwertszeit für dieses nicht geraten werden, sondern muß bestimmt werden.
Wie dies bewerkstelligt wurde, sei nachfolgend dargestellt.

### 3.4. Auswahl der Versuchstiere

Der Austausch der Atemgase (respiratorischer Gaswechsel) hängt bei Säugetieren und bei Menschen grob gesprochen Vom Verbältnis zwischen Körperoberfläche und Gewicht ab. Je kleiner ein Tier ist, desto größer ist der Gasaustausch pro Einheit Körpergewicht und desto scbneller ist sein Kreislauf. Der Grundumsatz, der in engem Zusammenbang mit dem respiratorischen Gaswechsel steht, wächst damit auch mit dem Verbältnis von Oberfläche zu Gewicht. Er beträgt beispielsweise bei einer Maus zwölfmal so viel wie bei einen Menschen (vgl. LULLIES/TRINCKER,1974, S.236). Infolge des scbnelleren Kreislaufes sättigen sich die Gewebe von Kleintieren wesentlich schneller als die des Menscben. In gleicher Weise geht auch der Entsättigungsvorgang schneller vor sich. Aus diesem Grund können Kleintiere mit scbnellem Kreislauf in sehr kurzer Zeit dekomprimiert werden. Dieser Umstand dürfte daflir verantwortlich sein, daß bei den Experimenten in der Zeit vor HALDANE (P.BERT, HELIER et al., ) trotz Deko.raten, die fur Menschen viel zu schnell wären, keine Symptome an den Versuchstieren (Meerschweinchen, Ratten, Hunde, Katzen,...) hervorgerufen werden konnten. HAIDANE verwendet deshalb für die Erprobung der berechneten Deko.zeiten Ziegen, weil sie die gröbten Versuchstiere sind, die bequem benutzt werden können. Ihr Durchscbnittsgewich.t liegt etwa bei einem Drittel bis einem Viertel des Gewichts eines erwachsenen Menschen. Verwendet man die Beziehung, daß der respiratorische Gaswechsel proportional deף Verhältnis aus Körperoberfläche und Gewicht ist und da3 sich die Oberfläche ( 0 ) aus dem Gewicht (G) nach der Formel

$$
0=G^{2 / 3}
$$

berechnen lëßt, dann ergibt sich, daß der resolratorische Gaswecbsel von Ziegen etwa um $2 / 3$ größer ist als bei Menschen. (Rechengang siehe Anhang I,4).
3.5. Verfahren zur Bestimmung der längsten Ralbwertszeit Mit diesen Vorüberlegungen werden die Versuche gestartet, aus denen die längste Halbwertszeit bestimmt werden soll. HALDANE geht so vor, daß Druck und Deko.rate immer konstant gehalten werden, wäbrend die Dauer des Aufenthalts unter Druck variiert. Man beobachtet nun ab welcher Aussetzungsdauer die durcb die Dekompression hervorgerufenen Symptome nicht mehr schlimmer werden, d.h., daß auch eine noch längere Aussetzung keinen Einfluß mehr auf die Anzahl und die Intensität der Symptome bat. Diese "Grenze" liegt für Ziegen bei ca. drei Stunden. Nach HALDANEs Uberlegung dauert es also drei Stunden bis das langsamste Gewebe gesättigt ist. Nimmt man die Sättigung zu etwa 94\% an, dann ergibt sich nach Abbildung 4 (S.13) eine Halbwertszeit von 45 Minuten für das langsamste Gewebe. (Rechengang siehe Anhang I,5a). Auf den Menschen umgerechnet dauert es dann 75 Minuten iois das langsamste Gewebe gesättigt ist. (Anhang I,5b).
3.6. Entsättigungsvorgang

Wird ein Gewebe, das bei einem bestimmten hohen Druck völlig gesättigt ist, wieder dem Normaldruck ausgesetzt, dann entsättigt es sich in gleicher Weise wie es sicb gesättigt hat. Das langsamste Gewebe braucht wiederum $75 \mathrm{Mi}-$ nuten bis es die Hälfte des $\mathrm{N}_{2}$-tberscbusses losgeworden ist. Voraussetzung dafir ist allerdinge, daß sich keine Gasblasen bilden, denn in diesem Fall geht zwar die Gewebssättigung wesentlich schneller vor sich, aber die entstandenen Gasblasen stellen eine akute Gefabr für den menschlichen Organismus dar und sollen tunlichst verhindert werden.
3.6.1. Entstehung von Gasbläschen

Die genaue Entstehungsursache und der Entstehungsvorgang von Gasblasen im Gewebe und im Blut ist bis heute noch nicht vollkommen erforscht. Pan vermutet, daß sich hei zu schneller Druckverminderung die Inertgasmolekule (in der Regel Stickstoffmolekile) an sog. K 0 n den s a tionskeiren festsetzen und sich daran allä̈hlich vermehren bis sie zu einer Mikrogas blase werden, die sich dann rasch, durch hineindiffundieren weiterer Molekile und durch Volumenvergrögerung infolge Druckabnahme, vergröBert.
Die Herausbildung von Gasblasen beginnt allerdings erst, wenn ein bestimnter tbersättigungsgrad, der v.a. von der Oberflächenspannung der Flussigkeit abhängt, uberschritten wird. Das bedeutet, das bei Druckverminderung um einen bestimmten Wert das physikalisch gelöste Gas immer noch in Iösung gebalten wird, obne daß Mikrobläschen entstehen. Erst nach therschreiten dieses Ubersättigungsdruckes, also bei stärkerer Druckverminderung, entstehen die Blasen. Die
 als die Differenz zwiscben der Gasspannung (= Gasdruck oder Sättigung) im Gewebe $P_{g}$ und dem Umgebungsdruck $P$.

$$
P_{g}-P<P_{i z}
$$

Die Werte für die Ubersättigungstoleranzen werden heute in Druckkammerversuchen empiriscb ermittelt. HALDANE fand sie auf andere Weise, wie in einem späteren Kapitel zu lesen sein wird (Prt. 3.7.). Die Größe und der Aufenthaltsort der Gasbläschen entscheiden, ob Deko.eprscheinungen auftreten und welches Ausmag sie annehmen.

### 3.6.2. Gefahren und Scbädigungen durch Gasblasen

In fast jeder Körperregion werden Gasblasen gefährlicb und verursachen Schmerzen. Sie können Blutkapillaren verstopfen, was eine Vereorgungsbeeintrëchtigung des umliegenden Gewebes zur Folge hat. Wegen der hohen Fettlöslichkeit des Stickstoffs bilden sich Gasblasen bevorzugt im stark lipoidhaltigen Nervengewebe des Zentralnervensystems, im Ruickenmark und in markhaltigen Nerven, was im harmlosesten Fall zu Gefübllosigkeit der betroffenen Körperregionen, aber auch zu lähmungen und zum Tod fübren kann.


Abb. 5 zeigt einen Ausschnitt aus dem Ruckenmark einer Ziege, die drei Stunden nach schneller Deko. starb. Die Gasblasen konzentrieren sich in der weiBen Substanz des Ruickenmarks, wo die Durchblutung am geringsten ist und somit die Gasabgabe erschwert ist. (aus: HALDANE, 1922, S.342)

Deshalb muß unbedingt verbindert werden, dal sich. Gasblasen herausbilden, zumal sie auch hei sofortiger Rekompression nur schlecht wieder absorbiert werden und lange bestehen bleiben.
Zur Vermeidung der Gasblasenbildung batte man bis 1907, als die Ergebnisse von HALDANEs Untersuchungen dem British Royal Committee of Admiralty vorgelegt wrden, eine langsame, möglichst gleichmäßige Druckverminderung empfoblen. Eine Rate von zwanzig Minuten pro Atmosphäre therdruck galt in jedem Falle als sicher (vgl. HELLER et al.,1900, S.807). Die Unrichtigkeit dieser Annahme widerlegt HALDANE.
3.6.3. Berechnung der Gewebsspannung bei gleichmëßiger Dekompression
HALDANE berechnet nach einer einsichtigen aber aufwendigen Metbode die Gewebsspannung beim Deko.vorgang, d.h., er bestimmt den Stickstoffpartialdruck im Gewebe nach einer beliebig angenommenen Zeit. (Beachte Anmerkung im Anbang II.) Als Anfangsbedingung wählt man der Bequemlichkeit halber die völlige Sättigung des Gewebes mit einem bestimmten therdruck (z.B. 5atii) und eine durchschnittliche Halbwertszeit von 23 Minuten. Unter Verwendung der von HELIER et al. Vorgeschlagenen Deko.rate von einer Atmosphäre pro 20 Minuten bleibt am Ende der Dekompression ein tberdruck von 1,3 Atmosphären, für das Gewebe mit der Halbwertszeit von 75 Minuten ein therdruck von 3,15 Atmospbären.(siehe Abb.6).


Abb. 6 zeigt den zeitlichen Verlauf der Gewebsentsättigung bei gleichmäßiger Deko. flur zwei verschiedene theoretische Gewebe. Dicke Linie: Umge-. bungsđruck
(aus: HALDANE et al., 1908)

Mit diesem Beispiel ist der Empfehlung von HELIER et al. deutlich widersprochen, daB eine Rate von 20 Minuten pro Atmosphäre immer sicher ist. Ein Gewebsüberdruck von 3,15 Atmosphären liegt mit Sicberbeit nicht mehr innerbalb der möglichen tbersättigungstoleranz und düffte durch starke Gasblasenbildung zu ernsthaften Symptomen führen.
3.6.4. Beschleunigung der Entsättigung

Es gibt zwei Möglichkeiten, um den Entsättigungsvorgang zu beschleunigen.
1.) Man vergrößert die Druckdifferenz zwischen dem im Körper gelösten Stickstoff und dem der Umgebungsluft, z.B. indem der Luftdruck rapide um einen großen Betrag gesenkt.wird, oder
2.) man beschleunigt den Blutlreislauf. Taucher und Caissonarbeiter leisten ständig unter erhöhtem Iuftdruck Arbeit, so daß der Blutkreislauf auch schon während des Sättigungsprozesses beschleunigt ist und somit eine scbnellere Sättigung der Gewebe gegenuber der Sättigung in Rube erfolgt.
Diese Tatsacbe stellen indirekt scbon POL/WATELIE (1854) fest als sie schreiben, dab gerade in den am meisten beanspruchten Muskelgruppen nach der Dekompression Symptome auftreten.
HALDANE schlägt desbalb vor, daß auch während der Deko. bzw. während des Auftaucbens Arme und Beine hewegt werden sollten, um die erböbte Sättigung durch eine eben-
 ist aber noch nichts gewonnen. Also mul man versuchen, durch Erhöhung der Druckdifferenz die Entsättigung zu verkïrzen.
Die Methode, die Friscbluftzufubr zu drosseln, damit der erböhte $\mathrm{CO}_{2}$ - Gehalt im Helm der Taucher die Atmung beschleunigt, wurde vorubergehend von der British Royal Navy angewandt, bald aber wieder fallen gelassen.
3.7. HALDANEs "2:1 - Theorie"

Die Grundlage für HALDANEs n2:1 - Tbeorien bildet eine Zrfahrungstatsache von Leuten, die ständig mit Arbeiten in Druckluft zu tun haben. Die Feststellung lautet, daß man aus einer Wassertiefe von 10 m bzw. aus einem Druck von 2ata beliebig schnell dekomprimieren kann, gleichgultig wie lange der Aufenthalt war. Ubersteigen die Druckwerte 1,25atu, dann beginnen bei zu schneller Dekompression Symptome aufzutreten. Aus dieser Tatsache läßt sich folgendes schließen: Wenn eine toersättigung mit $1,25 a t i i \operatorname{gerade}$ noch möglich ist, ohne dab Symptome auftreten, dann kann man es so einrichten, daß gerade dieser Wert am Ende der Dekompression erreicht wird. ${ }^{1}$ Damit ist Zeit eingespart, und die Deko. bleibt dennocb sicber.
Das Auftaucben aus 10 m Wassertiefe entspricht einer Druckverminderung von 2ata auf lata. Das Gasvolumen, das dabei freigesetzt wird, läßt sich nach dem Boyle - Mariotte'schen Gesetz ( $p \times V=$ const.) berechnen und ist immer gleich groß, ob man von 2ata auf 1ata oder von 4ata auf 2ata usw. dekomprimiert.
"Hence it seemed probable tbat, if it is safe to decompress suddenly from two atmospberes of absolute pressure to one, it would be equally safe to decompress from four atmospheres absolute to two, from six atmospheres to three, etc." (HALDANE et al.,1908).
Dies ist HALDANEs "2:1 - Theorie". Sie besagt, daß der anfangs herrschende Druck um die Hälfte (2:1) verringert werden darf, ohne daß Dekompressionserscheinungen zu befurchten sind.

1) Der Stickstoffpartialdruck im Gewebe beträgt in Wirklicbkeit nur $80 \%$ des angegebenen Wertes, aber der Einfachheit halber rechnet man statt mit Stickstoffdruck mit Luftdruck. Siehe auch Anmerkung im Anhang II.

Durch die Verringerung des Drucks zu Beginn der Deko. um die Hälfte wird der Entsättigungsvorgang enorm beschleunigt und keine unnötige Zeit vergeudet.
Der Rest der Deko. läuft so ab, daß der Gasdruck in keinem Gewebe gröBer wird als das Doppelte des momentanen Umgebungsdrucks (=Iuftdruck der Einatemluft), wobei die Berechnung wiederum nur mit Luftaruck oder nur mit Stickstoffpartialdruck ausgeführt wird. tiblicherweise rechnet man mit Iuftdruck.
Lediglich für die letzte Etappe zum Erreichen des normalen Luftdrucks wird von dieser Regel geringfügig abgewichen, d.h., daß unmittelbar nach der Deko. die Gewebsübersättigung statt 1atui 1,25atü beträgt.
Damit dies bewerkstelligt werden kann, müssen den verschiedenen Geweben unterschiedliche Halbwertszeiten zugeordnet werden (theoretische Gewebe), und es mu fur jedes Gewebe der nomentane Sättigungsgrad berechnet werden. Nach diesen Werten richtet sich die Aufenthaltsdauer bei den einzelnen Austauchstufen. Nach der schnellen Druckverminderung auf die Hälfte des laximaldrucks erfolgt eine etwas zeitraubendere, die in Abstufungen von jeweils 3 m (10 ft.) ausgeführt wird. Davon wurde die Bezeichnung stufen weise Deko. (engl.: stage decompression) abgeleitet, die zur Unterscheidung von der g leicbmä Bigen (engl.: uniform decompression) gebraucht wird.
Die Vorteile dieser stufenweisen Deko. liegen einmal in der enormen Zeitersparnis, die vor allem bei Tauchern eine grobe Rolle spielt, zum anderen in der Sicherheit, auch aus größeren Tiefen gefahrlos und zügig auftauchen zu können. Obwobl HAIDANE von der Richtigkeit seiner Metrode uberzeugt war, fügt er dennoch die Warnung hinzu, daß das Gesetz der Druckverminderung um die Hälfte (2:1-Gesetz) für Drucke, die 6atü übersteigen, möglicherweise nicht mebr gelten könne, da keine experimentellen Ergebnisse für größere Drucke vorliegen (vgl.HALDANE et al.,1908).

### 3.2. Tauchzeitberechnung und Austaucbvorgang mit stufenweiser Dekompression

Um die Dekompressionsberechnung einfach und verständlich zu macben, sei angenommen, daB alle Gewebe in der Tiefe von beispielsweise 65 m gesättigt sind. Die Deko. soll möglichst schnell und sicher erfolgen.
Der Tiefe von 65m entspricht ein Druck von 7,5ata. Dieser Druck wird nach dem 2:1-Gesetz zu Beginn auf die Hälte verringert. Bei einer Tiefe von 27,5m ( $\widehat{=} 3,75 a t a$ Druck) ist der erste Falt einzulegen. Er muß so lange dauern, bis der Druck in den Geweben nur noch doppelt so boch ist als der absolute Druck der Atemluft (= Umgebungsdruck) beim nëchsten Halt sein wird. Der nächste Halt ist nach 3 m, also bei 24,5m Tiefe, was einem Druck von 3,45ata entspricht. Der Gewebsdruck darf also in $27,5 \mathrm{~m}$ Tiefe vor dem nächsten Aufstieg nicht größer sein, als der doppelte Betrag bei $24,5 \mathrm{~m}$, also 6,9ata. Es muß ein Druck von 0,6ata (7,5-6,9) entsättigt werden. Das sind $16 \%$ der Differenz $z w i s c h e n ~ d e m$ Anfangsdruck des Gewebes (7,5ata) und dem ersten reduzierten Druck (3,75ata).
Bei der Kalkulation der Deko. nach einem Sättigungstauchgang wie er hier angenommen wird, braucht nur das langsamste Gewebe betracbtet zu werden. Das 75 - Minuten -Gewebe braucht 19 Minuten, um $16 \%$ der gelösten Gasmenge loszuwerden. (Rechengang siehe Anbang I,7), In 27,5m Tiefe dauert der erste Aufenthalt also 99 Minuten, dann kann auf $24,5 m$ aufgetaucht werden. Dort mus man wiederum so lange verweilen, bis der Gasdruck im Gewebe kleiner ist als das Doppelte des Ungebungsdrucks beim nächsten Halt (21,5m). Der Umgebungsdruck (= Druck der Einatemluft) wird 3,15ata sein. Die Gewebsspannung darf also vor dem nächsten Aufstieg nicht. größer sein als 6,3ata. Es muß wiederum so viel freiwerdendes Gas abgeatmet werden,
daB der Druck im Gewebe um 0,6 ata ( $6,9-6,3$ ) sinkt. $0.6 a t a$ sind $17,5 \%$ der Differenz zwischen dem anfangs herrschenden Gewebsdruck (6,9ata) und dem momentanen Umgebungsaruck ( $3,45 \mathrm{ata}$ ). Die Entsättigung um 17,5\% benötigt 21 Minuten. Diese Zeit mas bei der Marke von $24,5 m$ zugebracht werden, ehe der nächste Aufstieg um 3 m gewagt werden darf.
Die Berechnung wird so lange fortgefuhrt bis man bei normalem Atmosphärendruck angelangt ist. Nach dieser Methode dauert der Austauchvorgang aus 65 m Tiefe 309 Minuten.


Abb. 7 zeigt die stufenweise Deko. aus einem Druck von 7,5ata (entspricht einer Tiefe von 65m) verglichen mit der gleichmäßigen Deko. in der gleichen Zeit bzw. Mit dem gleicben Sicherheitsfaktor. Durchgehende Linien: stufenweise Deko., gestrichelte Linien: gleichmäßige Deko., dicke Linien: Luftaruck (Ungebungsdruck), dünne Linien: Gewebsdruck. (aus: HALDANE et al.,1908)

Aus Abbildung 7 ist zu entnebmen, daB fir eine gleichmäBige Dekompression, die am Ende genauso sicher sein soll wie die stufenweise, zehn Stunden erforderlich wären, eine unnötig vergeudete Zeit, in der die Taucher durch die Këlte über die Maßen ausgezehrt werden können.
Fuhrt man im Gegensatz dazu eine gleichmäßige Druckverminderung in der gleichen Zeit durch, die fur die stufenweise berechnet wurde, dann bleibt am Ende eine gefährlich hohe形ersättigung von 2,1atü ubrig, die zweifellos schwere und schmerzhafte Dekompressionserscheinungen verursacht. Vollkommene Sättigung aller Gewebe dürfte in der damaligen Zeit in solcben Tiefen nicht eingetreten sein, da die Tauchgänge nie lange genug dauerten. Andererseits drohen bei längerem Aufentbalt in dieser Tiefe Gefabren, die mit dem erhöhten Partialdruck des Sauerstoffs zusammenhängen (siehe Punkt 4.2.).
Die Bestimmung der Austauchzeiten geschieht deshalb mit anderen Anfargsbedingungen als mit völlig gesättigten Geweben. HAIDANE beschäftigt sich wenig mit der Deko. nach Sättigung. Oben beschriebenes Gedankenexperiment mag fir diese Tiefe noch zutreffen, für größere Tiefen darf die Deko. nach Sättigung nicht mehr nach dem 2:1-Gesetz erfolgen (siehe Punkt 5.4.).
Die Berechnung der Art und der Dauer der Druckverminderung nach einem kurzen Aufenthalt in der Tiefe ist wesentlich komplizierter als am obigen Beispiel vorgeführt wurde, da fiur jedes theoretische Gewebe der Grad der Sättigung zu jedem Zeitpunkt berechnet werden muß und sich daraus erst die Aufenthaltsdauer bei der jeweiligen Tiefe ermitteln läßt. Aber mit den beschriebenen Grundsätzen ist es möglich. Fir die damalige Zeit war es sicher recht mühsan, den Gewebsdruck für jedes Gewebe und fur jeden Uregebungsdruck auszurechnen, beutige Rechenmaschinen erledigen diese Arbeit in wenigen Sekunden und liefern eine exakte Zeichnung dazu.

### 3.9. Uberlegungen fuir kurze Aufentbalte in der Tiefe

Bei kurzen und sebr kurzen VorstöBen in die Tiefe darf nicht nur die Zeit berücksichtigt werden, die beim größten Druck zugebracht wird, sondern auch der größte Teil der Auf- und Abstiegszeit muß mit einkalkuliert werden, da sich auch noch während elnes Teils des Aufstiegs die Gewebe mit Stickstoff sättigen. HAIDANE rechnet deshalb zur Aufenthaltszeit beim größten Druck noch die Hälfte der Zeit hinzu, die für den Abstieg bzw. für den Druckaufbau benötigt wird. Diese zwei Zeiten zusammengerecbnet ergeben die eigent i icbe Aufenthaltsdauer, nacb der der Gewebsdruck berechnet wird.
Ein geübter Taucher kann etne Tiefe von 60 m obne weiteres in zwei Minuten erreicben. In jeder zusätzlich verbrauchten Zeit würde sich der Körper unnötig sättigen. HALDANE ist deshalb entgegen früherer Praxis der Meinung, dab bei nur sebr kurzen Aufenthaltszeiten (eine Minute) in großen Tiefen ( 40 m bis 60m) sowohl ein schneller Abstieg als auch ein schneller, aber möglichst sicherer Aufstieg einem langsamen und stufenweisen vorzuziehen ist. Die Versuche zeigen, dab es relativ sicher ist, schnell aus 50m Tiefe zu dekomprimieren (eine Minute Deko.zeit), vorausgesetzt, die eigentliche Aufentbaltszeit ist nicht länger als vier bis sechs Minuten (vgl. HATDANE et al., 1908).
Für längere Aufenthaltszeiten muß jedoch nach dem sicheren 2:1 - Entsättigungsverfabren ausgetaucht werden. Die kurzen Tauchgänge bis etwa 50 m sind deshalb relativ ungefährlich, weil sie dem Apnoetauchen sehr äbnlicb sind. In beiden Fällen spielt die ins Gewebe eindringende Stickstoffmenge wegen der Geringfugigkeit keine Rolle, obwohl physiologisch geseben schon Unterschieaje bestehen, die hier aber nicht näher ausgefübrt werden.


Abb. 8 zeigt die Sättigung und Entsättigung von fúnf verschiedenen Geweben während der stufenweisen Deko. und während der gleichmäßigen Deko., die mit der gleichen Sicherbeit erfolgt wie die stufenweise. Durchgezogene Linien: stufenweise Deko., gestrichelte Linien: gleicbmäBige Deko.
Die Kurven von oben nach unten zeigen die Gewebssättigung für Gewebe mit Halbwertszeiten von 5, 10, 20, 40 und 75 Minuten. (aus: HALDANE et al., 1908)
Obige Grafik (Abb.8) zeigt ein Dekompressionsprofil, das HALDANE bei zablreichen Experimenten mit Ziegen verwendet bat. Die Kompression auf einen Druck von 6,1ata dauert sechs Minuten, die Aufenthaltsdauer 15 Minuten, so daß die eigentliche Aufenthaltsdauer bei 5,1atii 15 Minuten plus die Hälfte der Kompressionszeit, also 18 Minuten beträgt. Dadurch, dab man für die Berechnung des Sättigungsgrades den maximalen Druckwert und nicht einen gemittelten mit der eigentlichen Aufenthaltsdauer in Relation bringt, ist nocheinmal eine gewisse Sicherheit mit einbezogen. Die Gewebssättigung wird nämlich dadurch etwas zu hoch berecbnet, und die Aufenthaltszeiten bei den einzelnen Stufen werden länger.

Der gesamte Tauchvorgang dauert 52 Minuten. Am Ende beträgt die gröste Ubersättigung im Gewebe mit der Halhwertszeit von 20 Minuten 1,4atü, was in einigen Fällen leichte Symptome (bends) verursacht. Gleichmäßige Deko. in der gleichen Zeit ist wesentlich gefährlicher, da am Ende der höchste Gewebsdruck 2,1atii beträgt. Dieser enorme tiberdruck verursacht bei Tierversuchen schwere Deko.erscheinungen, z.B. zahlreiche "bends", Lähmungen und sogar Tod.


Zeit in Minuten

Abb. 9 zeigt den Sättigungsverlauf der fünf verschiedenen theoretischen Gewebe bei gleichmäßiger Deko. in 32 Minuten.
Nach gleichen Anfangsbedingungen wie bei Abb. $\varepsilon$ beträgt am Ende der Deko. der böchste Gewebsdruck 2,latü.
(aus: HALDANE et al., 1908)

Die ersten Austauchtabellen sind so kalkuliert, daB die gesamte Tauchdauer einschließlich der Deko.zeit etwa eine balbe Stunde in Anspruch nimmt. Deshalb verringert HAIDANE die eigentliche Aufenthaltszeit in dieser Tiefe von 18 Minuten auf 15 Minuten (siehe Austauchtabelle I). Wie aus Abbildung 8 abzulesen ist, bleibt nach einer 140 Minuten dauernden gleichmäßigen Druckverminderung in zwei Geweben (mit 40 bzw. 75 Minuten Halbwertszeit) immer noch ein Uberdruck von 1,7 Atmosphären zurück, obwohl diese Gewebe $z u$ Beginn der Deko. lediglich mit $0,7 \mathrm{bzw}$. mit 1,3 Atmosphären Druck versehen waren, aber die Entsättigung der Gewebe beginnt erst dann, wenn der Umgebungsdruck gleich oder kleiner ist als der Gasdruck in den verschiedenen Geweben. (Anmerkung im Anhang II beachten.)

Dies ist der Fall, wenn sich die geraden Linien (Ungebungsdruck) mit den gebogenen Kurven (Gasdruck in den Geweben) schneiden (siehe Abb.8).
Gerade diese Gegenuiberstellung wie sie in den letzten beiden Abbildungen zum Ausdruck kommt, beweist klar die Uberlegenheit der stufenweisen Dekompression gegenuber der gleichförmigen, was HALDANE immer wieder herauszustellen versucht.
3.10. Mehrere Tauchgänge hintereinander

Es ist einleuchtend, das sich nach einen Taucbgang die langsamen Gewebe während eines kurzen Aufenthalts bei Atmospbärendruck nicht völlig entsättigen. Bei mehrmaligen Tauchgängen kurz hintereinander reicbern sich diese Gewebe mebr und mehr mit Stickstoff an und werden schlie日lich zu einer ernsten Gefabrenquelle.
Um auch dieser Gefahr einigermaßen sicher zu begegnen, schlägt HALDANE vor, daß die Zeiten der eigentlichen Aussetzung bei Marimaldruck addiert werden und für diese Zeit die entsprechenden Austauchstufen und -zeiten aus der Tabelle entnommen werden sollen.
Genauere Berecbnungen, Angaben und Tabellen dazu liegen allerdings nicht vor. HALDANE gibt lediglicb an, dab bei einem Intervall von einer Stunde die zusätzlichen Vorkebrungen halbiert werden können, nach zwei bis drei Stunden Aufenthalt kann man sie vernachlässigen.
Diese Regelung gilt beute in änlicher Form. Man aablt zu den Zeiten der Tauchgänge, die innerbalb von $z w o ̈ l f$ Stunden gemacht werden, eine in Tabellen festgelegte Zeit binzu und sucht sich mit dieser zusammengezäblten Zeit die entsprechende Deko.zeit aus der Tabelle. Der Zeitzuscblag wird bei längeren Aufenthalten an der Oberfläche natifrlich immer geringer, aber ganz vernachlässigt werden die zusätzlichen Maßnahmen auch nach zwei bis drei Stunden Aufentbalt nicht.

### 3.11. Untersuchte Variablen zur Evaluierung der Austaucbtabellen

Um zu zeigen, wieviele Gesichtspunkte bericksichtigt werden muissen und welch ungeheuerer Aufwand dahintersteckt, um als Endresultat die Austauchtabellen zu erhalten, sei bier ein Kurzer tberblick über die verschiedenartigen Experimente gegeben, die HALDANE und seine Mitarbeiter BOYCOTT und DAMANT innerbalb von zwei Jahren durchfübrten. Aus einigen Experimenten läßt sich ersehen, daß ein bestimmter Mindestdruck notwendig ist, um Symptome an Ziegen zu erzeugen und, daß die Symptome vom Druck abhängen. Damit ist gemeint, daß die Dekompressionserscheinungen an Häufigkeit und Schwere zunehmen, je höher der Druck vor der Dekompression war. Das Ergebnis dieser Experimente ist leicht vorauszusehen, wenn man sich die Gewebssättigung vorstellt. Bei einem geringen Druck löst sich wenig Gas, und es kann folglich während oder nach der Deko. auch wenig Gas freigesetzt werden. Höherer Druck veranlaßt größere Gasmengen ins Gewebe einzudringen, so daß bei $z u$ schneller Deko. diese größere Menge sich aus den Gewebe unter Blasenbildung entfernt. Allerdings spielt ein weiterer Faktor dabei eine Rolle. In einer anderen Gruppe von Experimenten wird gezeigt, daß die Verweildauer bei bohem Druck von großer Wichtigkeit ist. Bei einer Aufenthaltsdauer von weniger als zehn Minuten in einer mit 5, 1atü versehenen Druckkammer stellen sich trotz sehr kurzer Deko.zeit keine Symptome bei den Versuchstieren ein. Erst eine längere Aussetzungsdauer bei gleichem Druck und gleicher Deko.zeit fuhrt zu Symptomen.
Auch dieses Ergebnis ist einsichtig, da die Gewebssättigung eine Funktion der Zeit ist, d.h., daß sich nach längerer Zeit die Gewebe immer mehr mit Stickstoff anreichern, der bei der Deko. wieder freigesetzt wird.

Eine weitere Versuchsreihe zeigt, dab nicht die absolute Druckdifferenz fur das Entstehen von Symptomen verantwortlich zu machen ist, sondern das Verhältnis der Druckwerte zueinander, gemessen in absolutem Atmospbärendruck (ata). Die aus diesen Versuchen gewonnenen Ergebnisse sind mit dem Gesetz von Boyle - Mariotte zu erklären. Eine Druckorminderung von beisoielsweise 7ata auf 5ata, also um zwei Atmosphären, ist weitaus weniger gefährlich als eine Verminder rung von 3ata auf lata, da sich im zweiten Fall das Volumen des freiwerdenden Gases verdreifacht, wäbrend es sich im ersten Fall nur auf das 1,4 fache ausdebnt. In beiden Failen betrëgt die Differenz jedoch zwei Atmosphären. Einige Versuche beschäftigen sich mit dem Einfluß der Dekompressionsdauer auf das Entstehen von Symptomen. Man stellt fest, daß umso weniger Deko. erscheinungen vorkommen, je länger die Druckverminderung dauert, unabhängig davon, welch Art der Dekompression verwendet wird. Die Gewebsentsättigung geht bei langer Deko.zeit so langsam vor sich, daß der gelöste Stickstoff nach und nach abgeatmet werden kann und sich folglich keine Blasen bilden können.
HALDANEs Hauptaugenmerk liegt auf Experimenten, die die Unterschiede der beiden Deko.arten (stufenweise und gleichmëßige) aufdecken. Bei der direkten Gegenüberstellung erweist sich die stufenweise Deko. als wesentlich risikoärmer, wenn man den gleichen Zeitraum betrachtet (vgl. Abb.7, S.25). Andererseits erfordert eine ebenso sichere, aber gleichmäßige Deko. ein Vielfaches der Zeit, die eine stufenweise benötigt. Die Ursache dafur liegt darin, daß durch die scbnelle Druckverminderung zu Beginn der stufenweisen Deko. die Entsättigung der Gewebe bescbleunigt wird. Es steht mehr Stickstoff, der sich gerade noch nicht zu Gasblasen formiert hat, zum Abatmen bereit, so dab bei jedem Atemzug eine gröBere Gasmenge abgegeben werden kann. Dies ist bei der gleichmäßigen Deko. nicht der Fall.

HAIDANE versucht auch zu ergrínden, wesbalb fribeere Ontersucbungen von anderen Wissenscbaftlern (P.BERT, HELLER et al., SNELL u.a.) trotz sorgfältiger Ausfübrung der Experimente vollkommen unzureichende und unbefriedigende Frgebnisse lieferten. Ein direkter Vergleich von Kleintieren (Meerschweinchen, Miuse, Ratten, Hasen etc.) mit größeren Versuchtieren (Ziegen) in derselben Druckkamer zeigt, dal an den kleinen Tieren nur sebr schwer Deko.symptome hervorgerufen werden können, während bei größeren, v.a. bei den Ziegen durch den selben Deko.prozeß fatale Folgeerscheinungen auftreten. HALDANE erklärt dies mit dem schnelleren Kreislauf und de= schnelleren Atmung der Kleintiere und mit deren geringerem Fettanteil bezogen auf eine Einbeit Körpergewicht. Obwohl aus jeder zusammengebörenden Gruppe von Experimenten ein genaues Ergebnis oder zumindest eine eindeutige und aussagekräftige Tendenz feststellbar ist, kann nicht ubersehen werden, daß die Anfallligkeit für Deko.erscheinungen innerbalb der Versuchsobjekte sebr varifert. Während an dem einen Tier, bei ein und demselben Experiment, keine Auswirkungen $z u$ erkennen sind, zeigt ein anderes schwere Symptome (vgl. Tabelle 1, 2. Zeile).

Tabelle 1
Die Frgebnisse der untenstebenden Tabelle zeigen einerseits die starke Streuung der individuellen Anfälligkeit, andererseits, daß die Aussetzungsauer auf hobe Drucke (5,1atii) groben Einfluß auf die Entstehung von Symptomen hat. (aus: HALDANE et al., 1908).

| Fir pooure IE Bionime | Leratiprovisin in mithutes | Su F44 | So a! mivins | Semis | צevery | Ineath |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 6 | c | 0 | 0 | 0 |
| $\ldots$ | 1 | \% | 4 | 0 | 1 | 0 |
| 6 | 1 | G | 6 | 0 | 0 | 0 |
| 10 | 1 | 7 | 6 | 0 | 1 | 0 |
| 13 | 10 uniforin | 3 | 2 | 8 | 1 | 1 |
| 15 | 31 siage: | 3 | -1 | 8 | 0 | 0 |
| 30 | $31 \times$ | 23 | 12 | 8 | 3 | 0 |
| 10 | 31 - | 2: | 15 | 4 | 3 | 0 |
| 119 | 31 ., | 9 | 0 | 7 | 1 | 1 |
| 211 | 31 .. | 8 | 2 | 4 | 1 | 1 |

Die Ursache für diese unterscbiedliche Neigung zu Dekompressionserscheinungen sind verschiedenartig. Weibliche Tiere neigen vor allem während der Scbwangerschaft mebr zu Symptomen als Manncben. Dies stellen BOYCOTT/DAMANT (1908) bei Untersuchungen iber den Einfluß von Fett auf die Anfälligkeit von Symptomen fest. Durch einen erböbten Fettanteil, der bei weiblichen Tieren wäbrend der Tragezeit nocb weiter zunimmt, kann mehr Stickstoff in den Foroer aufgenommen werden und bei der Deko. wieder freigesetzt werden. Ein weiterer Faletor, der fur die unterschiedliche Ausprägung der Symptomanfalligkeit verantwortlich ist, stellt die Bewegung während des Aufenthalts unter Druck dar. Je intensiver die körperliche Betätigung vor der Deko. ist, desto eber treten hinterber Symptome auf, weil die Gewebssättigung gegenüber der in Ruhe erböht ist (vgl. Punkt 3.6.4.). Nach Angaben von HALDANE begünstigt ein geringer respiratorischer Gaswecbsel das Erscheinen von Symptomen, während Alter, Gescblecht, Größe und Blutvolumen keinen direkten Einfluß darauf baben.
Die eben aufgezählten und die schon von P. BERT festgestellten Faktoren (siehe S.8) erschweren die Forschungsarbeit dadurch, daß Versuchsobjekte der gleichen Art bei ein und demselben Experiment weit gestreute Ergebnisse liefern.
3.12. Die Austauchtabellen von HALDANE

Die beiden abgebildeten Tabellen stammen aus der Publikation von HALDANE aus dem Jahre 1922. Sie sind jedoch mit denen aus dem Jahre 1908 idertisch und sind die ersten dieser Art. Erst nachdem sie bereits ein Jahr vorher (1907) vom British Committee of Admiralty gepruft und von der Britisb Royal Navy in die Dienstvorschriften übernomen wurden, veröffentlichte sie HALDANE 1908.

## TADLE I

STOPPAGES DURING THE ASCENT OF A DIVER AFTER ORDINARY LIMIES OF 7IMI: FROM SURFICE


## table II

## stoppages during the ascent of a diver after delay BEMOND THE ORDINARY LIMITS OF TIME FROM SURFACE


therschriften $z u$ den Tabellen Seite 35 und 36.

Tabelle 2 (S.35)
Die Aufenthaltszeiten dieser Tabelle sind fur jede Tiefe beschränkt und werden mit zunehmender Tiefe kurzer, weil die Gesamtaustauchzeit auf etwa eine halbe Stunde berechnet ist.

Tabelle 3 (S:36)
Uberschreiten die Aufenthaltszeiten die in vorstehender Tabelle angegebenen Werte, dann mus nach dieser Tabelle verfabren werden. Die Gesamtaustauchzeit wird dadurch um ein Vielfaches länger.
(Beide Tabellen aus: HALDANE, 1922, S. 350ff).

Die Aufenthaltszeiten bei den einzelnen Stationen sind so berechnet, daß der Stickstoffdruck in keinem Teil des Körpers das Doppelte des momentanen Stickstoffumgebungsdrucks ( = Stickstoffpartialdruck der Einatemluft) iberscbreitet. Nur der letzte Schritt weicht von dieser Regel geringfïgig ab. Bein Erreichen der Oberfläche nach dem letzten Aufenthalt beträgt der Stickstoffdruck in einem bestimnten Gewebe böchstens $21 / 4 \mathrm{mal}$ so viel wie der atmosphärische Stickstoffdruck ausmacbt.

HALDANEs erste Tabelle (S.35) ist so ausgelegt, daß der Taucher nach einer balben Stunde Gesamtdeko.zeit zur Oberfläche zurïckkehren kann, vom Verlassen der Aufentbaltstiefe aus gerechnet. Die angegebene Aufenthaltsdauer ("Time from surface to beginning of ascent") betrifft demnacb die eigentliche Aufentbaltszeit im bereits erwähnten Sinne (siebe Punkt 3.9., S.27).
Die Dekompressionszeiten der anderen Tabelle sind fuir längere Aufenthaltszeiten in der jeweils größten Tiefe berechnet, so daß die Gesamtaustauchzeit mindestens eine balbe Stunde überschreitet. Wie aus der Anmerkung am unteren Ende der ersten Tabelle zu entnehmen ist, wird der Taucber aufgefordert, wëbrend der Aufenthaltszeit an den einzelnen Stationen Arme und Beine zu bewegen, um die Entsättigung zu beschleunigen. Die Festlegung der Gesamtaustauchzeit auf eine halbe Stunde bewirkt zwangsläufig, dab in einer bestimmten Tiefe nur eine ganz bestimmte Zeit zugebracbt werden darf. In einem gewissen Sinne ist diese Zeit eine Vorstufe der beute bekannten Nullzeit. Die Nullzeit steht in enger Beziebung mit einer ibr zugeordneten Taucbtiefe. Sie gibt an, wie lange der Aufenthalt in einer bestimmten Tiefe dauern darf, ohne daB beim Auftauchen Deko.zeiten eingehalten werden milssen, wobei die Aufstiegsgeschwindigkeit $18 \mathrm{~m} / \mathrm{min}$ nicht uberscbretten darf.

Wird diese Zeit dennoch uberzogen, dann ist ein Austauchen ohne Einhalten der vorgeschriebenen Deko.zeiten nicht mehr gefahrlos möglich.


Abb. 10 zeigt eine Nullzeitkurve, wie sie beute verwendet wird.(nach: MIIES/MACKAY, 1976, S.152).

Ein Vergleich mit der von HALDANE gefundenen Austauchzeiten zeigt, daß beutzutage mit weniger Sicherheitsspielraum getaucht wird. Während HALDANE die "Nullzeit" in 60 ft Tiefe auf zwanzig Muuten begrenzt, lassen MILES/MACRAY einen Aufentbalt bis zu einer Stunde zu (vgl. Abb.10). Aus diesem Beispiel ist zu ersehen, daß HALDANE sehr viel Vorsicht bei der Erstellung selner Tabellen walten ließ, um kein unnötiges Risiko einzugeben.
3.13. Zusammengefaßte Ergebnisse aus HALDAiIEs Untersuchungen

Nach einer Experimentierzeit von etwa zwei Jahren (1906 1907) bieten HALDANE und seine Mitarbeiter BOYCOTT und DAMANT die ersten und einigermaßen sicheren Austaucbtabellen an. Sie bedeuten einen großen Fortscbritt in der Prävention von Dekompressionsunfällen. Die Idee der gefahrlosen Gewebsiubersättigung um einen bestimmten Wert war im Experiment aucb an Menschen bewiesen worden und stellt die Basis für alle weiteren Ontersuchungen und Verbesserungen an Austauchtabellen dar.

Neben den Tabellen liegen eine Reihe von Ergebnissen vor, die auch heute noch nichts von threr Bedeutung fur die Tauchforscbung eingebübt haben. Die wichtigsten Ergebnisse aus der ersten Veröffentlichung von GAIDANE (1908) seien bier aufgezählt.

1. Die Zeit, in der ein Menscb bei erhöhtem Luftdruck mit Stickstoff gesättigt wird, variiert in den verscbiedenen Bestandteilen des Körpers von wenigen Minuten bis zu mehreren Stunden. Der Sättigungsvorgang folgt im allgemeinen einer logarithmischen Kurve und ist nahezu vollständig nach funf Stunden. (Diese Zeit gilt heute bei weitem nicht mehr. Anm. d. Verf.).
2. Die Entsättigungskurve nach der Dekompression ist die gleiche wie die der Sättigung, vorausgesetzt, daß sich keine Blasen bilden.
3. Für die Katstebung von Symptomen sind diejenigen Körpergewebe am wichtigsten, die sich langsam sättigen und entsättigen.
4. Bei schneller Dekompression von 2ata auf 1ata werden keine Symptome erzeugt. Ebenso ist es sicher, wenn man den absoluten Druck schnell auf die Hälfte reduziert, z.B. von 6ata auf 3ata oder von vier Atmosphären euf zwei. Dies gilt bis zu einem Druck von etwa sieben Atmosphären.
5. Die Dekompression ist nicht sicher, wemn der Stickstoffdruck im Körper (nach der Deko.,Anm. d. Verf.) mehr als doppelt so groB ist wieder atmosphärische Stickstoffdruck.
6. Der erate Teil der Dekompression sollte aus der Halbierung des absoluten Drucks besteben. Daran anschlieBend wird die Deko.rate immer langsamer, so das der Stickstoffdruck in keinem Teil des Körpers größer wird als das Doppelte des Stickstoffdrucks der Einatemluft. Eine sichere Dekompression kann mit beträchtlicber Genauigkeit errechnet werden.
7. Gleichmäßige Dekompression muß extrem langsam sein, wenn man damit die gleicben Ergebnisse erreichen will. Sie ist ungeeignet, weil sie die Aussetzungsdauer bei hohem Druck verlängert und keinen Gebrauch von der Möglichkeit macht, eine schnellere Gewebsentsättigung zu erreichen durch eine Vergrößerung der Differenz des Partialdrucks von Stickstoff innerhalb und außerbalb des Körpers. Sie ist $z u$ Beginn unnütz langsam, am Ende gefährlich schnell.
8. 'Henn die Gewebe eines Menschen bei sehr hohem Druck völlig gesättigt sind, dauert die Dekompression in jedem Falle sehr lange. Um diese lange Deko.zeit zu vermeiden, muß die Aussetzung zu solchen Drucken streng begrenzt werden. Die angegebenen Tabellen zeigen die geeignete Art und Dauer der Dekompression für verschiedene Zeiten der Aussetzung an. Sie gelten his zu Drucker vor etwa 6,3atli. Dies wurde in zahlreichen Experimenten an Tieren und Yenschen bewiesen.
9. Der Tod von Ziegen erfolgt fast immer durch pulmonale Lufterbolie oder durch Lähmung infolge Verstopfung von Gefäßen am Riickenmarksstrang durch Stickstoff. Die Ursache von "bends" bleiot ungewiß. In vielen Fällen entstehen sie durcb Blasen in der Synovialflüssigkeit der Gelenke.
10. Nach dem Tod von Tieren wurden freie Blasen meistens im Blut, im Fett und in der Synovialflissigkeit gefunden, aber auch in der Substanz des Riuckenmarksstranges.

Die mirdigung von HaldanEs stufenweiser Dekompression im U.S. NAVY DIVING MANUAL (1978, S.2) beweist, daß sie großen Einfluß auf die weitere Entwicklung der Austauchtabellen genommen hat.
"Haldane also composed a set of diving tables which establishes a stage method of decompression. Though they have been re-studied and improved over the years, these tables remain the basis of the accepted method for bringing a diver to the surface."
4. Entwicklungen und Neuerungen des Tauchens seit RAIDANE

Die Entwicklung auf dem Gebiet des Tauchens erfuhr durch HALDANEs Tabellen einen entscheidenden Aufschivung. In den folgenden Jahren wurden erbebliche Fortschritte auf vielen Gebieten gemacht.
Fír das konventionelle Tauchen bis ca. 70m - auch Flacbwassertauchen genannt -, das heute hauptsächlich nur noch von Sport- und Hobbytauchern betrieben wird, erfolgten einige, jedoch keine grundsëtzlichen Anderungen bezüglich der Austauchtabellen. Durch die Einführung der Nullzeit bekamen die Taucher eine wichtige Hilfe fir kurze und gefabrlose Tauchgänge an die Hand. Technische Verbesserungen der Apparaturen fübrten $z u$ einer Expansion des Onterwassersports. Das zunehmende Interesse von Industrie und Wirtschaft machte Vorstöße in immer größere Tiefen notwendig (Olbohrungen). Um diese $z u$ ermöglichen, mûten neue, hisher unbekannte Wege und Kethoden des Tauchens gefunden werden. Die Erforschung der Tiefen des Kontinentalschelfes brachte die Einfübrung von kinstlicnen Atemgasgemiscben mit sich, deren Zusammensetzung heute noch erforscht, erprobt und fur verschiedene Tiefen optimiert wird.
Die unökonomischen, langen Austauchzeiten aus größeren Tiefen führten $z u$ einer weiteren Neuerung, die den Inbegriff des modernen Tauchens darstellt: Das Sättigungstauchen. Mit zunebmender Tiefe wurden die Wissenschaftler vor neue, bis dabin unbekannte Probleme gestellt (HPNS), die von verscbiedenen Forschungsunternehmen und Forschungsstätten untersucht werden. Im Gegensatz zu früheren Problemen mul zur Vermeidung dieser "Taucherkrankbeit" besonders die Kompressionsmethode in Betracht gezogen werden.
Seit jungster Zeit ist man dabei zu erforschen, ob die Dekompression nicht voillg umgangen werden kann, indem man statt Gas Flüsigkeit als Sauerstoffiberträger zur Beatmung verwend et.

Scbließlich arbeiten Taucbtechnikunternebmen an einer rein mechanischen Lösung des Problems der Deko.auswirkungen. Die Verwendung eines gepanzerten Tauchanzuges wirde fast sämtliche Probleme der Kompression und der Dekompression lösen.
Da jeder dieser vorgestellten Bereiche eine fast uniberschaubare Zabl von Einzelbeiten in sich birgt, werden bier nur die wichtigsten und interessamtesten berausgegriffer und näher erläutert.
4.1. Verbesserungen und Unterschiede der einzelnen Austauchtabellen

Die Dekompression aus Tiefen bis ca. 60 m bereitet heute keine Probleme mehr. Die verschiedenen Austauchtabellen (amerikanische, britische, französische, deutsche etc.) unterscheiden sich vom Prinzip her nicbt. Sie basieren fast ausnahmslos auf dem HALDANE - Modell der erlaubten tbersättigung.
Die Austauchtabelle der U.S. Navy stützt sich auf dieses Modell (vgl. US NAVY DIVING MANUAL,1978,S.7). Es ist dahingehend abgewandelt, daß die Ubersättigungstoleranz nicht fur alle Gewebe als konstant angenommen wird (2:1 nacb HALDANE), sondern daß sie eine charakteristische GröGe fur jedes Gewebe darstellt und von der jeweiligen Tiefe abhängt. M1t dieser Theorie und dazugehörigen experimentell ermittelten Werten wurden neue Austauchtabellen berechnet, die auch fur größere Tiefen gelten und dariberhinaus einen Sicherheitsspielraum aufweisen. Als zusätzliche Vorscbrift gegenuber den HALDANE - Tabellen ist eine Aufstiegsgescbwindigkeit von mehr als $18 \mathrm{~m} /$ min verboten (vgl. US NAVY DIVING MANUAL, 1978, S. 342).
Die in Deutscbland von SEEMANI und RENEMANN eingefuthrten

Tabellen geben auf Berechnungen und Experimente von CROCKER/ TAYIOR (1952) zuruck. Deren anfangs aufgestellte Theorie basiert auf der Stickstoffdiffusionstheorie von REMPLEMAN.

Sie unterscheidet sich von der HALDANE - Theorie insofern, als die Anreicherung des Fettgewetes mit Stickstoff nicht als gleichmäßig angenommen wird. Die Sättigung erfolgt vielmehr von dem versorgenden Blutgefäß aus und nimmt desbalb von diesem aus radial nach außen hin ab (siehe Abb.11a).


Abbildung 11a,b,c zeigt die Verteilung des Stickstoffs unter Druck in fetthaltigem Gewebe.(nach: MIIES/MACKAY, 1976,S.149).

neues
Gleichgewicht

Abb. 11c

Das Fettgewebe ist nach dieser Theorie nach zwei Stunden halb gesättigt, nach acht Stunden völlig (Abb.11c). Die Halbsättigung sieht jedoch ungleichmäßig aus (Abb.11b) und nicht wie bei HALDANE, der eine durcbschnittliche, gleichmäßige Sättigung annimmt.
Wird nach dieser neuen Theorie der Ungebungsdruck plötzifch gesenkt, dann endet die Sättigung nicht sofort wie nach der HAIDANE - Theorie, sondern breitet sich noch etwas von der größten Sättigung nach außen hin weiter aus (Abb.12a). Auch bei nur geringer Druckverminderung diffundiert das aufgenommene Inertgas weiterhin durch das Gewebe ( $\mathrm{Abb} . \mathrm{T} 2 \mathrm{~b}$ ).

Abb. 12a zeigt die Verteilung des Stickstoffs in teilweise gesättigtem Gewebe nach Riickkehr zu Normaldruck.

-)

Abb.12b zeigt die Sättigungsausbreitung nacb einer geringen Druckverminderung. (nach: MIIES/MACKAY,1976,S.150)

b)

Mit dieser Theorie und der ebenfalls von HEMPLEMAN (1952) gefundenen Formel für die aufgenommene Stickstoffmenge:

$$
M=P \times \sqrt{t}
$$

(M: aufgenommene $N_{2}$-Menge; P: Druck in ata; $t:$ Zeit in Minuten) berechnen CROCKER/TAYIOR neue Austauchtabellen und erproben sie zuerst an Ziegen, dann an Menschen. Da sich diese Tabellen aber als unsicher erweisen, macht sich CROCKER (1057a und 1957b) daran, nach dem "Versuch - Irrtum" Prinzip vorzu-
gehen. Die praktiscbe Anwendbarkeit ist das Happtkriterium, die theoretiscbe Begründung steht im Hintergrund. Frneute Versuche rait Ziegen fuhren schließlich zu Tabellen, die für Tiefen bis zu 60 m sicher sind (vgl. CROCKER, 1958). Sie sind von der British Royal Navy anerkannt worden und finden in etwas übersichtlicherer Form neben den Tabellen der U.S. Navy aucb in Deutschland Anwendung. Haptmerkmal der meisten Tabellen ist, daß der Druck zu Beginn der Deko. nicbt nur um die Hälfte (2:1), sondern um mebr vermindert wird. Dies hat seine Ursache darin, dab einige schnellsättigende Gewebe eine Übersättigungstoleranz bis zu 5:1 aufweisen. Demach kann der Druck nach kurzen Aufenthaltszeiten um mehr als die Hälfte verringert werden, ohne daB Deko.erscbeinungen zu befürchten sind (vgl. EHM, 1974,S.235f). Aus den unterschiedlichen thersättigungstoleranzen ergeben sich auch großzígigere Nullzeiten als früher angenommen wurde (siebe Punkt 3.12., S.38/39).
Zusammenfassend kann man sagen, daB sich die einzelnen Tabellen in Nullzeiten und in der Gesamtaustauchzeit nicht wesentlich unterscheiden, lediglich durch andere Tauchstufen und Aufenthaltszeiten bei diesen (vgl. EHM/SEEMANN, 1965, S.139).
4.2. Sauerstoffatmung und künstliche Gasgemische

Zur Vermeidung der durch Stickstoff entstehenden Deko.erscheinungen bietet sich theoretisch die Verwendung von reinem Sauerstoff als Atemgas an. Damit ergeben sich aber erneut Schwierigkeiten.

### 4.2.1. Toxische Wirkungen des Sauerstoffs

Der Sauerstoff ( $\mathrm{O}_{2}$ ), unentbehrlich für alle Lebensvorgänge, besitzt die paradoxe Eigenschaft, daB er schädlich wirkt, wenn er zu lange bzw. bei zu bohem Partialdruck eingeatmet wird.

Als erster untersuchte PAUI BERT (1879) die Auswiricungen des Sauerstoffs unter erhöhten Partialdruck sehr eingehend. Die H y peroxie (= tberversorgung mit Sauerstoff) beginnt sich durch tbelkeit, Schwindel, Sebstörungen, allgemeine Unrube, Angstgeftihle und Midigkeit ansukindigen. Es folgen kleine, kurze Zuckungen um den Mund und an den Augenlidern, begleitet von Kurzatmigkeit und Erstickungagefiblen. Die Zuckungen verstärken sich und setzen sich in alle Gliedmaßen fort bis Bewußtlosigkeit eintritt. Nach einem kurzen Erwachen erfolgt nochmaliger Bewußtseinsverlust und schließlich der Tod. Diese zuerst an Tieren beobachtete toxische Auswirkung des erhöhten Sauerstoffpartialdricks wird nach dem Erforscher PAUL - BERT - Effekt genannt. Diese krampfartigen Muskelzuckungen stellen später auch BORHSTEIN/STROINK (1912) bei Menschen fest. Nach 50-minütiger Aussetzung auf 3ata Sauerstoffdruck und gleichzeitig geleisteter Arbeit zeigen sich Muskelkrämpfe an den Beinen. Uber die Ursachen darüber giot es noch nicht mehr als die Vermutung, daß eine direkte Einwirkung des Sauerstoffs auf den nervus vagus die Krämpfe auslöst. Entscbeidend dafur ist jedoch der erböbte Sauerstoffpartialdruck. Je höber er ist, desto schneller und stärker erfolgen die Krämpfe.und Zuckungen.
Völlig andere, jedoch nicht weniger gefährliche Symptome erzeugt der Sauerstoff, wenn er bei einem Teildruck von etwa lata geatmet wird. Zunächst läßt sicb dies einige Stunden schadlos durchfuhren. Nach acht bis zwolf Stunden deuten sicb erste Anzeichen einer Lungenschädigung durch trockenen Husten und Beklemmungsgefuhle in der Brust an. Weitere Sauerstoffatmung verursacht Bronchitis und Lungenödeme. Scbließlich erfolgt ebenfalls der Tod als Folge von Atemnot. Die Todesursache ist paradoxerweise eine Unterversorgung der Gewebe mit Sauerstoff (Hypoxie). Als Grund fur diese Hypoxie lassen sich spezifiscbe Lungenschädigungen bei der Obduktion
festsiellen. Durch Verdickung des Gewebes der Alveolen ist die Sauerstoffdiffusion erschwert und somit ist eine ausreichende Sauerstoffversorgung des Organismus nicht mehr möglich. Die Schëdigungen durch Atmung reinen Saverstoffs bei atmosphärischem Druck nennt man ebenfalls nach dem Erforscher IORRAIN-SMITH - Effekt (vgl.SMITH, 1899). Den Hinweis auf eine Verbindung zwischen den beide toxischen Effeicten des Sauerstoffs trotz unterschiedlicher Symptome geben die Untersuchungen von HIII (1912), der bei Tieren, die erhöhtem Sauerstoffdruck ausgesetzt waren, zunächst Atemnot und Kurzatmigkeit beobachtet, dann aber die gleichen Iangenschëdigungen diagnostiziert, die für den LORRAINSMITH - Effekt charakteristisch sind.
Reiner Sauerstoff darf beim Tauchen desbalb nur bis zu 10 m Tiefe verwendet werden, $50 \%$ Sauerstoffzusatz zur Preßluft nur bis zu ca. 30 m und Preßluft bis höchstens 90 m , da der Teildruck des Sauerstoffs flir eine bestimmte Zeit 2ata nicht übersteigen soll. Bei Tauchunternehmungen in größere Tiefen versucht man deshalb, den Partialdruck des Sauerstorfs zwiscben 0,4 und $0,6 a t a \mathrm{zu}$ halten, was in allgemeinen $\mathfrak{i b e r}$ lange Zeit obne Schädigungen vertragen wird.
Iediglich während der letzten Phase der Dekompression nach Sättigungstauchgängen kann der Sauerstoffdruck für kurze Zeit 2ata ibberschreiten, um die Entsättigung der Gewebe von Stickstoff oder Helium zu beschleunigen.
Fưr diesen ProzeB sowie für die oben erwähnten künstlichen Gemische sind eigens dafur berechnete Austauchtabellen zu benutzen.
Dank der durch die Forschungsarbeit der genannten Persönlichkeiten gewonnenen Erkenntnisse ereignen sich heutzutage keine Unfälle durch zu bohen Sauerstoffarick mehr, außer wenn technische Defekte zuviel Sauerstoff ins Gasgemisch strömen lassen.


Abb. 13 zeigt die Konzentrationsgrenzen des Sauerstoffs bei langen Tauchversuchen zur Vermeidung des IORRAINSMITH - Effekts in Abhängigkeit vom Druck. (nach: Uberleben auf See, 1952, S.84).
4.2.2. Zusatz von Inertgasen

Als Inertgase bezeichnet man solche Gase, die nicht an Stoffwechselprozessen teilnehmen. Sie werden in der gleichen Konzentration ausgeatmet wie sie mit dem Atemgasgemisch eingeatmet werden. Das bekannteste und am meisten verwendete ist der Stickstoff, der zu ca. 80\% in der Luft enthalten ist. Stickstoff besitzt jedoch die Eigenschaft, das er schon bei einem mä3ig hohen Teildruck (3-4ata) narkotische Wirkungen zeigt und Verursacher des bekannten Tiefenrausches ist.

Wegen der steigenden Anspriche der Taucber - längere Aufenthaltszeiten in gröBeren Tiefen, kürzere Deko.zeiten bei möglichst geringem Risiko - ergeben sich erneut Probleme mit dem Stickstoff. Mit zunehmender Tiefe kann Stickstoff als Fuillgas (Inertgas) nicht weiter verwendet werden, erstens, wegen des Tiefenrausches, zweitens, wegen des erhơhten Atemwiderstandes als Folge der grögeren Dicbte, drittens, wegen der langen Deko.zeit infolge langsamer Entsättigung. Als Ersatz bieten sich eine Reihe von Inertgasen, insbesondere Edelgase, an, die auf Dichte, narkotische Wirkung und Iöslichkeit in den einzelnen Geweben untersucht werden.
4.2.2.1. Narkotische Wirkung und Löslicbkeit

Ein Inertgas hat einen umso größeren narkotischen Wert, je höher sein Molekulargewicht ist unđ je größer seine Lipoidlöslicbkeit ist (= Löslichkeit in Fett und fetthaltigen Geweben). Nach dieser Faustregel besäße Wasserstoff ( $\mathrm{H}_{2}$ ) die geringste, Xenon die größte narkotische Wirksamkeit, was fír Xenon auch zutrifft. Ein Gemisch aus $80 \%$ Xenon und $20 \%$ Sauerstoff wird bei Normaldruck zur cbirurgischen Anästhesie verwendet. Die gleiche prozentuale Verteilung mit Stickstoff/Sauerstoff wirkt erst bei 18ata narkotisch (vgl. SEEMANN, 1968, S.107). Zur genaueren Bestimmung des Narkosegrades der Inertgase reicht diese Faustformel nicht aus. In Wirklichkeit erzeugt Helium (He) die geringsten narkotischen Erscheinungen, gefolgt von Wasserstoff und Neon (Ne). Wasserstoff wäre leicht und billig herzustellen, aber bei Gemiscben von mehr als 3 身 Sauerstoffgehalt und Wasserstoff entsteht das leicht entzündiche Knallgas, wesbalb Wasserstoff im allgemeinen als Fillgas ausscheidet und erst bei Tiefen wieder in Frage kommt, flir die der Sauerstoffgehalt unter $2 \%$ liegt.

Tabelle 4 zelgt einen Vergleich der Eigenschaften von Inerをgasen, die als Fullgas in Frage kommen. ( . therleben auf See, 1968, S.106).

|  | $\frac{\text { Wesserstoll }}{\mathrm{H}^{2}}$ | Helium $H_{0}$ | $\begin{gathered} \text { Neon } \\ \end{gathered}$ | Stickstalt | $\begin{aligned} & \text { Argon } \\ & \hline \text { gip } \end{aligned}$ | $\begin{gathered} \text { Krypton } \\ k_{p} \end{gathered}$ | xemon $x_{e}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Löslichkeitskoelfizienl Ö́l / Wasser | 3.0 | 1.7 | 2,07 | 5,25 | 5,32 | 9.6 | 20.0 |
| Felllöslichkeit | 0.01 | 0,015 | 0,019 | 0,09 | 0.19 | 1,0 | 7.1 |
| Molekular gewicht | 2 | 4 | 20.18 | 28 | 40 | 83.7 | 131.3 |
| Viskositäs | 88 | 194 | 298 | 178 | 222 | 246 | 226 |
| Dichte (i.v.z. Lu(f) | 0.07 | 0,138 | 0.696 | 0,967 | 1.38 | 2,89 | 4.51 |

Tabelle 5. Hieraus ist besonders gut die narkotische Wirksamkeit der Gase abzulesen.(nach: STRAUSS,1976,S.163).

| Gas | Mol. Gew. | Lös-lichkeit | Mol. Vol. | Polari-sierbarkeit | narkot. Wirkung |
| :---: | :---: | :---: | :---: | :---: | :---: |
| He | $t$ | 0.015 | $32.0{ }^{\circ}$ | 0.20 | 4.26 |
| Ne | 20 | 0.119 | 16.72 | 0.39 | 3.58 |
| $\mathrm{H}_{2}$ | 2 | $0.0 .3 n$ | 28.3 |  | 1.83 |
| $\mathrm{N}_{2}$ | 28 | 0.067 | 35.4 | 1.74 | 1 |
| A | 40 | 0.14 | 28.6 | 1.63 | 0.43 |
| Kr | 83.7 | 0.43 | 34.7 | 2.48 | 0.14 |
| Xe | 131.3 | 1.7 | 43.0 | 4.00 | 0.039 |
| $\mathrm{O}_{2}$ | 32 | 0.11 | 27.9 | 1.58 |  |
| $\mathrm{CO}_{2}$ | 44 | 1.34 | 38.0 | 2.86 |  |

### 4.2.2.2. Helium - Sauerstoff Gemische

Der erste größere Einsatz von Heliumgas als Zusatz zur Preßluft wurde 1939 in den USA bei der Hebung des Unterseebootes "Squalus" versuchsweise erprobt, nachdem bereits zwei Jahre vorher Edgar Fnd und Max Nohl erfolgreich mit Heliumgemisch getaucht waren (vgl. KINDWALL, 1976). Lange Zeit hlieb die US Navy die einzige Organisation, die Helium als Inertgaszusatz verwenden konnte, da nur in den USA Helium industriell hergestellt wurde. Es ist deshalb nicht verwunderlich, das die USA fuhrend in der Erforschung von Heliumgemischen waren. Während bei den ersten Anwendungen von künstlichen Taucbgasgemischen Helium noch zu Luft binzugefügt wurde, verwendet man heute bei den meisten Tieftauchgängen ein Zweikomponentengemiscb, das nur Helium und Sauerstoff entbält. Man nennt es bäufig auch He li 0 x - Gemisch (Abkürzung für Helium/ Oxygen). Manchmal wird ein sehr geringer Prozentsatz an Stickstoff beigemengt, wodurch dann das T rimiz (Dreikomponentengemisch) entstebt (siehe Punkt 6.3.). Die Entwicklung komplizierter elektronisch gesteuerter Apparaturen erlaubt es, dab der Sauerstoffanteil mit der Tiefe abnimmt, so daB er in jeder Tiefe zwischen den bekannten Toleranzgrenzen liegt.
Wegen der geringen Lipoidlöslichkeit von Helium (siehe Tabellen S.52) geht die Dekompression im allgemeinen schneller vor sich und erfolgt nach eigens dafür angefertigten Tabellen, die auch auf der stufenweisen Deko.metbode von HALDANE beruhen.

Die Vorteile, die durch die Verwendung von Heliumgemischen entstehen, erlauben den V́orstoß in extreme Tiefen, die ohne dieses Gas nicht erreichbar wären. Der Grundstein des Tiefseetauchens ist damit gelegt.


## II. Teil

Die Entwicklung neuer Tauchformen und Forschungsscbwerpunkte im Tiefseetauchen zur Vermeidung von Kompressions- und Dekompressionserscheinungen im menschlicben Körper.

## 5. Särtigungstauchen

Von Sättigungstauchen spricht man, wenn die Austauchzeit unabbängig von der Aufenthaltszeit unter Druck ist. Man kann praktisch beliebig lange bei einem bestimmten Druck Verweilen, ohne daß dadurch der Deko. orozeß heeinflußt wird. Das ist dadurch zu erklären, das alle Gewebe vollkommen mit dem verwendeten Inertgas gesättigt sind, was beim konveṇtionellen Tauchen nicht der Fall ist.
In dieser Zusammenhang stellt sich die Frage, ab welchem Zeitpunkt man vor. einem Sättigungstauchgang sprechen kann und was noch nicht dazugehört. Nach amerikanischer Auffassung kann man erst einen Aufentbalt von mehr als 20 Stunden als Sättigungstauchen bezeichnen (BOND), während man nach Meinung der französischen Unterwasserforscher (CROUTEAU, COUSTEAU et al.) bereits ab 12 Stunden von Sättigungstauchen sprechen kann (vgl. toerleben auf See, 1968, S.162). An dieser Stelle sei an HALDANE erinnert, der aufgrund seiner Experimente mit Ziegen bereits nacb 5 Stunden die Gewebe als gesättigt ansiebt. Die unterschiedlichen Auffassungen resultieren aus verschiedenen Werten fur das langsamste Gewebe. Die Rưckrechnung auf die Halbwertszeiten zeigen, das die amerikanischen wissenschaftler von einer Halbwertszeit über 350 Minuten ausgenen, während die französischen mit ihrem Wert etwas uiber 220 Minuten liegen muissen (Rechengang siehe Anhang $I, 8$ ), vorausgesetzt, man legt den Berechnungen eine gemeinsame Basis zugrunde, bei der die Sättigung als vollkommen angenommen wird (z.B. 90 \%) . Da die Forschungen über das Sättigungstauchen im wesentifchen schon abgeschlossen sind und die schwierigsten Probleme (v.a. die Deko.) in zahlreichen simulierten und echten Tauchversuchen gelöst wurden, sei nur ein tberblick uber die gesamte Thematik gegeben und der Verlauf der Entwicklung nachgezeichnet.

### 5.1. Fintstehung des Sëttigungstauchens

Als nVäter des Sëttigungstauchens" können COUSTEAU, IINK und BOND bezeichnet werden. Die Idee entstand Fnde der Drei日iger Jahre als sich die Notwendigkeit dieser Art zu tauchen immer deutlicher bemerkbar machte. Hintergrund dafür sind die extrem langen Austauchzeiten aus größeren Tiefen, die inkeinem Verhältnis zur nutzbaren Zeit stehen. Zur Bergung des gesunkenen Unterseebootes "Squalus" waren fiber 600 Tauchgänge notwenaig, da die Aufentbaltszeit in 73m Tiefe nur etwa zebn Minuten betragen durfte (nach den damaligen Deko.tabellen für Heliumgemische), um die Austauchzeiten nicht über die Maben auszudehnen. COUSTEAD führt den Begriff der $T$ a $u$ chleistung ein und definiert inn so:

$$
\begin{aligned}
\text { Tauchleistung }= & \frac{\text { Tauchzeit }}{\text { Tauchzeit }+ \text { Deko.zeit }} \\
& \text { (vgl.CHODTEAU et al., 1968). }
\end{aligned}
$$

Die Tauchleistung kann nur dann verbessert werden, wenn die Aufenthaltsdauer in der Arbeitstiefe so lange ist, dab die Deko.zeit kaum mehr ins Gewicht fällt und sich der Wert fur die Tauchleistung dem Wert 1 nähert.
5.2. Unternebmungen und Vorversuche

Im Jabre 1957 beginnen die Vorbereitungen fur größere Unterwasserforschungsunternebmen unter der leitung von BOND am Subnarine Medical Research Laboratory der US Navy in New London. Dieses Datum gilt als die Geburtsstunde des Sättigungstauchens. Nach vorhergehenden Tierversuchen entstehen Deko.tabellen, die in bekannten Langzeittauchversuchen getestet werden. Sealab I und II führen die Amerikaner 1964/65 1m Anschluß an ibre Vorversuche durch, während unter der Leitung
von COUSTEAU und LINK die französischen Programme Precontinent und Conshelf schon 1962/63 abliefen. Diese mit ungebeuerem finanziellen und materiellen Aufwand ausgestatteten Unternehmungen testen unter anderen die optimale Gasmischung fir Langzeittauchversuche, die Verwendung von beheizten Tauchanzüger gegen den starken Wärmeverlust durch die Hellumatmung und durch das Wasser und schließlich muß die Dekompression nach Sättigung an Menschen erprobt werden.
5.3. Ergebnisse

Der lange Aufenthalt unter Wasser, selbst ひ̈ber Wochen hin, bereitet heute dank der gründlichen Vorversuche keine Schwierigkeiten mehr. Die Taucher wohnen in einem Onterwasserhaus in der sog. Sättigungstiefe, von der aus sie Abstecber in die Arbeitstiefe unternehmen sönnen. Die Rückehr von einer größeren Tiefe aus in die Unterkunft erfordert meist nur eine kurze Deko.zeit, da die relativen Druckunterschiede gering sind. Auf diese Weise können kurzzeitig enorme Tiefen erreicht werden, obne daß sich die Deko.zeit aus der Sättigungstiefe ändert. Die Atmosphäre im Unterwasserhaus besteht im allgemeinen aus einer Heliox - Mischung mit einem Sauerstoffpartialdruck von 0,3 bis 0,6 ata. Wegen des hohen Heliumanteils ergeben sich manchmal Verständigungsscbwierigkeiten, da sicb die Stimme in eine höbere, leicbt quakende "MickyMaus" - Stimme verändert.

### 5.4. Dekompression nach Sättigung

Die Deko. nach Sättigung stellt den schwierigsten Teil der Forschungen dar. Einerseits ist zwar die Deko.berechnung vereinfacht, da nur das langsamste Gewebe bericksichtigt zu werden braucht, andererseits muß dieses erst ermittelt werden. Fur die Deko. nach Sättigung ist der größte von HALDANE ermittelte :lert von 75 Minuten flir das langsamste Gewebe
völlig unzureichend, zumal dieser Wert aufgrund von relativ grober Bestimmung entstanden ist.
Nach langen Versuchen an Tieren und an Menschen gelangen die amerikanischen Forscher schlieBlich bei einem Wert von 310 Minuten für die Halbwertszeit des langsamsten Gewebes mit Heliumatmung an. Dieser Wert dient als Ausgangsivert fúr die Berechnung der Deko.tabellen (vgl.BOND, 1968).
Die französischen Berechnungen von ALINAT basieren auf Ergebnissen der schweizer Forschungsgruppe um BUHLMANN. Sie finden als lengsamstes Gewebe eines mit 240 Minuten Halbwertszeit fur die Verwendung von Helium und einen Nert von 420 bis 480 Minuten fiur Stickstoff als Fillgas (vgl. Bthin MANN, 1971 und BUHLMANN et al.,1967).
Offensichtlich kann man auch durch noch so komplexe und sorgfältige Berechnungen die im Körper ablaufenden Vorgänge bei der Deko. nicht genau nachvollziehen; denn die Deko.forschung ist beute mehr noch als zu früheren Zeiten eine rein empirische.
"Ueberdruckexpositionen, bei deren Dekompression Symptome einer ungenijgenden Dekompression aufgetreten sind, werden analysiert und mit einem korrigierten Dekompressionsprofil wiederholt. Das Berechnungsmodell der Dekompression ist unwichtig." (BUHIMANN, 1980).
Das bedeutet in der Praxis, daB bei Auftreten von Symptomen so lange rekomprimiert wird, bis die Schmerzen verschwunden sind. AnscblieBend wird die Deko. fortgesetzt, jedoch mit einer langsameren Rate. Dieses Vorgeben ist nicbt ganz so gefährlich wie es auf den ersten Blick erscheinen mag, weil sich die Deko.symptome nach Sättigungstauchen fast ausschließlich in Schmerzen (bends) an den Knien manifestieren. Sie ähneln etwa den Schmerzen nach Uberanstrengung und können durch geringfigige Rekompression sofort wieder beseitigt werden.

Tauchprofil: 10 stunden bei 1500 feet


Abb. 14 zeigt ein Druckprofil eines simulierten heliox Tauchganges bis zu einem Druck von 1500 FuB (= 46ata). Die Korrektur der Deko.rate ist an den verschiedenen Steigungen des abwërts gerichteten Astes zu erseben. (nach: BENNETT/ELLIOTT,1975, S.251).
Der in Aboildung 14 dargestellte Deko.verlauf ist tyoisch fur die oben beschriebene Verfahrensweise. Nach der stufenweisen Kompression und einer Aufenthaltsdauer von zehn Stunden bei einen Druck von $46 a t a$ beginnt die Dekompression. Sie wird wegen eines Deko.symptoms nochmals ruickgëngig gemacbt, um dann mit wesentlicb langsamerer Rate fortgefuhrt zu werden. Kurz vor Ende der Deko. erleidet ein anderer Proband Kniebends, die durch minimale Rekomoression beseitigt werden können (vgl. BENHETT/ELLIOTT, 1975, S.251).
Dieses Dekompressionsprofil ist, abgesehen von den beiden
Rekompressionen, charakteristisch fur die Deko. aus großen Tiefen. Sie erfolgt nicht mehr stufenweise wie bei den klassischen Austauchtabellen, sonden ist der logarithmischen Entsättigungskurve des langsamsten Gewebes angeglichen. Die Deko.rate beträgt demnach in etwa 1:1, di.h., daß der Druck
so langsam vermindert wird, da3 das aus dem langsamsten Gewebe diffundierende Inertgas onne Blasenbildung aus dem Körper austreten kann.
Fưr die Deko. nach Sättigungstauchen gibt es keine allgemein anerkannte und von allen Instituten und Organisationen verwendete Tabelle. Die Deko.profile sind ebenso zablreich wie die einzelaen Gruppen, die sie verwenden. Aber es zeichnet sich eine Annäherung der einzelnen Tabellen ab. Die Gemeinsamkeiten liegen im logarithmischen Verlauf der Druckverminderung und in der langen Dauer des Deko.vorganges. Als gutes Beispiel für den Deko.verlauf nach Sättigung sei bier eine der am besten ausgearbeiteten Tabellen angegeben, die sich auf Berechnungen von WORKMAN stützt und auf die ersten Experimente des Sëttigungstauchens zurückgeht (siebe Punkt 5.2.). Es ist die Dekompressionsvorscbrift aus dem US NAVY DIVING MANUAL (1978, S.39).

Tabelle 6
Dekompressionstafel aus dem US DIVING MANUAL fiur Sättigungstauchgänge bis zu einer Tiefe von 1000ft

| Deko.rate |  | Tiefe in ft |
| :---: | ---: | :---: |
| in $f t / h$ | von | bis |
| 6 | 1000 | 200 |
| 5 | 200 | 100 |
| 4 | 100 | 50 |
| 3 | 50 | 0 |

Der logaritbmiscbe Verlauf der Druckverminderung wird dadurch erreicht, daß in den Rubezeiten von 24 Thr bis 6 Ohr und von 14 Uhr bis 16 Uhr nicht dekompriniert wird.


Abb. 15 zeigt das in Tabelle 6 beschriebene Deko.verfahren aus dem US DIVING MANUAL 1978. Die einer logarithmíscben Entsättigungskurve angenäherte Form ist erkennbar.

Sättigungstauchen wird neben wissenschaftlichen Instituten und militärischen Organisationen heute in steigendem Mabe von kommerziellen Unternehmen wie den multinationalen Olgesellscbaften gefördert und vor allem bei Olbohrungen, z.B. in der Nordsee, angewendet.
5.5. Zusammenfassung

Die Austauchzeiten aus immer größeren Tiefen fihren zu einer graduellen Verschlechterung der Tauchleistung (siehe Punkt 5.1., S.55). Will man diese verbessern, dann ergibt sich zwangsläufig das Sättigungstauchen, bei dem man sich lange Zeit in der Sättigungstiefe aufhält und nur einmal nach Beendigung der Arbeiten dekomprimiert wird. Die Dekompressionsdauer ist nach einer bestimmten Zeit, der Sättigungszeit, unabhängig von der Gesamtaufenthaltszeit. Die Sättigungszeit liegt zwischen 12 und 20 Stunden. Die Dekompression verläuft im Gegensatz zum klassischen Austauchen nicht stufenweise und mit einer starken Druckverminderung zu Beginn der Deko., sondern kontinuierlich einer logarithmischen Entsättigungskurve folgend. Die Dekompression bereitet heute keine Probleme mehr. Sie findet in der Regel in einer Druckkammer statt, in die die Taucher in der Sättigungstiefe steigen und die dann an Land oder an Bord eines Schiffes gebracht wird.

Seit der tecbniscbe Fortschritt es erlaubt, dab in Druckkammern, aber auch auf offener See, Tiefen von weit mehr als $300 \pi$ erreicht bzw. simuliert werden können, sehen sich die Forschungsunternehmen mit einem Phänomen konfrontiert, das eine ernste Gefahr für die Gesundheit der Taucher bedeutet und das deshalbeinen weiteren Schwerpunkt der heutigen Tieftauchforschung darstellt. Die vielfaltigen Erscbeinungsformen dieser "Taucbererkrankung" sind unter der Bezeichnung HPNS (engl.: high pressure servous syndrom = Hochdruck - Nervensyndrom) zusampengefaßt.

## 6. Das Hochdruck - Nervensyndrom (HPNS)

Die seltsamen Symptome des Hochdmack - Nervensyndroms beschreibt als erster eln Lenirgrader Fhysiologe namens ZALTSMNN (1961) bei Experimenten an mieren und später auch an Menschen. Allerdings werden die Aufzeichnungen darüber erst später im Westen veröffentlicbt, nachdem 1965 auch in England am Royal Naval Physiological Laboratory (RNPL) in AIverstoke ähnliche Symptome festgestellt werden. Die damals durchgefuhrten Versuche dienten eigentlich dazu, um die narkotische Wirkung von Inertgasen zu untersuchen, Wobei vor allem Wasserstoff und Helium im Mittelpunkt des Interesses standen. Bei wesentlich geringeren Drucken als man Narkoseeffekte erwartet hätte, traten Begleiterscheinungen $a \mathrm{I}_{\mathrm{I}}, \mathrm{die}$ man zunächst als "Heliumzittern" bezeichnete. Dabei unterscheiden sich die Symptome deutlich von den erwarteten Narkoseanzeichen.
6.1. Erscheinungsformen des HPNS

Das HPNS beginnt bei Tiefen ab ca. 150 m und betrifft hauptsächlich das Zentrale Nervensystem. Die Symptome beginnen mit motorischen Störungen neuromuskulären Ursprungs, die sich in Form von gesteigerten, regellosen und deshalb unkoordinierten Bewegungen, durch Zittern und Zuckungen kleiner Muskelgruppen (myoklonus) manifestieren. Sie sind am ehesten an den Händen und am Kopf zu registrieren. Die Versuchspersonen zeigen scbon ab etwa $15 a t a$ Druck rhytbmisches Zittern von 5-8 Hertz an den oberen Extremitäten, am Rumpf und am Unterkiefer (vgl. ZALTSMAN, 1961). Ḧhnliche Erscheinungen entdeckt auch BENIETT, der Protagonist auf diesem Gebiet (vgl. BEMTETT, 1965).
Zur genaueren Untersuchung der Storungen, die auch höhere Gehirnfunktionen betreffen, werden neben einem Elektro-
enzephalogramm (EEG) auch zahlreiche andere Tests während der Kompression durchgefifhrt. Ab einem Druck von ca. 31ata können deutliche Veränderungen im EEG festgestellt werden. Im Theta - Band treten kurze Wellen von 4 - 6 Fertz auf, verbunden mit einer Verminderung der Aloha - Aktivitët. Mit zunehmendem Druck verstärken sich die Veränderungen, teilweise werden die von Phasen der Schläfrigkeit und von Mikroschlafphasen (= Schlafphasen 1 und 2 auf dem EEG) unterbrochen. Auch die Tests - Reaktionszeitmessungen, Lösen von Methematikaufgaber, Geschicklichkeitstests etc. - zeigen vesentlich schlechtere Ergebnisse als unter Normalbedingungen. Nicht selten werden diese Symptome von Schwindelgefihlen, tbelkeit, Benomenheit, Apathie und Schläfrigkeit begleitet. Auch Fälle von verringerter Aufnahme- und Wahrnehmungsfähigkeit, räumlicher und zeitlicher Desorientierung sind nicht selten. Tiere werden darüberhinaus von großrëumigen, regellosen Zuckungen befallen. Wahrend einige der Symptome bei konstant gebaltenem Druck nach ein bis zwei Stunden nachlassen oder gar verscbwinden, bleiben andere während der ganzen Zeit vorbanden (meist das Zittern und die kleinen Zuckungen), verbessern sich aber auch merklich (vgl.BENNEMT,1965, oder FRUCTUS et al.,1976). Die Druckschwellen, ab denen die Symptome einsetzen, sind individuell sehr weit gestreut, aber man kann damit rechnen, daß sie spätestens ab 30ata jeden befallen. Die starken Zuckungen bei Tieren setzen spätestens ab 60ata ein (vgl. BRAUER, 1975).
Die Tatsache, daB bohe Drucke Muskelzuckungen auslösen können, ist schon lange bekannt, allerdings nicht im Zusammenhang mit dem Tauchen.
EBBECKE (1944) stellt bei zahlreichen Untersuchungen an verschiedenen Tierpräparaten, unter anderem an dekapitierten Riackenmarkssträngen, fest, daß bei Druckwerten von 100 bis 200ata die Beine in zuckende Bewegungen geraten, manchmal
in rhytbmische, manchmal in unregelmäßige. Nach einiger zeit bei konstantem Druck verlieren sich diese Bewegungen wieder. EBBECKE spricht dabei von einer "Anfangswirkung" (vgl.EBBECKE, 1944).

### 6.2. Zusammenhang zwischen HPNS und Kompressionsgeschwindigkeit

Zahlreiche Versuche bestätigen die besonders deutliche fusprägung des HPNS bei Kompressionsraten, die normalerweise bei flachwassertauchgängen Anwendung finden. Kompressionsraten bis zu $30 \mathrm{~m} / \mathrm{min}$ (genauer: 3ata/min) werden bei Druckkammerversuchen ausprobiert (Vgl.iNAIDVOGEL/BUHLMANN, 1968 oder BENNETT, 1965). Die versuchsweise Erprobung von sehr langsamen und deshalb unökonorischen Kompressionsgeschwindigkeiten bringt eine soürbare Verbesserung des HPNS. Bei einer Rate von $0,2 \mathrm{~m} / \mathrm{min}$ tritt bis zu einer Tiefe von 300 m kein HPNS auf, bei schnelleren Raten jedoch häufig (vgl. SUMMITT et al.,1971). Andere Autoren bestätigen diese Ergebnisse (Vgl.OVERFIELD et al.,1969). Aus neueren Versuchen ist zu ersehen, das sich die langsamen Kompressionsraten gegenuiber den friher verwendeten, sehr schnellen durchsetzen. Man hat offensichtlich die schnelle Kompression als eine der Ursachen fuir HPNS erkannt und daraus Konsequenzen gezogen.
Ein Beispiel für eine relativ langdauernde Kompression ist ein simulierter Tauchversuch, bei dem einige Probanden (Marinetaucher der US Navy) in etwas mehr als 12 Stunden auf einen Druck von 47ata komprimiert werden, was einer Rate von $0,62 \mathrm{~m} / \mathrm{min}$ entspricht. Es tritt zwar HPNS in leichter Form in Erscheinung, aber nach einiger Zeit schwächen sich die Symptome $a b$, und die Tests zeigen gute Ergebnisse (vgl. BENETT, 1979). Nachdem bereits 1972 ein französisches Forschertear einen simulierten Tieftauchversuch mit sturen -
weiser Kompression und veränderlicher Kompressionsrate mit positivem Ergebnis abgeschlossen hat, scheint sich diese Methode nun durchzusetzen. Bei einem der neuesten Tieftauchversucbe wird die Kompressionsrate verlangsamt, je höher der Druck steigt. Die anfängliche Kompressionsgeschwindigkeit von $0,6 \mathrm{~m} / \mathrm{min}$ wird graduell bis auf $0,08 \mathrm{r} / \mathrm{min}$ in der letzten Phase verringert (vgl. THALMAN et al.,1980).

## Tabelle 7

Das von THALMAN et al. (1980) verwendete Kompressionsprofil fur einen simulierten Tieftaucbversuch auf einen Druck entsprechend einer Tiefe von 1800 ft ( $=548 \mathrm{~m}$ ).

| Kempressions- | Druck in | fs' |
| :---: | :---: | :---: |
| rate in ft/b | von | bis |
| 120 | 0 | 650 |
| 40 | 650 | 1000 |
| 30 | 1000 | 1600 |
| 15 | 1500 | 1800 |

Während der Schlafenszeit zwischen 22 Whr und 6 Ohr findet keine Kompression statt, so daB sicb auch diese stuferweise Kompression einem logarithmischen Verlauf angleicht. Wie aus den beiden Abbildungen der nächsten Seite zu entnehmen ist, dauert allein schon die Kompression auf sebr hohe Drucke einige Tage, wodurch die Gesamttaucbdauer auf einige Wochen ausgedebnt wird.
Da bei solchen Tauchversuchen auch die Kompression einen nicht unerheblichen Teil der Gesamtzeit verschlingt, mỉBte die Tauchleistung (siebe Punkt 5.1.,S.55) neu definiert werden. Zur Deko.zeit -ỉnte noch die Zeit fur die Konpression hinzugezählt werden. Dadurch würde allerdings die Tauchleistung noch um einiges verschlecbtert.


Abb. 16 zeigt die grafische Darstellung der in Tabelle 7 beschriebenen Komnressionsweise. (Die Aussetzung der Druckerböhung ist gemittelt eingezeichnet.)


Abb. 17 zeigt das Druckprofil fur den 1972 von französischen 'Nissenschaftlern durchgefubrten simulierten Tieftauchversuch. Die mit zunehmendem Druck geringer werdende Kompressionsrate ist deutlich zu entnehmen.
(nach: FRUCTUS et al.,1976).

Bei den beiden neueren Tauchunternehmen (BENNETT, 1979 und THALMAN et al.,1980) wurde nicht nur der Einfluß einer langsamen und mit steigendem Druck abnehmenden Kompression auf das HPNS getestet, sondern auch der Zusatz von Stickstoff zum Atengas. Nach einer Theorie von BENNETT soll die Zugabe von Stickstoff zur Heliox - Nischung ehenfalls dazu beitragen, die Symptome von HPNS abzuschwächen.

### 6.3. Narkosetheorie zur Prävention des HPNS

BENNETTs Tbeorie liegt hisher nur als hypothetische Annahme vor, doch scheint sie sich mehr und mehr zu bestätigen (vgi. HUNTER/BENNETT, 1974 und BENNETT, 1976).
Der Angriffspunkt von HPNS und von Narkose ist im Bereich der Symapsen zu lokalisieren, genauer gesagt in der postsynaptischen Membran, durch die die Ionen zur Nervenerregung diffundieren. Die betroffenen Stellen sind wabrscheinlich mebrsynaptiscbe Gebiete des Gehirns, die Pyramidenbabnen des motorischen Systems, der Rickenmarksstrang und die Nervenverbindungen zu den Muskelzellen.


Abb. 18 zeigt die Verbingung von Nervenfaser zu Muskelzelle (nach LULIIES/TRINCKER,1973,S.176).
(ACh:Acetylcholin, ChE:Cholinesterase)

Sehr bober Druck, repräsentiert durch Helium, bewirkt nach dieser Theorie ein Zusammendrucken dieser postsynaptiscben Membran, was eine Abnabme des Ionenflusses durch die Membran zur Folge bat. Die $P$ ermea m i lität für die Ionen ist stark verringert (siehe Abb. 19 Mitte, rechte Darstellung).


Abb. 19 zeigt die Wirkungsweise von Stickstoff oder einem äbnlichen anästhetisch wirkenden Mittel auf eine Zellmembrane, verglichen mit Helium und einem $\mathrm{He} / \mathrm{N}_{2}-\mathrm{Gemisch}$.
(nach: STRAUSS,1976, S. 164).
Bildich kann man sich vielleicht vorstellen, daß sich die Ionen gleichsar vor der Membran staven, weil sie infolge der Verengung nicbt hindurchdiffundieren können. Dies dirffe zur Auslösung des HPNS füren.
EBBECKEs Untersuchungen, bei denen Muskelzuckungen durch hoben Druck stimuliert wurden, waren wobl wegweisend für diese Theorie (siehe Punkt 6.1., S.63). "Die Erregbarkeit (der Nerven, Anm.d.Verf.) wird durch Druck gesteigert, so dass ein vorher eben unterschwelliger, für sich unwirksamer Reiz überschwellig wird und einen Aktionsstrom auslöst." (EBBECKE,1044).
Der irgekehrte Fall tritt bei der Narkose ein (Ahb. 19 Mitte, Iinke Darstellung). Das Markosegas, in diesem Fall Stjck-
stoff, erweitert die Membran, weil die anästhetischen Molekiile von den Lipidbestandteilen der Membran stärker absorbiert werden als andere und dadurch die Eigenschaften der Membran verändern. Nach der NEYER - OVERTONE - Narkosetbeorie vergrößert sich die Membran. Die Erweiterung der Membran läßt ihrem Inhalt größere Bewegungsfreiheit, d.b., dab der Durchtritt der Ionen schneller erfolgen kann. Bildich kann man sich wiederum vorstellen, daß die höhere Permeabilität einen ständigen Mangel an Ionen verursacht. Es können nicht so viele zugefuhrt werden wie hindurchtreter.
t'berschreitet die liembran das sog. $k$ itimehe Yolumen, dann scheitert die tbertragung völlig und Narkose tritt ein, je nachdem wieviele Synapsen betroffen sind. Durch Druck kann die Anësthesie wieder rückgëngig geracht werden (vgl. JOHNSON/MILLER, 1970 oder IEVER et 2.l., 1971). Diese bekannte Tatsache führt zu der Annahme, daß ein optimaler Kompromib zwischen Membranverengung durch Druck und Membranerweiterung durch das Narknsegas den normalen Ionenflub wiederherstellen könnte (siehe Abb. 19 untere Darstellung). Dies ist in groben Umrissen die Theorie von BENNETT. Zur Herausfindung des bestmöglichen Verhältnisses zwischen Druck und Narkosewirkung muß die Fettlöslicbkeit der in Frage kommenden Inertgase ( $=$ Narknsegase) als wichtiger Parameter berücksicbtigt werden. Andere Eigenschaften wie Polarisierbarkeit, Molvolumen, Molekulgröße u.a. spielen ebenfalls eine Rolle, die wichtigste aber ist die Lipidlöslicbkeit. (siehe Tabellen 4 und 5, Seite 52).
Da Helium wegen des geringen Molekulargewichts auch bei bobem Druck noch eine wesentlich geringere Dichte aufweist als andere Inertgase und darüberhinaus die geringste narkotische Wirkung hat, wird es als das optimale Fullgas fur Tieftauchversuche verwendet. $2 u$ Helium muß nun ein anästhetisch wirkender Stoff beigegeben werden, um die gewinschte

Wirkung zu erreichen. Durch zahlreiche Versuche, vor allem von BENIETT, fand man den Kompromis zwiscnen Druck- und Narkosewirkung durch den Zusatz von einigen Prozent Stickstoff zur Keliox - Mischung. Diese Miscbung, bestehena aus Helium, Sauerstoff und Stickstoff nennt man Trimix. Bereits zu Beginn der 70er Jahre fordert BENNETT, daß der StickstoEfanteil etwa um $10 \mathrm{w}_{\mathrm{j}}$ liegen mísse, um HPNS zu vermindern (vgl.HUNTER/BENNETT, 1974). Er vernutet dies, nachdem die Untersuchungen von ZaLTSmay (1061) im Westen veröffentlicht wurden. ZALTSMAN benutzte bereits Dreifachmischungen mit unterschiedlichem Heliumantell und konstant auf 4,5ata gebaltenem Stickstoffaruck. Dabei zeigten sich keine oder nur geringe Anzeichen von "Heliumzittern" (vgl. ZALTSMAN, 1961).
Ein eindrucksvoller simulierter Taucbgang von PROCTOR (et al., 1972) bestätigt die Druck - Narkose - Theorie. Während der Deko. aus einem Druck entsprechend 1000 fsw atmen die Versuchsprersonen bei einem Druck von 600 fsw 10 Minuten lang Trimix mit 3,5ata Stickstoffdruck und 1ata Sauerstoffaruck, der Rest ist mit Felium aufgefullt. Bei diesem Druck sind keine narkotischen Anzeichen oder Leistungsbeeinträchtigungen zu erkennen. Erst bei geringerem Umgebungsaruck, aber gleichem Stickstoffpartialdruck, verursacht der Stickstoff eine Markose. Bei 600fsw konnte der Druck die Narkose noch kompensieren, während dies hei geringerem Druck nicht mehr möglich war.
Untersuchungen von LEMATRE/MURPHY (1976) zeigen, das bei schneller Kompression ( $9 \mathrm{~m} / \mathrm{min}$ ) 9 - $10 \%$ Stickstoff notwendig sind, un HPNS zu verringern, bei langsamer Rate ( $1,25 \mathrm{~m} / \mathrm{min}$ ) genügt schon die Hälfte, um die gleichen Verbesserungen des HPNS zu erzielen. Um möglichst objektive Werte aus den Tests zu erbalten, werden die Werte aus der schnellen und langsamen Kompression mit Stickstoffzusatz ( $10 \%$ bzw. 5 何 mit

Werten aus scbneller und langsamer Kompression ohne Stickstoffzusatz verglichen.
Bei dem bereits erwähnten simulierten Tieftauchversuch unter der Leitung von BENNETT (1979) wurde neben der langsamen Kompression ein Dreifachgemisch mit $5 \%$ Stickstoff verwendet, wodurch HPNS nur in sehr geringer Auscrëgung in Zrscieinung trat.
Offensichtlich läßt sich diese moderne "Taucherkrankheit" doch nicht völlig kompensieren, auch nicht durch die Arwendung kombinierter Methoden, was der neueste Tekordtauchgang von sechs Tauchern der US Navy beweist. Neben der druckabhängigen Kompressionsrate (siehe Tab. 7 und Abb. 16) wird ebenfalls eine Dreifachmischung verwendet. Man beobachtet zwar, dab das Zittern und andere Symptome weitaus weniger schlimm sind als bei anderen, vergleichbaren Versucben, dababer die Symptome von Person zu Person stark variieren. Während fünf Taucber die Arbeit und die Tests unbeeinträchtigt verrichten, ist einer wegen starker Schwindel- und tbelkeitsgefuhle nicbt dazu fähig. Daneben sind leichte Fimudbarkeit, geringe Ansprechbarkeit und kleine Zuckungen auffallende Merkmale (vgl. THALMAN et al.,1980).

### 6.4. Zusammenfassung und Ergänzung der Tbeorie zur Prävention des HPNS

Das HPNS wird nach BENNETT in zwei von der Entstebung her unterscbeidbare Syndrome differenziert: das Kompressionsund das Drucksyndrom (vgl. HUNTER/BENNET, 1974).
a) Das Kompressionssyndrom

Durch die hohe Kompressionsgeschwindigkeit hat das Helium nicht genugend Zeit, um in die postsymaptische Membran zu diffundieren und von den Lipoidbestandteilen aufgenommen zu werden. Es entstebt dadurch ein sich allmëblicb ausgleichender osmotischer Druckgradient, der die Membran komprimiert.

Die ersten Symptome (Zittern, Zuckungen) entstehen wegen des mangelnden Ionenflusses.
Der von EBBECKE (1044) gefundene Zusammenhang zwischen Druck und den dadurch stimulierten Zuckungen bestätigt zwar nicht genau diese Theorie, weist aber durch aufallende Parallelen in die gleiche Richtung. Da bei gleichbleibendem Druck die Symptome nit der Zeit schwächer werden - nach EBBECKE verschwinden die Zuckungen ganz -, "uß noch ein anderer Mechanismus vorhanden sein, der das Drucksyndrom aufrechterhält. b) Das Drucksyndro-

Wie der Name sagt, ist der Druck der auslösende Faktor. Nach einiger Zeit bei konstantem Druck stellt sich ein Gleichgewicht des Gasaustausches ein, die Lipoide werden mit Helium gesättigt, das Kompressionssyndrom schwächt sich ab, es hleiben nur noch die Symptome des Drucksyndroms vorbanden. Diese lassen sich mit der Theorie des kritischen Volunens erklären (siehe Funkt 6.3., S.69). Im Fall a) verursacht der Druck die Verengung der Membran. Dies erzeugt die ersten Symptome. Nachdem die Lipoldbestandteile mehr und mehr fit Helium gesättigt werden (Fall b), ist die Membran, nach der Narkosetheorie der Inertgase, etwas erweitert. Jedoch ist diese Erweiterung ungenuigend, so dab der Ionenflub weiterhin erschwert bleibt. Die Kompressionssymptome sind jedoch schon abgeschwächt, die Drucksymptome noch nicht. Erst das Hinzufugen eines stärkeren Narkosegases veranlaßt die Membran sich so weit wieder zu vergrößern, das der Ionenfluß normal vonstatten gehen kann. Die Richtigkeit dieser Annahme wird dadurch verstärとt, daß das stärkere Narkosegas (Stickstoff gegenüber Helium) während der Kompressionsphase leichter, d.h. schneller von den Lipoidbestandteilen der Membran wegen der höheren Löslichkeit aufgenommen wird und somit zur Hemmung des HPNS schon während der Kompressionsphase beiträgt. Die in verschiedenen Versuchen durchgeflihrten Änderungen beweisen, daß die Elnteilung in Kompressions- und Drucksyndrom
sinnvoll ist. Langsame Kompression verbessert die Symptome des Kompressionssyndroms. Inertgasmolekile haben mebr Zeit absorbiert zu werder, die Zellmembran verengt sich nicht so stark, und der Ionenfluß geschieht fast normal. Auf der anderen Seite verbindern pharmakologische Mittel das Auftreten von HPNS während der Isopressionsphase, weil sie wie Narkosegase eine f!embranerweiterung bewirken (vgl.BAHMT, 1976). Auch KYISTRAs Versuche erklëren diese Theorie. An flüssigkeitsbeatmeten Jäusen werden bei hohen Drucken Symptome ähnlich denen des HPNS festgestellt, die während der gesamten Druckeinwirkung bestehen bleiben (vgl.KYLSTRA et al., 1967). Sie können nur durch den hydrostatischen Druck entstanden sein, der die Verengung der postsynaptischen Membran bewirkt hat.
Zur Prävention des Hochdruck - Nervensyndrons bieten sich derzeit nur die zwei Möglichkeiten an:

1. eine langsame, stufenweise Kompression, die mit zunehmendem Umgebungsdruck vermindert wird und 2. die Zugabe von Stickstoff als Narkosegas, das die Membranerweiterung bewirken soll.
Theoretisch könnten auch pharmakologische Mittel gegen das HPNS eingesetzt werden, aber anscheinend ist dies mit zu groben Risiken verbunden, da die Wirkung dieser Mittel bei hohen Drucken nocb kaum erforscht ist. Da der Stickstoffpartialdruck wegen der Gefabr des Tiefenrausches ein bestimmtes Maß nicht liberschreiten darf, muß der prozentuale Anteil mit dem Umgebungsdruck abnebmen. Während BENNETT ursprünglich generell einen Anteil von 9 - $10 \%$ forderte, schien sich in den nachfolgenden Versuchen ein Verhältnis von 1:10 ( $\mathrm{N}_{2} \mathrm{zu} \mathrm{He}$ ) als optimal herauszustellen (vgl. BMNETT et al.,1975).
Obwohl schon große Anstrengungen zur Prävention des HPNS gemacht wurden, sind die genauen Ursacben und Zusammenbänge
noch nicht enträtselt. Erst wenn diese aufgedeckt sind, können wirkungrvolle Gegennaßnahmen ergriffen werden. Bis dabin bleibt das HPNS eine ernste Gefahrenquelle beim extremen Tiefseetauchen.

Die vielfältigen Schwierigkeiten und Problere des Tiefseetaucbens versucht eine Gruppe von Forschern auf ganz andere, unkonventionelle :Veise zu lösen. Sie arbeiten an der Realislerung der Flussigkeitsatmung beim Menschen.

## 7. Flüssigkeitsatmung

Dieses Kapitel beschäftigt sich mit einem nicht ganz minteressanten Randgebiet der modernen Tauchforschung, nämlich mit der Frage, ob es möglich ist, Menscben uater Wasser mit Flüssigdeit zu beatmen.
Der für Iaien scheinbar widerspruchliche Zusammenhang zwischen Flüssigkeit und Atmung ist für den Mediziner nichts Außergewöbnliches. Pbysiologisch gesehen ist es kaum von Bedeutung, ob der fif die Atmung dominierende Sauerstoff mit einem anderen Gas oder Gasgemisch (Luft, Helium) oder mit einer Flissigkeit als Trägersubstanz zum Gasaustausch in die Lungen gelangt. Der ausschlaggebende Faktor 1st dabei nur, dab Sauerstoff in ausreichender Menge in die Blutbahn gelangt, und da3 das bei der Inneren Atrung entstandene Kohlendioxid $\left(\mathrm{CO}_{2}\right)$ wieder ausgeschieden wird. Technisch wird das bei Versucben so realisiert, daß die Flussigkeit durch die Iungen gepumpt wird. Die berausfließende Flussigkeit wird vom Kohlendioxid befreit und wieder mit Sauerstoff neu versorgt, so dab sie zur Beatmung weiterverwendet werden kann.
Diese sebr einfach klingende Gegebenheit ermutigte einige Wissenschaftler, neue Nege der Beatmung zu suchen und zu erforschen.

Die Flüssigkeitsatmung wiirde mit einem Streich viele Schwierigke1ten aes Tauchens lösen.
7.1. Vorteile der Flussigkeitsatmung

Da der lebensnotwendige Sauerstoff nicht mit einen Inertgas zur Lunge gelangt, sondern in einer Fluissigkeit pbysikalisch gelöst ist, kann nur der Sauerstoff in die Blutbahn und in die Gewebe diffundieren. Das Gewebe wird mit Sauerstoff versorgt, kann sich aber nicbt mit Inertgas sättigen, da keines vorbanden ist. Der Taucber könnte aus jeder Tiefe in kuirzester Zeit auftauchen, obne Deko.erscheinungen befürchten zu muissen. Daß keine Deko.syrptome bei Flussigkeitsbeatmung erzeugt werden können, zeigt KYISTRA an Mausen, die in einer Flüssigkeit untergetaucht werden und nach einer 10 Minuten dauernden Druckeinwirkung von 166 Atmosphären in wenigen Sekunden dekomprimiert werden (vgl.KYLSTRA et al., 1967).
Durch das Wegfallen der langen Deko.zeiten aus groder Tiefe könnten sogar die Tauchleistungen des Sättigungstauchens noch erbeblich gesteigert werden. Viele Unternebmen, die bisber nur mit Sättigungstauchen rentabel waren, könnten mit Fluissigkeitsatmung in wesentlich kürzerer Zeit durchgefuhrt werden.

Wegen der Abwesenheit von Inertgasen scheidet die 悦glichkeit des Tiefenrausches bei Flüssigkeitsatmung von vorneberein aus.
Ein weiterer Vorteil ergäbe sich eventuell aus den mit Flüssigkeit gefuillten Atemwegen. Die normalerweise gasgefuillten Hohlräume wären mit Flüssigkeitsfullung ebenso inkompressibel wie die Fluissigkeit selbst. Möglicberweise könnte man dadurch in beliebig große Tiefen vordringen, die bisher nur in Taucherkapseln und Unterseebooten erreicht werden können. Bevor es allerdings so weit ist, muB eine groBe Anzabl von erheblichen Schwierigkeiten uberwunden werden.

### 7.2. Hinderaisse und Probleme der Flussigkeitsatmung

Die ersten Versuche von Flüssigkeitsbeatmung an Tieren wurden mit Kochsalzlösung durchgeführt. Die Sauerstoff- und Kohlendioxidaufnahmefähigkeit der Salzlösung begrenzt die Versuche jedoch auf wenige Minuten. Deshalb verwendet man heute eine $\boldsymbol{r}$ l u orcarbon-Lösung (Perfluorobutyltetrabydrofuran) mit der Bezeichnung FC - 80 (vg1. KYISTRA et ai.,1967). Wegen der guten Sauerstofflöslichkeit von Fluorcarbon- Lösungen bereitet die Sauerstoffversorgirg kaum menr Zrobleme, dafür hat man gegen andere zu këmpen.
7.2.1. Kohlendioxidretention und Strömungsgeschwindigkeit

Die Analyse der aus der Lunge abgeflossenen Fliussigkeit zeigt einen zu geringen $\mathrm{CO}_{2}$ - Gehalt, d.h., daß zu viel von diesem Abfallorodukt im Körper zuruckgehalten wird. Die Löslichkeit von $\mathrm{CO}_{2}$ beträgt 3 ml pro Liter Fluorcarbon- Iösung und pro Torr $\mathrm{CO}_{2}$ - Partialdruck (vgl.KYLSTRA, 1968). Daraus folgt, da3 bei einem arteriellen $\mathrm{CO}_{2}$ - Druck von 40 Torr ( $=\mathrm{mmg}$ ) 120 ml Kohlendioxid in jedem Liter Iösung enthalten sind. Zur Aufrechterhaltung des arteriellen $\mathrm{CO}_{2}$ - Drucks dirffte ein flüssigkeitsatmender Taucber gicht mehr als 120 ml Kohlendioxid in der Minute produzieren, wenn die Strömungsgeschwindigkeit $1 \mathrm{l} /$ min beträgt. Erzeugt er mehr $\mathrm{CO}_{2}$, dann kann es nicht mebr von der Lösung aufgenommen werden und bleibt im Körper zuruick. Dieses Manko kann bis zu einem gewissen Grad dadurch ausgeglichen werden, daß die Strömungsgeschwindigkeit durch die Atemwege erhöht wird. Dem sind aber Grenzen gesetzt. Éberschreitet die Strömungsgeschwindigkeit beim Ausatnen einen bestimmten Betrag, dann kollabieren die Bronchien und unterbinden jede weitere Atmung. Die maximale Lösungsventilation beträgt etwa $3,5 \mathrm{l} / \mathrm{min}$ (vgl.KYLSTRA, 1968). Somit stellt die Strömungsgescbwindigkeit der EluorcarbonLösung einen begrenzenden Faktor dar. Es muß deshalb versucht
werden, daB die $\mathrm{CO}_{2}$ - Aufnahmefähigkeit der verwendeten Flüssigkeiten verbessert wird. Mit dem Zusatz von MaOH zur Fluorcarbon- Lösung kann zwar eine erbebliche Steigerung der $\mathrm{CO}_{2}$ - Aufnahmefähigkeit erreicht werden und die Zeit der Flüssigkeitsbeatmung verlängert werden (vgl. KYLSTRA, 1977), aber die $\mathrm{CO}_{2}$ - Retention bleibt fur die Arbeit eines Menschen unter Wasser ein limitierender Faktor, wenn sie nicht entscheidend verringert wird.

### 7.2.2. Lungenschäden

Neben der Kohlendioxidretention stellt die Gefabr einer Lungenschädigung ein großes Hindernis dar. Zum einen ist ungewiB, ob nicbt die über längere Zeit durch die Iungen strömende Flüssigkeit mechanische Schädigungen in den Atemwegen und in den Alveolen hervorruft, zum anderen bestebt nach der Fliusigkeitsatmung die große Gefahr einer Lungenentzündung. Bei vielen Tieren, die die Versuche unversebrt übersteben, wird nacb einiger Zeit eine lungenentzündung mit unterscbiedlich starker Ausprägung diagnostiziert (vgl. KYLSTRA, 1968).

### 7.2.3. Realisierung beim Menscben

Fuir therapeutische Maßnabmen ist es möglich, einen Iungenflügel mit Flüssigkeit zu spullen, wëhrend der andere mit Iuft beatmet wird. Versuchsweise wurde dies zur Bestimmung der Atemwerte an einem Freiwilligen erprobt, dessen Larynx und Tracbea betäubt wurden. Der Versucb mit einseitiger Flüssigkeitsbeatmang verlief obne Zwischenfälle und Nachwirkungen (Vgl.SCHOENFISH.et al.,1973).
Allerdings ist es schwer vorstellbar, wie ein Taucher mit Flüssigkeit beatmet werden soll, ohne dab Husten-, Würgeund Brechreize, verursacht durch die eingefubrten Schläuche und die Fluissigkeit, ihn an der Arbeit hindern. Wahrscheinlich
wäre es nur durch örtliche Betäubung möglich, und diese könnte wiederum zu einem Gefahrenmoment werden.
Sollten auch diese Schwierigkeiten überwunden werden können und mit Flüssigkeitsatmung große Tiefen erreicht werden, dann lauert die Gefahr des bereits bekannten HPNS, das ja bauptsëchlich durch den hydrostatischen Druck verursacht wird und das auch bei Flüssigkeitsatmung nicht auszuschliessen ist (Vgl.KYLSTRA et al., 1967).
Das Ziel, da? einmal Menschen unter Nasser Flissigkeit atmen und die daraus resultierenden Vorteile für das Tauchen rutzen können, scheint noch in unerreichbarer Ferne zu liegen. Trotzdem stimmen einige Versuche zuversichtich, hei denen Versuchstiere (Mäuse, Ratten, Katzen etc.) unter sehr hohen Drucken mit Flussigkeit beatmet wurden und nach dem tbergang zur Luftatmung keine Erkrankungen zeigten und noch monatelang weiterlebten (vgl. KYLSTRA, 1977). Die Bemühungen um Fortschritte auf diesem Gebiet der Tauchforschung werden fortgesetzt, und man blickt gespannt in die Zukunft, ob sie Erfolg baben werden.
8. Gepanzerte Tauchanzüge

Der Vollständigkeit balber sei hier eine Möglichkeit zur Umgebung der gefährlichen Druckauswirkungen erwähnt. Seit einiger Zeit arbeiten Herstellerfirmen fur Tauchtechnik an der Entwicklung von gepanzerten Tauchanzügen. Mit dem auf der nächsten Seite abgebildeten Modell können Tiefen bis zu 400 m erreicht werden, was kurzlich erst wieder auf offener See bewiesen wurde (vgl.SPIEGEL, 1980). Der Taucher ist dabei lediglich dem normalen Atmosphärendruck ausgesetzt, weil der starke Schutzpanzer den Umgebungsdruck von 40atii abhält. Den nötigen Sauerstoffvorrat trägt der Taucher auf dem Ruicken mit sich, wodurch er von der Oberfläche unabhängig und frei beweglich ist. Vielleicht gteigen in ein
paar Jabren alle Taucher in einem solchen "Astronautenanzug" in die Tiefe, womit alle bisherigen Forschungen zur Iösung der durch den Druck entstehenden physikalisch- physiologiscben Probleme umsomst gewesen wären.


Abb. 20 zeigt einen gepanzerten Tauchanzug mit der Bezeichnung "Jim", mit dem Tiefen bis zu 400 m erreicbt werden können. (nach BENNETT/ELLIOTT, 1975, S.9).

Die stark eingeschränkte Beweglichkeit, vor allem der Hände und der Finger, durfte dies jedoch verhindern. AuBerdem steckt der Taucher in einer tödlichen Falle, wenn nur ein kleiner technischer Defekt die Dichtigkeit des Schutzpanzers nicht mehr gewährleistet. Die dadurch erfolgende Implosion wirde den hilflosen Taucher augenblicklich zerquetschen.

## 9. Grenzen des Taucbens

Die Frage nach den Grenzen des Taucbens kann auf zwei verschiedene Arten beantwortet werden. Einmal von der physiologischen Seite her, wo die Grenzen der Belastbarkeit durch Druck, Narkosewirkungen, Dichtezunahme der Atemgase etc. anzusetzen sind, zum anderen vom ökonomischen Standpunkt aus, welche Tiefen iberhaupt erstrebenswert sind, sei es aus wirtschaftlichen oder aus wissenschaftlichen Interessen heraus.

### 9.1. Grenzen durch physiologische Druckawswirkungen im KÖrper

Die Operationsfähigkeit des Menscben unter :Vasser ist durch mehrere Falktoren eingeschränkt. Durch Taucben mit Preßluft kann nicht einmal eine Tiefe $\forall o n 100 \mathrm{~m}$ erreicht werden. Die Grenze ist entweder durch die Tiefenrauschwirkung des Stickstoffs meist schon bei geringeren Tiefen gegeben oder durcb die toxische Wirkung des Sauerstoffs ab einem bestimnten Partialdruck. Außerdem erschwert die Dicbtezunahme der PreBluft mit zunehmender Tiefe die Atemarbeit. Diese Probleme werden durch die Benutzung von kïnstlichen Gasgemischen (z.B. Heliur/Sauerstoff) beseitigt. Mit diesem Gemisch kann man vermutlich bis üher 900m tief tauchen, da erst ab dieser Tiefe die larkosewirkung von Helium einzusetzen beginnt (vgl. BOND, 1968). Durch Dichtezunahme des Heliox - Gemisches erfolgt bis zu einer Tiefe von 1500 m (5000ft) keine Begrenzung, was LAMBERTSEM (1976) in Experimenten bewies. Weit vor dieser Marke setzt der Druck selhst die Schranken der Aktionsf̈̈hlgke1t des Menschen durch das Nervensyndrom HPNS. Dieses kann auch nicht durch Fluissigkeitsatrung ungangen werden, wenn nicbt ähnliche Kompensationsmecbanismen wie bei der Helium - Sauerstoffatmung gefunden werden (Stickstoffzusatz, langsame Kompression). Die ühersteigerte Mervenreizfähigkeit (siehe EBBECKE - Zitat S.68) bängt nur vom

Druck ab und wirkt in flussiger Umgebung ebenso (vgl.KYLSTRA et al., 1967) wie in gasförmiger.
Wahrscbeinlich wird diese Punktionsbeeinträchtigung des Zentralen Nervensystems eine unüberwindiche Barriere sein, wenn keine entscheidende Verbesserung zur Prävention gefunden wird.
Dariberhinaus ist die Frage nach den Grenzen schwer zu beantworten. Die $\mathrm{CO}_{2}$ - Retention, Hauptproblem bei der Flissigkeitsatmung, bereitet auch bei.der normalen Gasatmung gewisse Schwierigkeiten und darf als Gefahrenquelle nicht unterschätzt werden. Sie tritt erst ab miefen um 250 m auf, scheint aber nicht ein zentrales Problem der Tieftauchforschung zu sein. Inwieweit andere physiologische Vorgänge (z.B.Eiweibbildung, Blutbildung etc.) unter Druck gestört werden, ist noch weitgebend unbekannt. Zwar stellt KIESOW (1974) fest, daB der Sauerstofftransport $z u$ den Geweben wegen einer Veränderung der Hämoglobineigenschaften nicht mebr den Normalwerten entspricbt, aber genauere Angaben und ausfübrlicbe Untersuchungen feblen dazu noch.
9.2. Grenzen aus ötonomischer Sicht

Der Antrieb für das Weitertreiben der Forschungen bängt nicht allein von der Laune und den Forscberdrang des einzelnen Wissenschaftlers $a b$, sondern auch von den Interessen und Erfordernissen der Organisationen und Gesellschaften, die die Taucbforschung durch finanzielle 0nterstützung fördern. In den vergangenen 10 Jahren bekundeten vor allem die multinationalen Erdölgesellschaften grobes Interesse am Tiefseetauchen, da die Ausbeutung der Bodenschätze durch Tíefseebobrungen in den Kontinentalschelfen ibre Fortsetzung findet. Instandsetzungsarbeiten an Olhohrturmen machen Tauchereinsätze in Tiefen bis zu 500m erforderlich (vgl.BOODA, 1975). Aber auch staatliche und militärische Organisationen sind
an einer Weiterentwicklung des Tiefseetauchens interessiert. In den modernsten Druckkammern, z.B. bei COMEX in Marseilles, können Tiefen bis zu 1500m simuliert werden, was darauf hindeutet, da! hier entweder die Grenzen der techniscben Realisierbarkeit fir simulierte Tauchgänge liegen, oder dea das Interesse und die Yotwendigkeit noch grösere miefen zu erreichen, nicht vorbanden ist. Zur Erkundung der Kontinentalschelfe sowohl aus wirtschaftliehen als auch aus wissenschar゙tichen Interessen heraus müßte es vollauf genügen, wenn Tiefen dieser Größenordnung erreicht werden können. Das man versuchen will, bis in solche Tiefen in der nächsten Zeit vorzudringen, beweist ein Treffen von Tieftauchspezialisten, die sich mit Problemen von sehr tiefen Tauchgängen zwiscben 460 m und 760 m befassen (vgl.HALSEY, 1980). Mit Tauchern zu den Abgrïnden der Tiefseegräben vorstoBen zu wollen, scheint aus wirtscbaftlichen und wissenschaftlichen Gesicbtspunkten weder erforderlich noch sinnvoll zu sein. Deshalb wird der Einsatz von Tauchern vielleicht bei den Grenzen des Kontinentalsockels enden.
10. Zusammeafassung und Schluß

In der vorliegenden Arbeit wurde darzustellen versucht, welche Anstrengungen unternommen werden und bereits unternommen wurden, uri die durch den Druck und durch Druckänderung hervorgerufenen Kompressions- und Dekompressionserscheinungen beim Tauchen zu verhindern.
Der Weg von den ersten Theorien liber die Caissonkrankheit bis zur Realisierung von HATDANEs Idee der konstanten, noch ungefäbrlichen Gewebsübersättigung, die in den Austauchtabellen ihre Vollendung fand, wurde den wichtigsten Stationen folgend nachgezeichnet.
Mit HaIDAVEs Tabellen ist der erste grobe Schritt zur Prävention der Dekompressionserkrankungen gemacht worden.

Die nachfolgenden Veränderungen der Tabellen rütteln nicht an dem Prinzip der stufenweisen Dekompression, sondern sie bedeuten lediglich Detailverbesserungen. Die Porschungen darüber gebören schon seit einigen Jahren der Vergangenheit der Tauchforschung an.
Die Weiterentwicklung der technischen Tauchgeräte erlaubt es, in immer größere Tiefen vorzudringen und sich dort längere Zeit aufzuhalten. Damit war das Tor zu neuen Problemen aufgestoßen, die im zweiten Teil der Arbeit angesprochen sind. Das sich zwangsläufig ergebende Sättigungatauchen wirft neue Probleme der Dekompression auf, die inzwischen aber beseitigt sind. Hier wird erstmals wieder von der stufenweisen Deko. Abstand genommen, da aich eine kontinuierlich langsamer werdende Deko. als geeigneter herausstellt. Auch dieses Kapitel der Tauchforschung ist bereits am Ende angelangt. Seit jüngster Zeit ist es nicbt die Dekompression, an deren Optimierung gearbeitet wird; die Kompression und der bobe hydrostatische Druck bereiten den Tauchforschern neue Schwierigkeiten, die liberwunden werden müssen, wenn Gesundbeit und Woblbefinden der Taucher nicht unnötig aufs Spiel gesetzt werden sollen. Zur Prävention des durch schnelle Drucksteigerung und durcb boben Druck verursachten HocbdruckNervensyndroms ist schon einiges getan worden, gänzlicb beseitigt sind die Probleme jeđocb nocb nicbt. Die Enträtselung dieser modernen "Caissonkrankheit" steht derzeit im Mittelpunkt des Forscbungsinteresses.
Die scbwierige und sicher nocb lange dauernde frforschung der Fluissigkeitsatmung beim Menschen wäre bei einem Erfolg der Bemübungen durch den völligen Wegfall der Dekompression und ihrer unliebsamen Begleiterscheinungen belohnt. Aber bier steht man nocb am Anfang der Grundlagenforschung. Erst wenn die Tierexperimente erfolgversprechend abgeschlossen sind, kann man den mächsten Schritt, die Erprobung der

Pluissigkeitsatmung beim Menschen, wagen. Ob dieser Plan jemals realisiert werden kann? Zweifler und Verfechter dieser Idee muissen geduldig abwarten, was die Zukunft auf diesem Gebiet bringen wird. Moglicherweise uberbolt der technische Fortschritt die bisherigen Forscbungsbemühungen um die Lösung der beim Tiefseetaucben vorbandenen Prohleme und macht sie durch die Benutzung von gepanzerten Tauchanzügen überflüssig.
Zum Schluß soll nicht unerwähnt bleiben, daß die Beschäftigung mit diesem reichbaltigen Thema ungeheuer interessant, aufschlußreich, teilweise faszinierend ist, dab jeder der gestreiften Teilbereiche für sich, bei größerer Ausführlichkeit, den Inbalt einer ähnlichen Arbeit darstellen könnte, und daB die Auseinandersetzung mit der Tauchforschung den kundigen Leser ebenso in seinen Bann zieht wie der Taucbsport den Taucher.

## Anhang I

1) Angenommenes Körpergewicht: 70 kg

Blut und balbfliussige Gewebe: $85 \%=59,5 \mathrm{~kg}$
Fett und fetthaltiges Gewebe: $15 \%^{\circ}=10,5 \mathrm{~kg}$ $59,5 \mathrm{~kg}$ lösen $\left(8,7 \mathrm{~cm}^{3} / \mathrm{kg} \times 59,5 \mathrm{~kg}\right)=517 \mathrm{~cm}^{3} \mathrm{~N}_{2}$

70 kg lösen
Es befindet sich etwa 1 Liter Stickstoff im Körper eines 70 kg schweren Menschen. pro 1 ber lotid olrack, $7=$ ?
2) Blut und balbflüssige Gewebe machen $85 \%$ des Gewicbts aus. Diese $85 \%$ der gesamten Körpremasse haben die gleiche Stickstofflöslichkeit wie Blut, also 100\%. Die 15\% Fettanteile des Gewichts haben $600 \%$ der $N_{2}$ - Löslichkeit des Blutes (Fett löst sechsmal so viel $\mathbb{N}_{2}$ wie Blut), also bat 1 Gewichtsanteil des gesamten Körpers

$$
\frac{100 \times 85+600 \times 15}{100}=.175[\%]
$$

der Stickstofflöslichkeit des Blutes.
Dieser Wert ist natürlich nur ein gemittelter. Offensichtlich korrigierte KALDANE seine Vermutung, dab die balbfiussigen Gewebe etwa genausoviel Stickstoff lösen wie Blut dadurch, das er fur die weitere Berechnung statt $175 \%$ nur $170 \%$ als durchschnittliche Stickstoffaufnahmefähigkeit des übrigen Körpers im Verbä? tnis zu Blut annahm. Da das Blut $6,5 \%$ des Körpergewichts beträgt, befindet sich im übrigen Körper 26 mal so viel Stickstoff wie im Blut:

$$
\frac{170 \%}{6,5 \%}=26
$$

3) Sättigungsrate: $1 / 26$ pro Krelslauf

Gesucht: Anzahl der Kreisläufe, die nötig ist, um die Gewebe zur Hälfte mit dem nacb Druckerhobhung berrschenden Stickstoffaruck zu versorgen.
$y=50 \%=0,5$

Nach 18 Kreisläufen ist der Körper zu $50 \%$ gesättigt.
4) Gewicht des Menschen: $G=1$ Gewichtseinheit (GE)

Oberfläche " : $0=1$ Plächeneinheit (FE)
Gewicht der Ziege : $G=0,25$ bis 0,33 ( $G E$ )
Oberfläche ": $0=0,4$ bis 0,48 (FE)
Respiratorischer Gaswechsel $\begin{aligned} & \text { Oberfläche (RGicht } \\ & \text { Gew) }\end{aligned}$
$\begin{aligned} \text { RG bei Menscb } & =1 \\ \text { RG bei Ziege } & =\frac{0,4}{25} \cong 1,6 \cong 12 / 3\end{aligned}$
Der respiratoriscbe Gaswechsel von Ziegen ist also um $2 / 3$ größer als beim Menscben.

5a)Der logarithmische Verlauf der Kurve läßt sich auch so bescbretben:

$$
\begin{equation*}
y=1-(0,5)^{t / T} 1 / 2 \tag{1}
\end{equation*}
$$

mit $t:$ betrachtete Zeit
$\mathrm{T}_{1 / 2}$ : Halbwertszeit des Gewebes
$y$ : Sättigung nach der Zeit $t$ in 名
Formel (1) nach $T_{1 / 2}$ aufgelöst:

$$
T_{1 / 2}=t \frac{\log 0,5}{\log (1-y)}
$$

Mit Zahlenwerten aus dem Beispiel ergibt sicb:
$t=3$ Stunden $=180$ Minuten
$y=94 \%=0,94$
$T_{1 / 2}=180 \frac{\log 0,5}{\log 0,06}=44,34 \cong 45$ Minuten

5b) 45 Minuten $x \quad 12 / 3 \cong 75$ Minuten
Der respiratorische Gaswechsel ist bei Ziegen um 2/3 größer, also dauert die 弦tsättigung bei Menschen um $2 / 3$ länger.

6 a) Ausgehend von der Grundgleichung der Sättigung

$$
\frac{d P}{d t}=k\left(P_{1}-P\right)
$$

läßt sich $P$ berechnen:

$$
P=P_{0}+\left(P_{1}-P_{0}\right)\left(1-e^{-k t / T_{1} / 2}\right)
$$

P: Gewebsdruck nach der Zeit $t$
$P_{1}$ : Ungebungsdruck nach der Zeit $t$
$P_{o}$ : Gewebsdruck zu Beginn
k : Konstante (ln 2)
$\mathrm{T}_{1 / 2}$ : Halbwertszeit des Gewebes
t: Zeit, nach der der Gewebsdruck berecbnet wird
Diese Formel gilt allgenein für die Sättigung und Entsättigung, wenn der Ungebungsdruck plötzlich steigt bzw. fallt und dann $k$ o $n s t a n t b l e i b t$.
Im angegebenen Beispiel wird der Umgebungsdruck laufend mit der Zeit vermindert (mit der Rate $R=1 a t a / 20 m i n) ;$ deshalb ändert sich obige Formel etwas.

$$
P=P_{0}+\left(P_{1}-P_{0}\right)\left(1-e^{-k t / 2 T} 1 / 2\right)
$$

Diese Formel fübrt zu den exakten Werten.

6b) HALDANE dagegen benutzte folgende toerlegung und erhielt deshalb ungenauere Werte.
Zur Berechnung der am Ende berrschenden Gewebsspannung unterteilt man den Proze3 in funf Abschnitte á 20 Minuten. In jedem Abschnitt soll die Druckverminderung um eine Atmosphäre stattミinden. Man kann sich dann die Entsättigung so vorstellen, daß die erste Hälfte jedes Abschaitts (10 :"inuten) bei den Druck verweilt wird, der au Beginn des Intervalls herrscht, die zweite Hälfte (nach 20 Minuten) bei dem Druck, der am Ende des Intervalls erreicht ist. Die ersten 10 Minuten werden bei einem Druck von 5atui angenommen, die zweiten 10 Minuten bei $4 a t u ̈$. :"ährend dieser 10 Minuten entsättigt sich das Gewebe (laut Formel (1) in Anhang $I, 5 a$ ) um 28f der Differenz zwischen An-fangs- und Enddruck der ersten Etappe, also um 0,28ata. In weiteren 10 Minuten bei 4 ata reduziert sich der Druck im Gewebe auf 4,5atiu. 10 Minuten bei 3atii verringern den Druck um $28 \%$ der Differenz zwischen Gewebsdruck und Umgebungsdruck, also um (4,5-3) $\times 0,28=0,42$ ata. Es berrscbt am Ende der zweiten Periode ein Gewebsdruck von 4,08 atii. Fuibrt man diese Berechnung fort, so erbält man den resultierenden Gewebsüberdruck von 1,3atư statt 1,1ati (nach der Formel), da bereits nach 90 Minuten der hypothetische Umgebungsdruck auf 1ata abgesunken ist.

7) Ausgehend von Gleichung (1) aus Anhang 5a erbält man:

$$
t=T_{1 / 2} \cdot \frac{\log (1-y)}{\log 0,5}
$$

Mit den Zablenwerten
$y=16 \%=0,16$
$T_{1 / 2}=75$ Minuten
ergibt sich für teine Zeit von 18,尺 Minuten.
8) Damit Uberhaupt Werte berechnet werden können, darf eine totale Sättigung nicht verwendet werden, da dies zu einer unendlich langen Halbwertszeit führen wüde. Als gemeinsame Berechnungsbasis sei eine Sättigung von 90\% angenommen.

$$
T_{9 / 2}=\frac{\log 0,5}{\log (1-y)} \cdot t
$$

$t=12$ bzw. 20 Stunden
$y=0,9$
Daraus berechnet sich $T_{1 / 2}$ zu 228 bzw. zu 361 Minuten.
9) Uarechaungatabelle fur Druckeinheiten

| Einheit | bar | mWS | atm | ata | mmig |
| :---: | :---: | :---: | :---: | :---: | :---: |
| bar | 1 | 10,19716 | 0,986923 | 1,019716 | 750 |
| ${ }^{\text {W\% }} \mathrm{S}$ | 0,098066 | 1 | 0,096784 | 0,1 | 73,5559 |
| atm | 1,01325 | 10,33227 | 1 | 1,033227 | 760 |
| ata | 0,980665 | 10 | 0,967841 | 1 | 735,559 |
| mang | $\begin{gathered} 1,333224 \\ \times 10^{-3} \end{gathered}$ | $\begin{aligned} & 13,5951 \\ & =10^{-3} \end{aligned}$ | $\begin{gathered} 13,15789 \\ \times 10^{-3} \end{gathered}$ | $\begin{aligned} & 1,35959 \\ & \times 10^{-3} \end{aligned}$ | 1 |

## Anhang II

## Anmerkung:

An dieser Stelle muß eine Klarstellung erfolgen, die in dem Aufsatz von HALDANE (1908) nicht immer deutlich ersichtlich ist.
Wenn es heißt, ein Gewebe ist bei einem Druck (z.B. 5ata) gesättigt, dann beträgt die Stickstoffspannung in diesem Gewebe naturlich nicht 5ata, sondern nur $80 \%$ davon, herruhrend vom prozentualen Stickstoffanteil der Luft. Der wainre Stickstoffdruck im Gewebe beträgt also nur 4ata. Da aber der Faktor von 80\% jedesmal bericksichtigt werden míate, soielt es fuir die Berechnung keine Rolle, ob man sagt, ein Gewebe ist $b$ e i dem bestimmten Druck oder mit dem bestimmten Druck gesättigt. Entscheidend ist, das das Gewece bei dem berrschenden Umgebungsdruck keinen Stickstoff mehr aufnehmen kann, also gesättigt ist. Bleibt nach der Deko. ein bestimmer Uberdruck im Gewebe vorhanden, das vorher bei einem bestimmten Druck gesättigt war, dann handelt es sicb um einen Stickstoffiberdruck bezogen auf den bei einer Atmosphäre herrscbenden Stickstoffdruck. Dies hat EAIDANE nicht immer klar zum Ausdruck gebracht.
In den bier im Text exemplarisch vorgefibrten Berecbnungen wird nicht mit dem Stickstoffpartialdruck gerechnet, sondern der Einfachbeit balber mit dem Luftdruck, d.h., man nimm an, dab die Gewebe mit Luft gesëttigt sind und der therschuß an Luft freigesetzt wird. Zur Ermittlung der wabren $N_{2}$ - Partialdruckwerte braucht jeder Betrag nur mit 0,8 multipliziert zu werden.
Am Prinzip der konstanten, erlaubten thersättigung ändert sich damit nichts, was ein einfaches Beispiel beweist:

Die Deko. von 5ata auf 2,5ata bedeutet sowohl fír Iuft als auch für Stickstoff eine Druckverminderung im Verhältnis 2:1.
Stickstoffdruck hei 5ata = 4ata
" bei 2,5ata = 2ata
Verbältnis für Luftdruck: $\quad \frac{5 a t a}{2,5 a t a}=2: 1$
Verbëltnis fur Stickstoff:
$\frac{4 a t a}{2 a t a}=2: 1$

Anbang III
Adressen $\nabla 0 n$ Tauchforschungsinstituten und ihre wichtigsten Vertreter.

## Europa:

1) Royal Naval Pbysiological Laboratory (RNPL)

Alverstoke, Hants, England
(P.B.Bennett (ab ca. 1974 Duke Univers. Durbam), D. H. Elliott, H.V.Hempleman, S.Miles, E.E.P.Barnard)
2) Université de Marseille

Faculté de Sciences
France
(J.Cbouteau)
3) Societé Francaise de Medecine Subaquatique et Hyperbare Docteur R. Rispe
MEDSUBHYP
102 rue Grignan
13001 Marseille
France
(C.Agarate, X.R.Fructus, J.Cousteau)
4) Universitätssp̣ital Zürich

Departement für Innere Medizin
Medizinische Klinik
8091 Zürich
(A.s. Bühlmann, H.Keller)
5) Laooratory of Aviation Medicine

Institute of Yhysiology
University Lund, Schweden
(E.G.Lundgren)
6) Schiffahrtsmedizinisches Institut der Marine

Kopperpabler Allee 120
2300 Kronsbagen/Kiel
(K.Seemann)
7) Europäische Gesellscbaft fur Unterwasserbiomedizin Dr. H. Krekeler
5300 Bonn
Zanderstr. 1a
8) Secbenow Institut fír Entwicklungspbysiologie und Biocherie Leningrad, UdSSR
(G.L.Zaltsman)

## Amerika:

9) State University of New York at Buffalo

Department of Pbysiology
(H.C.Ornhagen, Cb.V.Paganelli, N.Bateman)
10)US Naval Medical Research Institute and Undersea Medical Society
9650 Rockville Pike
Betbesda, Maryland 20014
(E. L. Beckmann, E.H. Lanphier, A.J.Bachrach)
11)University of California Medical Center

San Francisco, California
(A.R.Bebn'ze)
12)Duke University School of Medicine

Duke Medical Center
Durham, Nortb Carolina 27710
(P.B.Bennett, J.A.Kylstra, H.A.Saltzman, J.Salzano)
13)Special Projects Office Bureau of Naval Weapons Washington D.C. (G.F.Bond, R.D.Workman)

14 Submarine Development Group One US Navy
San Diego, California (W. L. Hunter)

- 94 -

15) US Naval Medical Center Submarine Base, New Iondon Gronton, Conneticut (M.Greenwood, W. Mazzone)
16) University of Pennsylvania School of Medicine Philadelphia, Pennsylvania (C.J.Lambertsen)
17) Union Carbide Corporation

Linde Division
Tonawanda, New York
(H.R.Schreiner, P. L. Kelley)

BENNETT,P.B.: Psychometric Impairment in Men Breatbing Oxygen-helium at Increased Pressures. Medical Research Council, Underwater Fhysiology Sub-Committee, Report Nr. 251, 1965

BENNETT,P.B.: The Physiology of Nitrogen Narcosis and the High Pressure Nervous Syndrom. In: STRAUSS: Diving Medicine, 1976, S. 157-181

BENNETT,P.B.: Duke Rapid Trimix Dive to 1500 Ft. ATLANTIS I. In: Pressure, July 1979, S. 7

BENNETT,P.B.,D.H.ELIIOTT: The Pbysiology and Medicine of Diving and Compressed Air Work, 2.Ed., Bailliere + Tindall, Iondon, 1975

BENNETT,P.B.,J.ROBY,S.SIMON,D.YOUNGBIOOD: Optimal use of nitrogen to suppress the bigh pressure nervous syndrome. In: Aviat. Space Environ. Med., 46, 1975, S. $37-40$

BERT,P.: La Pression Barometrique, Recherches de physiologie experimentale, Typographie Lebure, Paris, 1878

BOND,G.F.: Mediziniscbe Aspekte des Lebens unter Wasser. In: Uberleben auf See, 1968, S. 71 - 80

BOODA, I. L.: Divers Work On Well Head At 1600 Feet In Wet Pot. In: Sea Technology, 14, 1975, S. $29-43$

BORNSTEIN,A.,M.STROINK: Jeber Sauerstoffvergiftung. In: Dt. med. Wschr., 32, 1912, S. 1495 - 1497

BOYCOTT, A.E., G.C.C.DAMANT: Experiments of the Influence of Fatness on Suszeptibility on Caisson Disease. In: J.Hyg. Lond., 4, 1908, S. $445-456$

BOYLE,R.: A new experiment concerning an effect of the varying weight of the atmosphere upon some bodies in the water. In: Pbilosophical transactions, VII, 1672, zit. nach: HELIER et al., 1900

BRAOER,R.W.: The High Pressure Nervous Syndrom: Animals. In: BENNETT/ELIIOTT,1975, S. 231-247

BÜHLMANN,A.A.: Decompression in Saturation Diving. In: LAMBERTSEN, 1971, S. 221-227

BUTLMMANN,A.A.: Persönliche Mitteilung, 1980
BUHLMANN,A.A., P.FREI,H.KELLER: Saturation and Desaturation with $\mathrm{N}^{2}$ and He at 4 atm. In: J.Appl. Physiol., 23, 1967, S. 458-462

CEOUTEAU,J.,J.-Y.COUSTEAU,J.ALINAT: Zukínftige Bntwicklung und Möglichkeiten des Tieftauchens. In: Überleben auf See, 1968, S. 55 - 70

CROCKER,W.E.: Investigation into the decompression tables VIIsea trials, Medical Research Council, RNDRC Report UPS 162, 1957a

CROCKER,W.E.: Investigation into decompression tables IX revised tables, RNPRC Report UPS 171, 1957b

CROCKER,W.E.: Proposals for applying the new standard tables to surface decompression and comioined dives, RNPRC Report UPS 175, 1958

CROCKER,N.E.,H.J.TAYIOR: A metbod of calculating decompression stages and the formulation of new diving tables, RNPRC Report UPS 131B, 1952

DER SPIEGEL, 29, von 14.7.1980, S. 173
EBBECKE, U.: Lebensvorgänge unter der Einwirkung hoher Drucke. In: Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pbarmakologie, 45, 1944, S. $34-183$

EHM,O.F.: Tauchen - nocb sicherer! Ruschlikon,Stuttgart, Wien, Miller Verlag, 1974

EHM, O.F., K. SEEMANN: Sicher tauchen. Kdiscblikon,Stuttgart, Wien, Miller Verlag, 1965

FRUCTUS,X.R., C.AGARATE,R.NAQUET,J.C.ROSTAIN: Postponing the "High Pressure Nervous Syndrom" to 1640 feet and beyond. In: LAMBERTSEN, 1976, S. 21 - 33

GUERARD,M.A.: Note dur les effets physiologiques et pathologiques de l'Air comprimee. In: Ann.d.Hyg., VIII, 1854, S. 279-304

HAIDANE, J.S.: Respiration. New Haven, Yale University Press, 1922

HAIDANE,J.S., A.E.BOYCOTT,G.C.C.DAMAYT: The Prevention of Compressed-air Illness. In: Journ. Hyg. Lond., VIII, 1908, S. 342 - 445

HALSEY,M.J.: Deep sea diving. In: Nature, 285, 1980, S. 14 HELIER,R.,H.MAGER,H.v.SCHRÖTTER: Luftdruckerkrankungen mit besonderer Beriucksichtigung der sogenannten Caissonkrankheit. Verlag Alfred Hölder, Wien, 1900

HEMPLEMAN,H.V.: Investigation into the diving tables. Medical Research Council, RN Personnel Research Committee, Report 111, UPS 131, 1952

HERVIER,P.,St. LAGER: Note sur la carbonmetrie pulmonaire dans l'air comprimee. In: Gazette Medicale de Lyon, XVIII, 1849, S. 148 - 152

HIIJ, L.: Caisson Sickess and the Physiology of Work in Compressed Air. Edward Arnold, Int. Med. Monographs, Lond on, 1912

HOPPE, F.: Ueber den Einfluss, welchen der Wechesl des Iuffdrucks auf das Blut ausübt. In: Arch.f. Anat., Physiol. u.wissensch.Med., XXIV, 1857, S. 63-73

HUNTER,W.L.,P.B.BENNETT: The causes, mechanisms and prevention of the high pressure nervous syndrome. In: Unders.Biomed.Res., 1, 1974, S. 1 - 28

JOHNSON, S.M.,K.W.MILIER: Antagonism of pressure and anestbesia. In: Nature, 228, 1970, S. $75-76$

KIESOW, L.A.: Hyperbaric inert gases and the bemoglobin-oxygen equilibrium in red blood cells. In: Unders.Biomed. Res., 1, 1974, S. 29-43

KINDWALI, E.P.: A Sbort History of Diving and Diving Medicine. In: STRAUSS, 1976, S. 1 - 12

KYISTRA,J.A.: Flüssigkeitsatmung: Tieftaucben obne Inertgasnariose und Dekompressionsunfälle - Ziel einer Reibe von Experimenten. Deutsche Ubersetzung bei Scbiff. Med. Inst. Kiel, aus: Revue de Fhysiologie Subaquatique et Medecine Syperbare, 1968, S. 45-49

KIISTRA,J.A.: The Feasibility of Liquid Breathing in Man. In: Pressure, Sept. 1977, S. $2-5$

KYLSIRA, J.A., R.NANTZ, J. CRONE, 'W. WAGNER,H.A.SALTZMAN: Hydraulic Compression of Mice to 166 Atmospheres. In: Science, 1967, S. 793 - 794

LAMBERTSEN,C.J.: Underwater Fhysiologie. Proceedings of the $4^{\text {ti }}$ Symposium on Underwater Pbysiologie, Acaderic Press, New York, London, 1971

LAMBERTSEN,C.J.: Underwater Pbysiologie. Proceedings of the $5^{\text {th }}$ Symposium on Underwater Physiologie, Publication Press, Baltimore, 1976

LAMBERTSEN,C.J.: Collaborative investigation of limits of human tolerance to pressurization with helium, neon and nitrogen. Simulation of density equivalent to heliumoxygen respiration at depths to 2000, 3000; 4000 and 5000 feet of sea water. In: LAMBERTSEN,1976, S. 35-48

LEMAIRE,C., E.I.MURPHY: Longitudinal study of performance after deep compression with heliox and $\mathrm{He}-\mathrm{N}_{2}-\mathrm{O}_{2}$. In: Unders.Blomed.Res., 3, 1976, S. 205 - 216

LEVER,M.J., K.W.MILIER,W.D.PATON, E. B. SMITR: Pressure reversal of anestbesia. In: Nature, 231, 1971, S. $368-371$

IULIIES,H.,D.TRINCKER: Taschenbucb der Pbysiologie II. Stuttgart, Fischer Verlag, 1973

MILES, S.,D.E.MACKAY: Underwater Medicine, Adlard Coles Itd., Iondon, 1976

OVERFIELD,E.M.,H.A.SALTZMAN,J.A.KILSTRA,J.V.SALZANO: Respiratory gas exchange in normal men breatbing $0,9 \%$ oxigen in helium at 31,3 Ata. In: J.Appl. Physiol., 27, 1969, S. 471-475

POL, B.,T.J.J.WATELLE: Memoire sur les Effets de la Compression de l'Air. Ann.d.IIyg., VIII, 1854, S. 241-279

PROCTOR, L.D., C.R.CAREY,R.M.LEE,K.E.SCHAEFER,H.v.d.EHDE: Electroencephalographic changes during saturation excursion dives to a simlated sea water depth of 1000 ft . In: Aerospace Medicine, 43, 1972, S. 867-877

SCHOENFISCH,H.W.,G.D.BIENKARN, B.A.HIELS,J.A.KYISTRA: Gas excbange in saline-filled lungs of man. In: J.Appl. Pbysiol., 35, 1973, S. 136 - 142

SEERLANN,K.: Das Problem der Inertgasnarkose beim Tauchen. In: Uberleben auf See, 1968, S. 103-112

SMITH,J.J.: The patbological effects due to increase of oxygen tension in the air breathed. In: J. Pnysiol.Iond., 24, 1899, S. 19 - 35

STRAUSS,R.H.: Diving medicine. Grune + Siratton, New York, San Francisco, Iondon, 1976

SUMMITT,J.K.,J.S.KELIEY,J.M.HERRON,H.A.SALTZMAN: 1000 - foot helium saturation exposure. In: LAMBERTSEN, 1971, S. 519-527

THALMANN,A.P.,I.PIANTADOSI,R.J.SPAUR: U.S. Navy 1800ft Dive. In: Pressure, Febr. 1980, S. 7

TRIGER,M.: Lettre à M. Arago. Comptes Rendus de l'Academie des Sciences, XX, 1845, S. 445 - 449
therleben auf See. II.Marinemedizinisch - Wissenschaftliches Symposium in Kiel, Rabmenthema: Neue Nege des Tieftauchens und der Tiefseeforschung, am 4./5. Mai 1968

US NAVY DIVING MANJAL, NAVSHIPS, Vol. $1 / 2$, Navy Detartment, U.S. Government Printing Office, Filashington D.C., USA, 1978

WAIDVOGEL, W., A.A.BUHLMANN: Man's reaction to long - lasting overpressure exposure: Examination of the saturated organism at a belium pressure of 21-22 ata. In: Helvetica medica acta, 34, 1967/69, S. 130-150

ZALTSMAN,G.L.: Physiolgogical Principles of a Sojourn of a Human in Conditions of raised Pressure of the Gaseous Medium, Leningrad, 1961
Engliscbe tbersetzung: Foreign Technology Division, Wright - Patterson Air Force Base, Ohio, 1967

ZUNTZ,F.: Patbogenese und Therapie der durch Iuftdruckschwankungen erzeugten Krankbeiten. In: Fortschritte der Medicin, XV, 1897, S. 799-807

Weitere Literatur, die zum tieferen Verständnis beiträgt, aber nicht direkt in der Arbeit Verwendung gefunden hat.

BEANKE,A.R.,R.M.THOMSON,L.A.SEAW: Rate of Elimination of Dissolved Nitrogen in Man in Relation to Fat and Water Content of the Body. In: Am.J. Physiol., 114, 1935, S. 137 - 146

BRADNER,H.,R.S.MACKAY: Biophysical limitations on deep diving: some limiting performance expectations. In: Bull. Matb. Biophys., 25, 1963, S. 251-271
CARLYLE,R.F.,G.NICHOLAS,P.M. RONELS: Abnormal red cells in blood of men subjected to simulated dives. In: Iancet, 1979, S. 1114 - 1116

CHOUTEAU,J.: Saturation Diving: The Consbelf Experiments. In: BENNETT/ELLIOTT, 1969 S. 491 - 504

CHOUTEAU,J.,J.H.CORRIOLL: Physiologische Aspekte des Tiefseetauchens. In: Endeavour, 30, 1971, S. 70-76
CLAMAN,H.G.: Decompression Sickness. In: HUGH, 1971, S.99-118
CLARK, I.C., F.GOLIAN: Survival of Mammals Breathing Organic Liquids Equilibrated with Oxygen at Atmospheric Pressure. In: Science, 152, 1066, S. 1755 - 9756
HUGH,W.R.: Aerospace Medicine. William + Wilkins, Baltimore, 1971

IAWES,G.: No "floor" yet for the deep diver. In: New Scientist, 41, 1069, S. 396

KELIER,H.,A.A.BUELMANN: Probleme der Dekompressionsberechnung. In: Helvetica Medica Acta, 2ع, 1961, S. 764 - 774
KELLER,H.,A.A.BUHLMANN: Deep diving and short decompression by breathing mixed gases. In: J.Appl. Fhysiol., 20, 1965 S. 1267 - 1270

SCAREINER, $\mathrm{K}_{\mathrm{A}}$ : Ein kritischer therblick Uber den gegenwärtigen Stand der angewandten Tieftaucbphysiologie. In: Int.Zs.f.angew. Physiol.einscbl.Arbeitspbysiol., 27, 1969, S. 76 - 98

SEEMANN,K.: Medizinische Grenzen des Taucbens. In Neptun, 3.Jg., 1963, S. 80-81

SEEMANN, K.: Tieftauchforschung - beute und morgen. In: Wehrmedizin, 5, 1967, S. 206-210

SNELL,H.: Compressed sir Illness or So-called Caisson Disease. Lewis, Iondon, 1896

Wissenschaftliche Beiträge aus allen Bereichen der Erforschung der Meere und Binnengewässer, des Tauchens und des Gewässerschutzes

## Band 1 :

-Enstehung klassischer Austauchtabellen. Christoph Hoffmann
-Entwicklung neuer Tauchformen beim modernen Tiefseetauchen zur Vermeidung von Kompres-sions- und Dekompressionserscheinungen im menschlichen Körper. Christoph Hofmann

Band 2 :

- Zum EinfluB wiederholten Atemanhaltens unter Wasser auf die Atemanhaltezeit. Ute Hentsch

Band 3 :
-Die Problematik des Sättigungstauchens. Joachim Scharl
Band 4 :
-Vergleichende Untersuchung über das Richtungshören unter und über Wasser.

Fred Dembny
Band 5 :
-Die Leistungsfähigkeit des Orientierungsvermögens unter Ausschaltung der visuellen Komponente beim Tauchen mit und ohne Pressluftgerät.

Gerhard Straub
Band 6 :
-Die Veränderung der neuromuskulären Erregbarkeit bei steigendem atmosphärischem Druck und deren Bedeutung für das Tiefenrauschphänomen beim Tauchen mit Pressluftgeräten.

Rainer Schulz

- Begeisterung für die Welt unter Wasser
- Erstklassige tauchsportliche Ausbildung
- Mehr Wissen vom Meer und von Binnengewässern
- Erleben, Erfahren, Erforschen, Erhalten
- Praktizierter Umwelt- und Artenschutz
- Phantastische Unterwassererlebnisse
- Tauchsportbegeisterte Freunde gewinnen
- Freundschaften schließen
- Den Alltag vergessen
- Sport und Natur vereinen
- Heute schon dafür kämpfen, daß es auch morgen noch etwas zu erleben gibt
- Treffpunkt für Unterwasser-Filmer und -Fotografen
- Konditionssteigerung
- Sportliche Wettkämpfe in Einzel- und Mannschaftsdisziplinen
- Nationale und internationale Kontakte
- Kameradschaft für jung und alt

Das sind einige der Punkte, die für eine Mitgliedschaft in einem der Vereine des Verbandes Deutscher Sporttaucher sprechen!


Informationen über
Tauchsportvereine in Ihrer Nähe:
Verband Deutscher Sporttaucher e.V.
2000 Hamburg 60
Gründgensstraße 18•(\% (0 40) 6313355

