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BUBBLE NUMBER SATURATION CURVE AND ASYMPTOTICS OF
HYPOBARIC AND HYPERBARIC EXPOSURES
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Within bubble number limits of the varying permeability and reduced gradient bubble models, it is
shown that a linear form of the saturation curve for hyperbaric exposures and a nearly constant decom-
pression ratio for hypobaric exposures are simultaneously recovered from the phase volume constraint.
Both limits are maintained within a single bubble number saturation curve. A bubble term, varying ex-
ponentially with inverse pressure, provides closure. Two constants describe the saturation curve, both
linked to seed numbers. Limits of other decompression models are also discussed and contrasted for com-
pleteness. It is suggested that the bubble number saturation curve thus provides a consistent link between
hypobaric and hyperbaric data, a link not established by earlier decompression models.
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Introduction

Models [1-20] for controlling and limiting hypobaric and hyperbaric exposures
have long differed over range of applicability. Recent testing and comparison of
altitude washout data by Conkin and Van Liew [1] question the hypobaric extension
of the linear saturation curve, pointing instead to the correlation of altitude data
with constant decompression ratio in humans. The analysis of Lanphier and Lehner
[2] suggests similar altitude correlations with sheep. Extensions of the saturation
curve to altitude have also been discussed by Ingle [3], Bell and Borgwardt [7],
Wienke [8], Cross [9], Smith [10], and Bassett [11] in the past, as well as impact on
operational diving procedures. On the other hand, correlations [3-6,13,15] of hyper-
baric data with a linear saturation curve are well established. Closure of hypobaric
and hyperbaric diving data can, however, be effected with a more general form of
the saturation curve, one exhibiting the proper behavior in both limits. Just such a
curve can be obtained within a model treating both free and dissolved gas buildup
and elimination in tissues.

Using the phase volume constraint [16] in a correlated bubble model, [2]1-23], we
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have deduced a saturation curve of the form, M = [{ + 1 - exp(-£/P)]} P, for the tissue
tensions, M, at absolute pressures, P, and with ¢ and ¢ bubtle constants. In the
hypobaric limit, as P — 0, then M — 0, while in the hyperbaric limit, as P — oo,
then M — {P + . Corresponding tissue ratios, R = M/P, are bounded for all
pressures. In the hypobaric limit, as P — 0, then R — ¢ + 1, while in the hyperbaric
limit, as P — oo, then R — ¢{. Thus, a linear form of the saturation curve is recovered
for hyperbaric exposures, while a nearly constant decompression ratio is preserved
for hypobaric exposures.

Such a general form derives from bubble models, depending crucially on a coupled
treatment of both dissolved and free phase gases. Here, we only recount the essential
features of the derivation. For convenience, absolute units are employed in analysis,
that is, both depth and pressure are measured in feet-of-sea-water (fsw). To convert
to nitrogen partial pressure units in tissue quantities such as tension, M, ratio, R,
and gradient, G, simple multiplication by the nitrogen mole fraction, 0.79, is appro-
priate.

Bubble Number and Phase Constraints

Both the varying permeability model [21-23] (VPM) and reduced gradient bubble
model [19,20] (RGBM) employ the phase volume constraint [16], but in an integral
form. These bubble models assume that the time integrated product of permissible
bubble number times supersaturation gradient must remain below some critical limit
point, the separated phase volume,

SnGdtSwV (1)

t=0

with # the permissible bubble number, G the supersaturation gradient (difference be-
tween supersaturated tissue tension and ambient pressure), ¢ the time, V the
separated phase limit, and w a proportionality constant. Thus, both the bubble
number and the supersaturation gradient driving growth are limited by the con-
straint. This model approach has been applied to both bounce and saturation data
[18], and extended to repetitive diving [20], and has proven to be a viable concept
in decompression modeling and data correlation.

Experiments [21-23] also suggest that the number density of bubble seeds in
aqueous media is exponential in seed radius. The number of bubble seeds excited
into growth upon decompression depends directly on bubble radius and inversely on
the pressure. Stated another way, bubble excitation radius varies inversely with abso-
lute pressure. Corresponding analyses [18,20] then suggest that the permissible bub-
ble number, n, excited by compression-decompression from absolute pressure, P,
back to reference or surface pressure, satisfies the inverse exponential relationship,

n = { - nexp(-¢£/P) (2

with {, 7 and ¢ bubble constants. The tissue gradient, G, satisfying the phase con-
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straint above ultimately takes the form, for saturation exposures,
G = [{ - exp(-¢/P)|P (3)

assuming a constant ascent rate, fixed permissible bubble number at saturation, and
7 = 1 as the simplest case. The critical gradient, G, or tissue overpressure, certainly
approaches zero as ambient pressure approaches zero, and approaches infinity as
ambient pressure approaches infinity. By itself, the exponential term approaches
zero as ambient pressure approaches zero and one as ambient pressure approaches
infinity. Or, for small P, we note,

exp(-¢/P) — 0
while, for large P,
exp(-£/Py — 1 - ¢E/P
ultimately providing a means to recover the linear representation of the saturation

curve for hyperbaric exposures. The corresponding critical tension, M, and critical
ratio, R, in the same picture, are given by

M=G+ P=[{+1-exp(-¢/P)]P 4
and
R=M/P=1¢+1-exp(-£/P) (5)

Typical parameter ranges for £ and ¢{, as detailed below, include

6.5 fsw < £ < 14.4 fsw

1.28 fsw = ¢ < 1.45 fsw
Before considering further analysis of limiting forms, it is first worthwhile to point
out that M, G and R are bounded for all values of P, that M and G approach straight
lines for large P, bend through the origin for small P, and that R actually varies
slightly over P, as implied in the above relationships. Taking a lower bubble surface
tension limit of 8.3 fsw, a practical range of absolute pressures for (3), (4) and (5) is

52fsw < P < o
a constraint which has only minimal impact on the asymptotics discussed next.

Bubble Number Saturation Limits and Curves

The expressions given above have relatively simple asymptotic behavior. Limiting
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forms appear consistent with fits to the hyperbaric and hypobaric saturation data.
In the hypobaric limit of small P, a near constant R is recovered, while in the hyper-
baric limit of large P, a linear M is recovered. This can be seen in the following way.

Consider the hypobaric limit first. As P — 0, then exp(-{/P) — 0 faster than
P — 0, and therefore,

M- (+ 1P
G —~ (P
R—-¢+1

Quite obviously, M and G approach zero, while R remains nearly constant, in this
limit. But, in the hyperbaric limit, as P — oo, then exp(-£/P) — 1 - £/P at roughly
the same rate as P, so that

M- (+1-1+¢&PP —~P+§
G—-(-1+&#PP - (-1DP+E
R—-¢

At this limit, M and G increase linearly with pressure, and R remains nearly
constant.

Turning to estimation of £ and ¢, there are reference points at the two pressure
extremes. For comparison of parameter ranges, it is instructive to first estimate £ and
¢ over hyperbaric and hypobaric data, each individually, and then estimate ¢ and
¢ over both regions. Sea-level pressure, P = 33 fsw, serves to separate the two
regions. The range of £ and ¢{, over the three cases, is seen to be compact as follows.

Hyperbaric estimation of £ and ¢

Air saturation data for hyperbaric exposures is plentiful, with important
parameterizations of M as a function of P discussed shortly. Taking permissible ten-
sions, M = 54, 97, 140 fsw at absolute pressures, P = 33, 66, 99 fsw, we obtain

¢ =144 fsw
Hypobaric estimation of £ and ¢
Following Conkin and Van Liew [1] in suggesting an aerial bends threshold at

13 000 ft, that is, M = 33 fsw at P = 20 fsw, and also taking critical tensions, M =
13.5, 54 fsw at absolute pressures, P = 5.2, 33 fsw yields

£ = 6.55 fsw
=145
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Hpyperbaric-hypobaric estimation of £ and ¢
Including all five data points from both of the above cases, we find

£ =11.27 fsw

This parametrization weighs both hypobaric and hyperbaric data equally. In princi-
ple, £ and { could be fitted to any set of exposure data.

Fits in the hypobaric, hyperbaric and hypobaric-hyperbaric regimes exhibit con-
sistency in £ and ¢ corroborating the functional form of the curve. Figures 1, 2 and
3 depict tissue M, G and R over pressure range, 5.2 fsw < P < 66 fsw, employing
Eqgns. (3), (4) and (5), taking £ = 11.27 fsw and ¢ = 1.31. The asymptotic behavior
described above is clearly visible, that is, linear M and G for large P, exponential
dropoff of M and G through the origin for small P, and slight variation of R over P.

Other Model Comparisons

Saturation curves for various models exhibit different forms in the large and small
ambient pressure limits. Employing absolute units of pressure and depth in fsw,
denoting critical tissue tensions, M, critical gradients, G, and critical decompression
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Fig. 1. Bubble number saturation curve for tissue tensions. The permissible tissue tension, M, satisfies
the relationship (fsw), M = [2.31 ~ exp(-11.3/P)P, for P, the pressure. Pressure units are absolute. For
large P the curve approaches a straight line, while for small P the curve falls off rapidly. passing through
the origin.
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Fig. 2. Bubble number saturation curve for tissue gradients. In analogy with the tension, the tissue gra-
dient, G, exhibits similar asymptotic behavior. The permissible gradient, G, satisfies (fsw), G = [1.3] -
exp(-11.3/P)] P, approximating a straight line for large P, and curving through the origin as P becomes
small. Pressure units are absolute.
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Fig. 3. Bubble number saturation curve for tissue ratios. The tissue ratio, R, approaches a constant value
in both the large and small P limit, R = 2.31 - exp(~11.3/P), that is, 2.3 for small P and 1.31 for large
P, with pressure units (fsw) absolute as before.
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ratios, R, at absolute pressure, P, with G = M - P and R = M/P, as before, it is
illuminating to compare other models at opposite pressure extremes. Again, to

convert to nitrogen partial pressure units, appropriate tissue pressures are multiplied
by 0.79.

Haldane fixed ratio limits

Haldane’s early experiments with goats suggest a fixed decompression ratio, that
is, the critical ratio of tissue tension to ambient pressure in all compartments. The
classical [3] saturation curve is thus linear with zero intercept, given by

M = xP (6)
or equivalently,

G=(x - 1P N
R =x (3)

Ranges of x include

1.5=x <35

According to Haldane, x = 2, of course, but other values have been employed in div-
ing applications.

The hypobaric limit is simple. As P — 0, then M — 0, G — 0 and R = x. All critical
parameters are thus bounded in the fixed ratio model. The hyperbaric limit, as P —
oo, requires M — xP, G — (x - )P and R = .

Multi-tissue tension limits

When extending the Haldane model to broader classes of exposures, critical ten-
sions vary across tissue compartments, with the slowest tissue controlling saturation
exposures. The multi-tissue [4—8] extension of the classical saturation curve is also
linear, but with non-zero intercept, according to

M=aP+8 9
or

G=(a-1D)P+p (10)

R=oa+p/P (11

Typical ranges of « and 8 in the slow compartments, 120 < 7 < 720 min, are

1.30 = a < 1.40
1.1 fsw < B8 < 17.1 fsw
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Corresponding limits, as P — 0, require M — (3, G — § and R — oo. The ratio,
R, is thus not bounded for hypobaric exposures in the multi-tissue model. At increas-
ing pressure, as P — oo, then M — aP, G — («a - 1)P, while R — «. The hyperbaric
behavior of the multi-tissue model parallels the fixed ratio model, but with different
parameter values.

Altitude similarity limits ,

Holding the sea-level decompression ratios constant at altitude induces an ex-
ponential scaling of critical tensions and gradients, rendering altitude excursions
similar to hyperbaric exposures. The similarity [8—11] saturation curve is linear-
exponential with zero intercept, that is, it is broken up into two pieces. For P > 33
fsw,

M=aP +8 (12)
with

G=(a-1P+8 (13)

R=oa+p/P (14)

while, for P < 33 fsw, and with convenient parameterization, P = 33 exp(-vyz) for
v = 0.0000385 ft~! and z the elevation in feet,

M = [33a + B] exp(-yz) (15)
and

G = [33(c - 1) + B] exp(-y2) (16)

R=o+ B33 (17)
Again,

1.30 = o < 1.40
1.1 fsw = 8 = 17.1 fsw

as noted in the multi-tissue model.

But, unlike the multi-tissue limits, as = — oo, then certainly P = 33 exp(-yz) —
0,and M — 0, G — 0, but R = o + 8/33. The similarity approach is also a fixed
ratio at altitude, and thus bounded. In the hyperbaric limit, the similarity model ap-
proaches the same limits as the multi-tissue model.

Fixed gradient limits
A fixed gradient serves as an alternative to a fixed ratio in single tissue models.
The fixed gradient [8,12,13] saturation curve is thus linear with non-zero intercept,
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M=6+P (18)
or

G=4 (19)

R=1+8/P (20)

The single gradient parameter, 8, ranges in applications,
18 fsw <= 6 < 28 fsw

As P = 0, then M — 6, G = b, while R — oo. As in the multi-tissue case, the ratio
is not bounded for hypobaric exposures in the fixed gradient model. In the hyper-
baric limit, as P — o, then M — P, G =6, but R — 1.

Variable ratio limits

Because the fixed gradient is often conservative for deep exposures and liberal for
shallow exposures, a variable decompression ratio, depending on depth, is employed
in diffusion models. Accordingly, the variable ratio [8,13,15] saturation curve is
bilinear with zero intercept, that is,

vP
= 21
Pin (21

with

v

G=[ —I]P (22)
P+

v
R= 23
P+ (23)

The variable rates parameters, v and g, have typical hyperbaric values,

890 fsw
395 fsw < p < 410 fsw

v < 910 fsw

A

The hypobaric limits, as P — 0, are M — 0, G — 0, and R — v/p. In the variable
ratio model, all critical parameters are well behaved and bounded at reduced
pressure. However, in the hyperbaric limit, as P — oo, then M — v, G — -P and
R — 0. Thus at increasing pressure, the variable ratio model becomes unphysical.

Separated phase volume limits
In the thermodynamic model, the separated phase volume serves as the bends trig-
ger point, linked to perfusion-diffusion gas exchange and tissue bulk modulus. The
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phase volume [14—16] saturation curve is similarly linear with non-zero intercept,

M=xP + A (24)
with

G=k-1P+ X (25)

R=«x+ NP (26)

The phase volume parameters, k and A, range

1.36 < « < 1.60
7.5 fsw <= A < 13.1 fsw

Still, as P — 0, limits parallel the multi-tissue case, that is, M — A\, G — A and R
— oo, The ratio, as with other linear tension models, is not bounded for hypobaric
exposures. In the hyperbaric case, as P — o, then M — kP, G — (k- 1)Pand R — «.

To compare models and constants, it is useful to normalize curves to the same
exposures in terms of basic parameters. Accordingly, taking the less conservative
gradients, G = 16.5, 21 fsw at sea-level and at 18 000 ft elevation, that is, P = 16.5,
33 fsw, appropriate values of all constants can be generated. Corresponding tissue
tensions and ratios similarly take the values, M = 33, 54 fsw and R = 2.00, 1.63.
Accordingly, we find,

x = 1.64
a=x= 127
B=A= 12 fsw
6 = 2] fsw

v = 148.50 fsw
w = 5775 fsw
¢ = 140
3

U

= 12.0 fsw

as a normalized set for model comparisons.

Conclusions

The varying permeability and reduced gradient bubble models, coupling dissolved
and free gas buildup and elimination to the phase volume constraint, suggest satura-
tion curves asymptotically consistent with both hypobaric and hyperbaric exposure
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data. Two bubble constants, related to seed number density and permissible excess,
parameterize hypobaric and hyperbaric data well. Such closure on first principle has
not been seen in previous decompression models and algorithms. It is thus hoped
that these saturation curves provide a useful departure point for computational de-
compression modeling. Such a simple set of saturation relationships, specifically
Eqgns. (3), (4) and (5), can easily be applied or fitted to any set of exposure data.
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