Chapter 4

Gas Separation

Whether bubble formation necessarily leads to
bends is an issue discussed later (Chapter 6)
but the evidence presented so far leaves little
doubt that decompression sickness can be
avoided if gas is prevented from separating
from solution in the body. This has been the
belief underlying almost all attempts to formu-
late safe decompression schedules; although
whether they actually achieve this in practice
is quite a different matter. Before taking up
this question when describing preventive
methods in Chapter 3, it would seem desirable
to acquire more insight into the overall physics
of bubble formation and allied phenomena.

The formation of a gas phase by decompres-
sion can involve as many as four distinct
processes.

(1) Supersaturation of the solution: to some
finite degree, although negligible levels may be
adequate to initiate the next step in some
systems.

(2) Nucleation: inception of the gas phase as
minute specks (nuclei) if not already present.

(3) Growth: transfer of gas molecules from
solution into the gaseous phase.

(4) Coalescence: or any other mechanical
congregation of the gaseous phase separated
from solution to produce a larger bubble or a
larger accumulation of gas causing a greater
local deformation of the medium.

Before discussing these steps in more detail,
the simple case should be considered of a single
gas in contact with its solution in water.

Solutions of gases

In Chapter 1, it was seen that the law governing
the solution of gases is Henry’s law (Equation 1).
This states that a gas will tend to separate
from solution, ie. to pass from the liquid
phase into the adjacent gaseous phase, if the
tension of that gas exceeds its partial pressure
in the gaseous phase; while it will tend to move
in the opposite direction if this gradient is
reversed. At least, this holds provided there is
a stable gaseous phase into which the liquid
phase can ‘dump’ the gas in true physical
solution in excess of the quantity which it
would contain at equilibrium, i.e. at the position
of true saturation as described by Henry’s
law. If the inception of the gaseous phase is
suppressed, then gas which remains in true
Physical solution in excess of saturation is
said to be in supersaturated solution. Thus
decompression provides one means of super-
saturating a solution of a gas and providing a
driving force for bubble growth.

The real problem in determining whether
a gas will be ‘dumped’ from solution arises
in deciding whether there is a stable gas phase
present. The question is therefore one of
determining the point at which local micro-
regions of the gas phase (nuclei) are formed
which are sufficiently stable to initiate the
transfer process and whether such centres for
bubble growth are present in tissue anyway.

Nucleation

If bubble growth is to be avoided altogether,
and it is assumed that no stable gaseous micro-



regions are present prior to supersaturation,
then it is necessary to ascertain the conditions
under which nuclei are formed by decompres-
sion and how these may be best defined by the
environmental parameters. Since almost all
approaches to the calculation of conventional
decompression tables are based on a critical
limit to supersaturation (see Chapter 5), it is
imperative that particular attention is paid
to any evidence of a ‘trigger point’ or point
of profuse nucleation for initiating gas deposi-
tion as bubbles—not only in gaseous cavitation
but in other physical systems from which this
concept was ensconced.

Suspended transformation

Delayed gas separation is just one example of
a very common phenomenon in nature known
as suspended transformation. This occurs when
one or more parameters of any system are
changed such that the formation of a new
phase would enable that system to revert to
a more stable thermodynamic configuration
and yet, in the total absence of that phase, the
transition is suppressed. Sometimes the system
can remain in this metastable state almost
indefinitely.

There are innumerable examples of suppres-
sed transformation in the literature which
include the following categories.

(1) Solid:solid transitions, where the appear-
ance of a more stable polymorphic form may
be delayed almost indefinitely, e.g. the delayed
reversion of yellow to red phosphorus at
normal room temperature. There are many
examples in metallurgy but one of particular
historical interest is the use of tin buttons on
the uniforms of Napoleon’s army. These were
made from the malleable § form of this metal
which is stable under normal conditions and
is still unchanged at temperatures significantly
below the 13-2 °C transition point for transfor-
mation to its « form (grey tin). However, with
the extreme supercooling imposed by a Russian
winter, the fp-tin tended to revert to its more
stable, yet powdery, o form—much to the
embarrassment of the invading army.
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Another group of solid:solid transitions of
great commercial interest is crystallization in
polymers (Price, 1969) where the formation
of spherulites in nylon fibres, for instance, may
greatly increase temsile strength. However,
perhaps these systems should really be regarded
as supercooled melts more akin to the glasses
where nucleation considerations are, again,
most important (Hammel, 1969).

(2) Liquid :liquid transitions, where the
temperature may fall below the value at which
two liquids are totally miscible and yet separa-
tion of the system into two liquid phases is
delayed. A common example is a mixture of
phenol and water.

(3) Solid-in-gas, such as the formation of ice
crystals in a supercooled cloud. Much attention
is being given to this problem (Boucher, 1969)
in the hope of controlling weather patterns and
avoiding natural disasters such as hurricanes
by artificially ‘seeding’ clouds with silver iodide
crystals—particularly effective as ice nuclei
below — 5 °C (Vonnegut, 1947).

Another example of the gas:solid transition
of great commercial interest is the condensation
of metal vapours on substrates suitably prepared
to give the desired nucleation rate (Walton,
1969).

(4) Liquid-in-gas, such as the nucleation of
clouds in air supersaturated with water vapour
(Andres, 1969) and droplet formation from
steam nozzles (Wegener and Mack, 1958).
Perhaps the best laboratory example is provided
by the piston cloud chamber of Wilson (1897)
in which saturated air is rapidly expanded by
decompression (P, — P,). Gradually increasing
the expansion ratio, Wilson observed no con-
densation until a supersaturation ratio of 4-2
was reached. From this point until a ratio of
about 8, a relatively small number of drops
formed while, after 8, the vapour produced a
fog of progressively smaller droplets. These
results were interpreted as heterogeneous
nucleation up to a supersaturation ratio of
approximately 8 and homogeneous nucleation
thereafter, giving a linear relationship between
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log(P,/P,) and T~*2 for the same number
of embryos (Powell, 1928). T is the absolute
temperature. However, such relationships were
found to apply to the suppression of droplet
formation only if there are a few preliminary
expansions of the chamber to ‘wash out any
ordinary nuclei’ by causing condensation on
any ‘foreign particle’ present which can then
be precipitated. The Wilson cloud chamber
has proved of great value in tracking nuclear
particles as the trail of microdroplets which
they nucleate en passant.

(5) Solid :liquid, including supercooling of a
liquid melt, superheating of a solid above its
melting point and supersaturation of a solution
either by cooling or by solvent evaporation.

Since the latter was the first system to receive
extensive attention, its selection for more
detailed consideration provides a suitable intro-
duction for the terminology and thinking on
suppressed transformation. It is also particu-
larly relevant historically for its antecedence
to the Haldane approach to the diving tables
(Chapter 5). However, before considering this
last example of suppressed transformation in
much greater detail, there are certain general
facets of nucleation which should be mentioned
since they apply to all of the cases cited above.

Heterogeneous nucleation

The generation of the supersaturated state
may be a result of chemical or photochemical
reaction, or the consequence of a change in
temperature, pressure, tension or other chemical
or physical condition. Domains of the new
phase may then form around ions, impurity
molecules, on dust particles or at structural
singularities such as dislocations and other
imperfections (Dunning, 1969). Such centres
for growth are termed heterogeneous nuclei
since they differ in composition from both
the new and the parent phases.

Thermaodynamic considerations

If these are not present, then the degree of
supersaturation can be further increased with

the solution becoming intrinsically more un-
stable. According to the classical theory of
nucleation (Gibbs, 1906), this is best expressed
as the difference (AG) in the Gibbs Free Energy
and hence in the chemical potential of one
molecule in the supersaturated state (u,) relative
to its value in the bulk of the new phase (y,; ).
Moreover, if the case is considered of formation
of a nucleus within a supersaturated vapour
of pressure p, whose vapour pressure would
be pyr., at equilibrium at the same temperature,
then

AG__-(H’I-IU'IIQO)OCIOg(pI/PIIu)) (10)

From such simple thermodynamic considera-
tions, it can be seen that the ‘drive’ to form the
new phase increases very rapidly with the
degree of supersaturation. This rapid rise in
Intrinsic instability is reflected in the sensitivity
of the system to the slightest trace of foreign
material. This is reflected, in turn, in the
reproducibility of results which was such a
problem to Fahrenheit (1724) that he even
considered the freezing point of water to be
variable and so avoided it when selecting
his temperature scale in 1714.

The same heterogeneous nuclei tend to act
in all systems. The writer has decompressed
a supersaturated solution of Epsom’s salts in
contact with liquid paraffin to find a bubble
growing in the oil attached to the liquid—
liquid interface at the same point as a crystal is
formed and is growing into the aqueous
phase. Furthermore, there seems to be a critical
degree of supersaturation at which each of these
more marginal impurities appears to be acti-
vated into bubble formation. Thus, in any
system not previously supersaturated to remove
them, there seems to be a series of heterogeneous
nuclei with a continuous spectrum of activation
energies at which intrinsic instability becomes
sufficient for them to initiate the new phase.

Homogeneous nucleation

When precautions are taken to ‘use up’ hetero-
geneous nuclei, or otherwise avoid them, then
further supersaturation can occur but eventually
leads to a state of sufficient instability that
it breaks down and there is spontaneous



deposition of the new phase. This is attributed
to the formation of minute specks of the
new phase within the parent phase and, since
their composition is the same as the bulk of
the new phase eventually precipitated, this
process is termed homogeneous nucleation.

Whereas heterogeneous nucleation becomes
apparent for minimal supersaturation, many
theoretical attempts have been made to relate
homogeneous nucleation to the degree of
supersaturation and hence to the physical
parameters of the system. These tend to involve
highly mathematical analyses (e.g. Dunning,
1969; Sigsbee, 1969). However, in qualitative
terms, each seeks to describe the maximum
aggregate of molecules, atoms or ions which
can come together at any time and yet exceed
the minimum size for stability. Before expound-
ing current thinking any further, it may be as
well to return to the simple case of crystalliza-
tion to see not only how many of the present
concepts were developed but how many of
the older misconceptions arose.

Early work on nucleation

Much of the very early work on the crystalliza-
tion of common salts must be discounted on
account of the lack of precautions taken to
exclude dust and consequently the unknown
number of heterogeneous nuclei which it intro-
duces. However, by the middle of the nineteenth
century, biologists had become aware that the
atmosphere contained all manner of micro-
organisms—a concept soon applied to non-
living particles and their ability to ‘infect’
supersaturated solutions with centres of growth
(Schroder and von Dusch, 1854). Stringent
efforts to reduce this ‘infection’ led to more
meaningful results such as measurements of
the time lag before crystallization occurred in
solutions of known supersaturation (de Coppet,
1875).

The metastable limit

Studies like these then led Ostwald (1897,
1900) to propose two types of supersaturated
solution:

(a) labile solutions which will crystallize in
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a short period of time due to spontane-
ous homogeneous nucleation; and

(b) metastable solutions which remain un-

changed for apparently unlimited periods
of time provided the solute concentra-
tion does not exceed a critical value
above which they become labile. Ostwald
termed this concentration threshold the
metastable limit (see fig. 23).

Metastable and labile regions were also
observed in the supercooling of melts
(Tammann, 1898). Thus, at the turn of the
century, when Haldane and his collaborators
at the British Admiralty were formulating
their now famous method for calculating diving
tables, the metastable limit was then the accept-
ed concept for describing the threshold at
which supersaturated solutions became labile.
Moreover, the work on cloud chambers at that
time by Wilson (p. 77) had indicated that this
metastable limit not only applied to droplet
formation in gases but could be well described
by the expansion ratio (p;/p;; .,) in Equation 10.
This bears a remarkable resemblance to the
Haldane ‘decompression ratio’ to be evaluated
in much detail later (Chapter 5). Although no

metastable limit
(‘trigger point)

Labile Region

Concentration

Unsaturation

\ saturation

Temperature
Fig. 23 Depicting the Ostwald concept of a metastable
limit to supersaturation beyond which nucleation of
the suppressed phase will occur. Ostwald’s work
referred largely to solutions of solids supersaturated
by temperature change but the same concept can
be applied to gas solutions supersaturated by

decompression
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reference was made to such contemporary
work in the classical papers of Boycoti et al.
(1908), the expansion/decompression ratio as
a description of a metastable limit to super-
saturation involving gases certainly reflected
scientific thinking on suppressed transformation
at that time—or, at least, upon homogeneous
nucleation.

‘Classical’ theory of nucleation

Although Miers and Isaac (1908) published
further work at that time tending to confirm
the existence of labile and metastable regions
in describing crystallization, soon there were
objections to the idea of any sharp change in
the bulk properties of the solution at this limit
(de Coppet, 1907; Tammann, 1926).

In 1926, Volmer and Weber recognized that
the metastability of a supersaturated phase is
more a question of kinetics; although intima-
tions that time is significant in phase change
can be found in earlier papers by Thomson
(1859) and de Coppet (1875). Moreover, it
led to a complete ‘rethinking’ of suppressed
transformation. The full mathematical descrip-
tions would occupy several chapters and have
been well summarized by Dunning (1969).
However, it would be fair to say that the change
in approach amounts to a switch from
exp(— AG/RT), as predicted from equilibrium
thermodynamics (i.e. the van’t Hoff isotherm
—see Glasstone, 1953), to the essentially kinetic
function, exp(— AF/RT), for the frequency
of formation of critical nuclei by spontaneous
natural fluctuations in the parent phase (Einste-
in, 1910). F is the Helmholtz Free Energy
which is related to the Gibbs Free Energy (G)
by the standard thermodynamic equation
(Glasstone, 1953):

AF=AG — PAV (11)

(In some older texts the symbol F is used for
Gibbs Free Energy and A for Helmholtz
Free Energy.)

In Equation 10, it is seen that the expansion
ratio (p;/p;;.,) describing the metastable limit
to supersaturation of a gas by vapour should
be constant since AG was constant. However,

in changing to the kinetic approach, Equation 11
shows that AF is dependent upon P and V
and hence the probability of forming homo-
geneous nuclei, exp(— AF/RT), is markedly
dependent on the degree of supersaturation.

This also applies to cavitation by decom-
pression, since AF refers to the difference
between the supersaturated state and the equili-
brated state, i.e. the state after growth of the
gas phase and hence after volume change
(AV) of the solution. Thus ‘classical’ nucleation
theory predicts no fixed metastable limit to
supersaturation, or fixed threshold to the
labile zone but rather a continuous increase
in the probability of nucleating with further
decompression. Even so, there should still
be a zone of more rapid increase in this proba-
bility with respect to expansion ratio (see
fig. 24).

Statistical mechanics

An alternative to this ‘classical’ theory associated
with the names of Volmer, Weber, Farkas,
Becker, Doring and Zeldovich has been the

Probability
of

Nucleation

-AF
efT

Expansion Ratio

Fig. 24 The likelihood of forming liquid droplets
plotted as a function of the expansion of its vapour.
The region of fairly sharp increase in the probability
has been compared with Ostwald’s metastable limit to
supersaturation. Data from Dunning (1969)



direct use of statistical mechanics to predict
the nucleation probability function. This has
developed largely from the Mayer (1937) theory
of condensation and although it may be aestheti-
cally more satisfying to theoretical physicists
than the Gibbs criterion for stability, it leads to
probability distributions which differ little from
those developed by the ‘classical’ theory.

All of the disciplines associated with the
many examples of suppressed transformation
cited at the beginning of this chapter have
now followed one or other of these approaches,
or a combination, and it is only in decom-
pression sickness that anyone still adheres to
the original Ostwald concept of a critical
limit to supersaturation, i.e. a fixed ‘trigger
point’.

However, before discussing the particular
case of solutions of gases in more detail,
mention should be made of some other general
characteristics of supersaturated solutions.

Behaviour of supersaturated solutions

Ostwald (1897) showed that no more than
10710 g of NaCl is enough to seed its supersatu-
rated solution in water, while these solutions
could also be seeded by various contaminants
as already described under heterogeneous
nucleation. Various mechanical means can
also initiate precipitation such as shaking,
scratching, rubbing (Gay-Lussac, 1819) and
intense sonic radiation (Vanhook, 1969). In
fact, in their studies of the effects of mechanical
stimulus on crystallization, Young (1911) and
Young and van Sicklen (1913) found that they
could induce nucleation anywhere within
Ostwald’s hypothetical ‘metastable zone’ if
they supplied the appropriate amount of
mechanical energy. Hence they concluded that
the whole supersaturated region was effectively
labile (fig. 23).

The tendency to nucleate is less if the parent
phase is retained in smaller vessels. In very
early studies of suppressed transformation,
it was found that water could undergo more
‘under-cooling’ if transferred to capillary tubes
(Despretz, 1837) or when dispersed as smaller
droplets in immiscible liquids of equal density
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(Dufour, 1863). This scale effect has been
attributed to the isolation of foreign particles
in individual drops leaving the others free
of heterogeneous nuclei (Turnbull, 1949). It
also raises the question of the effective ‘vessel
size’ for bubble formation in tissue (see p. 252).
However, more general aspects of gaseous
cavitation per se should first be considered.

Bubble Inception

As early as 1819, Gay-Lussac showed that
supersaturation also applied to solutions of
gases, such as carbon dioxide in water; and
Berthelot (1850) investigated the formation of
vapour bubbles in ‘overexpanded’ liquids. These
early examples of nucleation help to demons-
trate the two basically different types of
cavitation—vaporous and gaseous.

Vaporous cavitation

Strasberg (1956) restricts vaporous cavitation
to cases where the nucleus grows explosively
and contains predominantly vapour. Violent
mechanical actions such as those associated
with a ship’s propeller or liquid pumping are
capable of inducing this type of nucleation and
have been studied quite extensively. However,
the best controlled conditions for inducing
vaporous cavitation are afforded by ultrasonic
techniques. High intensity ultrasound can be
focused to give high alternating pressures,
e.g. +4 atm at an intensity of 5 W.cm™?2
(Hueter, 1951). Noltingk and Neppiras (1950)
used such techniques to show that true vapor-
ous cavitation has only a slight dependence
upon the duration of decompression. This
is consistent with the early theoretical ap-
proaches which regraded the process as
essentially one of mechanical failure of the
internal cohesive forces or fracture of the
liquid (Frenkel, 1939). For this reason the
negative pressures needed to induce vaporous
cavitation are often termed ‘tensile strengths’.

Abreast of approaches to other aspects of
suppressed transformation, these carly theoreti-
cal treatments were superseded by those of a
more statistical nature with Fiirth (1941)
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basing his analysis upon the distribution of
‘holes’ in liquids and the likelihood of their
congregating into a stable nucleus. Circum-
venting their massive mathematical derivations,
these ‘hole theories’ essentially predict a labile
region and another, roughly corresponding to
the old metastable range, in which there is a
graded probability of nucleation occurring
depending upon the extent of supersaturation.

Tensile strengths of liquids

The various theoretical approaches have pro-
duced estimates of tensile strengths for degassed
water ranging from the vapour pressure to
350 atm negative pressure (Knapp, 1952;
Hemmingsen, 1970; Apfel, 1970a,b, 1972).
It must be remembered that negative pressures,
far exceeding any possible vacuum, are perfectly
feasible in a solid or liquid in which there is
no cavitation.

Fracture of a gas-free liquid can be induced
in practice not only by reducing the absolute
pressure (decompression) but also by elevating
the vapour pressure. In the latter case, Kenrick
et al. (1924a) were able to superheat water to
270 °C in small clean capillaries at atmospheric
pressure, the vapour pressure at this tempera-
ture being 54 ATA.

The alternative method of supersaturating
by decompression has enabled some remarkable
negative pressures to be recorded under both
static and dynamic conditions by a wide variety
of methods. A list of values and their source
of reference is given in Table 6.

The values for these ‘tensile strengths’ of
liquids cited in Table 6, particularly the higher
values, are often quoted in support of critical
supersaturation theories of decompression sick-
ness. However, the enormous variation of
these values needs no comment. Moreover,
most contributors to this list tend to emphasize
their highest reading, often not recording other
runs failing to reach the maximum. While
this approach would seem quite justifiable in
its avowed intention to determine the fracture
strengths of liquids, such data is much less
acceptable in assessing the likelihood of failure
of the system. Such data would therefore seem
of little use in deciding whether the metastable
limit exists or not but the subject is mentioned
here since references to such values abound in
the literature on decompression sickness.

Relevance in biological systems

A possible exception to this last statement
occurs in plants, the microstructure of which

Table 6 Recorded tensile strengths* of various liquids

Tensile strength

(ATS) Liquid Reference Method
300 water Bethelot (1850)* static
4-8 water Reynolds (1878) dynamic
30 water Meyer—Breslav (1911) static
40 ether Meyer—Breslav (1911) static
150 water Dixon (1914) static
207 cell sap Dixon (1914) static
2-38 water Vincent (1941) static
2-94 mineral oil Vincent (1941) static
2:9-114 mineral oil Vincent (1941) static
100-1000 water Harvey et al. (1944a) static
0-8 water Dean (1944) dynamic
100-200 water Pease and Blinks (1947) static
280 water (10 °C) Briggs (1947) ; dynamic
20 water Willard (1953) ultrasonic
200 water Galloway (1954) ultrasonic
140 benzene Galloway (1954) ultrasonic

*Quoted and checked by Meyer and Dixon using the same method.



has developed without direct contact with the
atmosphere in much the same way as mamma-
lian tissue. The tensile strength of liquids
represents a subject of great importance in
studying the physiology of trees where enormous
negative hydrostatic pressures must exist
without cavitation in the very fine channels
available for the flow of cell sap. Of particular
interest is the mangrove tree which needs to
overcome the large osmotic pressure of the sea
(25 ATA) in extracting fresh water into its
root system (Scholander et al., 1964).

These values are all the more interesting
when one remembers that gases are present,
so that this indicates a very effective system for
avoiding gaseous rather than vaporous cavita-
tion. However, the turgor of trees is very
different to that of mammalian tissue. After
all, trees have evolved to withstand these
enormous negative pressures whereas, under
normobaric conditions, there is no such need
in man who has positive pressure (relative
to ambient) in all vessels and other fluid
systems of his body.

This argument implies that the first formation
of bubbles in a subject could require a different
supersaturation threshold to subsequent
attempts. In this connection, it has been the
writer’s experience that a new ‘diving’ goat
will usually ‘bend’ for the first time for a
decompression differing widely from its subse-
quent norm.

However, before looking at the immensely
complex phase structure of body fluids and the
multiplicity of tissue liquid compartments as a
cavitation medium, gaseous cavitation in pure
liquids should first be considered.

Gaseous cavitation

There is unanimous agreement that the likeli-
hood of cavitating a liquid by decompression
increases with its gas content (Hueter, 1951),
true vaporous cavitation representing one point
at the lowest end of the probability distribu-
tion. Coakley (1971) has demonstrated that
an acoustic intensity of 142 W.em™2 was
sufficient to produce the first indication of
stable bubbles at the focal point in air-saturated
water, while 175 W.cm™2 produced visible
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bubbles of up to 300 pym diameter. Gas is
considered to enter these ultrasonically induced
nuclei by rectified diffusion (Plesset, 1963;
Apfel, 1970a,b). Other novel means of initiating
bubble formation are provided by Reynold’s
cavitation, as seen in the type of vortex forma-
tion which can develop as a result of turbulent
flow (Dean, 1944), and by tribonucleation.

Hayward (1967) has observed bubble tri-
bonucleation in nucleus-free liquids under nega-
tive pressure in a hydrostatic tension mono-
meter, the effect occurring with very gentle
rubbing of the liquid—solid combination tested.
Ikels (1969), on the other hand, devised a
series of experiments to observe the effects
of viscosity, velocity and gas solubility on
nucleation and bubble formation due to a
small ball rolling down the side of a test tube
at reduced pressure. He concluded that increas-
ed viscosity facilitated bubble production. In
addition, the decompression required for bubble
formation was found to be in proportion to
the product of the viscosity of the fluid and
the velocity of the rolling ball and inversely
proportional to gas solubility (Hemmingsen,
1970).

Hayward suggests that the tribonucleation
phenomenon is probably not due to frictional
heating since two spheres of air-free ice vigor-
ously rubbed together will form nuclei. Rather
the phenomenon is more likely to result from
rapid separation of the solid surfaces leaving
a momentary cavity (Harvey, 1951a). Campbell
(1968) adds that tribonucleation and bubble
growth are theoretically facilitated when the
solid surfaces involved present a large contact
angle.

Returning to the problem of gaseous cavita-
tion simply induced by reducing the overall
hydrostatic pressure, the probability distribu-
tion of activating nuclei into growth is very
difficult to determine due to the enormous
random scatter. However, averaging twenty
decompressions to obtain each point and taking
thirty points, there appears to be a linear
relationship between the air content of water
and its ‘critical inception pressure’ as measured
by ultrasonic techniques (Strasberg, 1956).
By extrapolating these results and those of
Blake (1949) to a system at normobaric condi-
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tions, the air tension would be 165 atm,
corresponding to a decompression ratio of
1-65. However, this is just a projected mean,
so that on many occasions gas separation would
be expected for much lower values.

Random scatter

The magnitude of the scatter can be appreciated
from the work of Crump (1949) who records
his data for pumping both fresh and sea water
through a Venturi nozzle. His graphical presen-
tation of several hundred results, on the basis
of air content versus critical inception pressure,
indicates that gaseous cavitation is a very
random process indeed. For sea water, at least,
there is an appreciable probability of nucleation
occurring for decompression of less than 90 mm
Hg (4 fsw). Crump also found that the critical
inception pressure dropped markedly with
increasing temperature, so that this threshold
would be even lower at body temperature
(37 °C).

It would be quite justifiable, however, to
argue that the threshold decompression for
sea water need not apply in vivo where the
cavitation medium can be regarded as sealed
from the environment. In support of this point,
evidence has already been presented from
other sealed biological systems such as the
mangrove tree (p. 83), not to mention the
maximum ‘tensile strengths’ recorded for cell
sap (Table 6).

Pressure ‘memory’ of solutions

Reasoning such as this has led many workers
to go to the other extreme and work with
‘denucleated’ solutions to try to ascertain the
decompression threshold for bubble formation.
Several methods have been employed in attemp-
ting to achieve this ideal state, including the
application of hydrostatic pressure and the
chemical generation of carbon dioxide by
mixing ultracentrifuged molar solutions of
NaHCO, and HCIl (Harvey, 1951a). Mixing
these solutions at normal pressure did produce
a few bubbles.

Bubble formation by decompression, how-
ever, can be very effectively suppressed by
previous application of extreme hydrostatic

pressure to the solution without permitting
further gas to dissolve. Techniques for the
compression of solutions isolated from the
gas phase have been described by Pease and
Blinks (1947), Harvey (1951a) finding 30 min
at 16,000 psi to be most effective. With such
pretreatments, water saturated with oxygen,
nitrogen or carbon dioxide at 100 ATA could
be decompressed to normal atmospheric pres-
sure without bubbling (Kenrick et al., 1924b),
while this could be achieved with saturation at
250 ATA, even with carbon dioxide but not
on all occasions (Clare, 1925). Strasberg (1956)
has attempted to quaniify this ‘memory’ of
the solution for its pressure history by the
expression

P,=i.p—i,.P, (12)

where P_ is the critical pressure for cavitation,
p is the gas tension and P, is the maximum
hydrostatic pressure to which the solution
has been subjected, while i, and i, are constants
where i, > i,.

Actually, the tension of a gas (p) does not
remain constant when its solution is compressed
in isolation from the gaseous phase. There
is a slight increase amounting to some 760—860
mm Hg air in water for compression from 1.0
to 1000 ATA (Enns et al., 1965)—a rather larger
increase (Ap) than predicted from the standard
equation of Poynting (1896a,b):

Ap.V=AV.P, (13)

where AV is the change in the solution volume
(V) for a hydrostatic compression P,.
Most authors attribute the ‘memory’ of the

q0r
(]
= 300 Ib./in?
8
& 20} ——
< X 100 1b./in?
5
3
o
1 1 ]
0 20 40 60

Time (sec)

Fig. 25 The potential required to produce cavitation by

ultrasonic means at various times after the application

of hydrostatic pressure per se. Increasing potential

reflects increasing difficulty in inducing cavitation.
Data from Iyengar and Richardson (1958)



gas solution for hydrostatic pressure to the
presence of undissolved nuclei in normal liquids
(Harvey, 1951a; Willard, 1953). Thus com-
pression tends to reduce them to a point where
they can no longer initiate growth of the gaseous
phase upon subsequent decompresson of the
solution to a supersaturated state. This probably
involves dissolving them either totally or in
part, since this de-activation process is not
only more effective at higher hydrostatic pres-
sures but is dependent on the time that these
pressures are applied (see fig. 25).

Gas nuclei

These observations leave little doubt that,
in normal liquids, there are gas nuclei present
analogous to those postulated in the other
aspects of suppressed transformation described
earlier. However, their formation or activation
by decompression is still poorly understood.
The literature is particularly mathematical
and confusing and leaves this writer with the
impression that, if the physicists cannot agree
on the mechanism in pure liquids, then what
hope have physiologists of discovering the
truth about bubble inception in media as
complex as body tissues?

However, there are several broad areas of
agreement in theoretical treatments which war-
rant mention before resorting to direct experi-
mental testing in vivo to try to answer the
questions relevant to decompression sickness.
Firstly, there is a need for a certain minimum
energy concentration to form the nucleus—
akin to the activation energy of a chemical reac-
tion (Ross, 1938) and hence consistent with the
kinetic approach adopted in the ‘classical’
theory of nucleation already outlined. This
energy barrier can be overcome either by the
chance concentration of energy as predicted
by the Boltzmann distribution of molecular
energies or by the supply of discrete high-
intensity ‘packages’ in such form as the products
of radioactive decay.

The first approach is essentially statistical and
leads to a probability distribution for the
formation of nuclei resembling that for droplet
nucleation shown in fig. 24. Thus, for any
degree of supersaturation, there is a finite
chance of forming nuclei.
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On the other hand, supply of the activation
energy in the form of cosmic radiation or the
fission products of radioactive isotopes should
lead to a more random distribution. Evans
and Walder (1974) have postulated this as a
major source of bubble inception in caisson
workers, pointing out that the number of
disintegrations of U23* in the body coincides
with the bends incidence. However, this would
imply that the incidence of decompression
sickness was independent of the decompression
profile provided there was supersaturation.
Although the decay of radioisotopes or cosmic
radiation is therefore most unlikely to be the
primary source of bends it could be a factor
contributing to the ‘normal’ level of nuclei
present in tissue. Whether such a ‘reservoir’
of nuclei is normally present in the body is a
key factor in the fundamental design of decom-
pression procedures.

On the subject of charged particles, ions
present in the air supply to buildings can affect
health (Krueger and Reed, 1976) and, if
concentrated in the gas supply system to divers,
could influence the outcome of decompression.

Critical size of nucleus

Before pursuing this controversial issue any
further for the moment, it is necessary to
return to the second point which is common to
the major theories of bubble nucleation. This
is their universal shortcoming in needing to
specify a critical radius for the nucleus in
deciding whether its predicted energy configura-
tion is likely to be stable. Reverting to simple
equilibrium considerations, a bubble will tend
to grow if the total gas tension (XZp) of the
adjacent solution exceeds the total pressure of
gas within the bubble, i.e. if

2p>P+2y/r,+8,=P+B  (14)

where P is the absolute hydrostatic pressure of
the solution, y is the surface tension, r, is the
bubble radius and 9, is the pressure required
to overcome any elastic forces within the
medium tending to oppose its deformation by
the bubble. Thus d, is zero in a normal liquid.
The excess bubble pressure for phase equili-

brium (B) is the sum of §, and the term, 2y/r,,
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arising by virtue of curvature of the interface in
accordance with the Laplace equation. This add-
ition of mechanical factors is depicted in fig. 26.

It can be seen that B will decrease as the
bubble grows (r,]) until the interfacial factor
becomes negligible. y is small (of the order of
50 dyne. cm ! for plasma) and may be reduced
still further by surfactants or the ‘organic skin’
predicted to stabilize nuclei and believed by
some to be present even in the cleanest liquids
available (Fox and Herzfeld, 1954). Even so,
B should become a very large term as r, becomes
very small, amounting to about 0-7 kg. cm™?
(535 mm Hg) for r, = 1.42 um. This value was
estimated for water at 20°C (Dean, 1944).
Hence much greater degrees of supersaturation,
(Zp — P), are necessary to balance Equation
14 as smaller bubbles are envisaged. At some
point a bubble becomes a nucleus and vice
versa, so that this elementary reasoning based
on the thermodynamics of macro-systems
suggests that the critical degree of supersatura-
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Fig. 26 Demonstrating the application of Dalton’s

law to gas bubbles in vive. The sum of the mechani-

cal factors contributing to the total hydrostatic

pressure of the gas within the bubble must equal

the sum of the partial pressures of the component
gases

tion for bubble inception is hyperdependent
upon the diameter selected for the nucleus at
inception (see fig. 26).

However, there is obviously a point of break-
down in this line of deduction, since a bubble
is essentially unstable; it must either grow if
its radius exceeds a value which balances
Equation 14 or it must shrink it is less than this
critical value for metastability. If it shrinks,
then B might be expected to reach an enormous
value until the bubble is crushed and totally
dissolved. Yet, in practice, nuclei appear to
survive—unless dissolved by the application of
hydrostatic pressures which although high,
e.g. 1000 ATA, are still small by comparison
with 2y/r, as r, approaches intermolecular
dimensions.

This emphasizes the need to switch to thermo-
dynamics and kinetics more appropriate to
micro-systems in considering nucleation but it
also raises the question of whether there is
any other factor which could be stabilizing
these microscopic nuclei against the enormous
crushing pressures predicted by 2y/r,. Even
on the basis of statistical thermodynamics,
there should be the same probability of the
requisite number of gas molecules coming
together at any one instant to form a nucleus
whether the solution has been pretreated with
extreme hydrostatic pressure or not. Accor-
dingly, some other factor must be sought which
could be tending to stabilize microbubbles
against their intrinsic crushing pressures and
so preserving the ‘reservoir of nuclei’ needed
to explain solution ‘memory’.

Bubbles in elastomers

A possible stabilizing factor for nuclei is
provided if one follows the lead of several
workers in the field of decompression sickness
in preferring to study solutions irn vitro which
have mechanical properties more akin to those
of gross samples of tissue. While gelatin solu-
tions have proved popular for this purpose
(LeMessurier, 1972; Strauss, 1974), their defor-
mation produces a mechanical reaction which is
a complex mixture of elastic and plastic forces.
In other words, there is creep, a comprehensive
analysis of the visco-elastic forces having



been undertaken by Yang and Liang (1972).
Such complicating factors are largely avoided
in simple elastic polymers such as the very soft
siloxane rubbers.

Gent and Tomkins (1969) have shown that
micro-cavities can be stabilized against appreci-
able external crushing pressures even in
elastomers with relatively low shear moduli.
Moreover these same nuclei can be activated
into centres for bubble growth by minimal
degrees of supersaturation.

This work is particularly interesting in view
of the similarities between tissue and the elasto-
mers used by Gent and Tomkins; these factors
have been discussed by Vann and Clark
(1975). This approach can therefore provide
some scientific justification for the concept of
a stabilized ‘reservoir of nuclei’ in vivo, although
it may still not interpret the pressure ‘memory’
of pure liquids.

Reservoir of nuclei

Direct evidence for the ‘reservoir of nuclei’
in vivo has been provided by looking for
bubbles in living translucent creatures after
decompression. Gooden (1973) used the tail
of the tadpole, while Evans and Walder (1969)
found shrimp to be an ideal incompressible
invertebrate with a definite ‘memory’ for applied
hydrostatic pressure. They found that the
number of bubbles observed increases with
the degree of supersaturation in creatures not
pre-pressurized and that decompressions of no
more than several feet of sea water were sufficient
to initiate the first bubbles. This threshold in
shrimps has been studied by Beckman (personal
communication) and found to be compatible
with the inherent gas unsaturation of normal
tissue as discussed in more detail later (p. 239).

Implications for acclimatization

Evans and Walder found a wide distribution
in the degrees of supersaturation needed to
provoke the various nuclei of the ‘reservoir’
into bubble growth. They point out that this
supports their hypothesis that acclimatization
to compressed air exposure is due to the ‘using
up’ of the more readily activated nuclei on the
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early decompressions. The great advantage of
this approach is that it offers an explanation for
the indication that adaptation to one working
pressure does not offer significant protection
against decompression sickness following subse-
quent exposure to a higher pressure (p. 40).

Attractive as this hypothesis may be, it
assumes that nuclei are ‘used up’ by their
activation into bubbles in vive in the same way
that heterogeneous nuclei can be precipitated
by preliminary expansions of a Wilson cloud
chamber (p. 78). However, this writer feels
that a ‘treated’ bubble is likely to leave larger
and more nuclei rather than fewer, in the confin-
ed compartment or thixotropic body fluid
in which it is captive in extravascular tissue.
Thus, this hypothesis would be much more
plausible if the limb bends from which the
acclimatization data (see p. 40) were gathered
were caused by intravascular bubbles, in which
form the more readily activated nuclei could
be removed from blood at the lungs—a major
issue discussed on p. 66.

An ideal medium for keeping the bubbles
captive while studying their formation in vitro
and the nucleation spectrum in general is
provided by gelatin solutions.

Gas separation in gels

A comprehensive description of the preparation
of gelatin solutions and their use in studying
gaseous cavitation induced by decompression
has been compiled by LeMessurier (1972).
This work largely describes modes of growth
and will be discussed later but leaves little doubt
that bubbles are much more difficult to initiate
than in water, while 20% gelatin is much more
difficult to nucleate than 10%, (Harvey, 1951b)
and usually requires seeding if one simply
applies a vacuum to the stiffer gels equilibrated
with room air. More recent studies (Strauss,
1974; Yount and Strauss, 1976) have sought
to determine the threshold for nucleation,
i.e. the all-important value for Bin Equation 14.

The results of these investigations indicate
that pre-existing nuclei account for at least
99-9% of the bubbles formed by decompressing
gelatin of which 947 are already present in the
water before the gel is prepared. It could be
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argued that these findings are not relevant to
the body because biological fluids are formed in
a sealed environment but their studies of serum
and egg albumin also reveal pre-existing nuclei.

Different nuclei become activated into bubble
formation for different degrees of supersatura-
tion, i.e. growth is initiated for different values
of (Zp — P) in Equation 14 (see fig. 29). Hence
Yount and Strauss attribute this to a distribu-
tion in sizes of the nuclei present, ie. in r,
values needed to balance Equation 14. Thus
it would seem fair to say that there is a ‘reser-
voir’ of nuclei normally present in solutions
of gelatin but that these have a wide spectrum
of degrees of supersaturation for their activa-
tion into supporting stable growth of the
gaseous phase.

As in pure liquids, gas nuclei can be de-
activated in gelatin by the application of very
high hydrostatic pressure, presumably due to
crushing (Yount and Strauss, 1976). When
such denucleated gels are decompressed, much
higher degrees of supersaturation are then
needed to induce bubble formation by subse-
quent decompression, i.e. B values are much
higher. Once again, however, it raises the ques-
tion of the relevancy of denucleated solutions;
can a solution which has been exposed to a very
high hydrostatic pressure in the absence of
the gaseous phase be compared with tissue
which has not exceeded the ‘bottom’ pressure
of a dive?

Tissue and gelatin solution may appear to
have similar overall mechanical properties but
on the micro-level they are very different.
The distensible and elastic nature of most
tissues is imparted by their membranous micro-
structure common to all living matter, each
micro-compartment actually containing fluid.
Even cytoplasm is liquid at body temperature.
Hence B values for these fluids should be lower
than for gelatin unless the membranes are
restraining the bubble but such forces would
not then become significant until after there
had been appreciable growth and consequently
well after a nucleus had been activated into
a stable gaseous phase.

Another basic difference from the situation
encountered in vivo is that the in vitro systems

discussed so far all refer to cavitation in a
homogeneous medium, whereas the body has
two primary solvents for gases—one lipid
and the other aqueous in nature, the two being
immiscible with each other and yet widely
interspersed in many tissues.

Heterogeneous systems

If the cork is released from a bottle of soda
water, it is most unlikely that any bubbles will
be seen to form anywhere other than on the
glass walls. There are very few instances in
which bubbles have been observed to form
de novo in the bulk of the fluid. The only cases
seem to arise with extreme decompression at
virtually explosive rates as recorded by Clare
(1925) and, even under these conditions, Briggs
(1950) could not be certain of the nucleation
site. The other means of generating bubbles
within the bulk of the fluid is provided by the
focusing of intense ultrasonic radiation.

Simply using non-explosive decompression,
Wismer (1922) reported that all bubbles are
formed in liquids at the retaining walls, while
Pease and Blinks (1947) found it impossible to
form bubbles in the bulk of the fluid. They
concluded that a solid surface was needed as
the point for gas separation from solution.
The theoretical implications of the micro-
geometry of container walls has been discussed
in great detail by Fisher (1948) and Harvey
(1951a).

However, the simple explanation that the
vessel walls retain small pockets of gas which
act as the embryos for bubble growth no longer
seems adequate. Farncombe (1925) has reported
bubbles forming at the surface of solids deposi-
ted from the same solution as the gas. Moreover,
it also applies to precipitated solids which are
only wetted with difficulty by the solvent, i.e.
those with contact angles exceeding the 90°
level considered critical in many theories of
surface nucleation. Furthermore, the surface
need not be solid. This writer hasfound preferred
bubble formation on human fat deposited from
its solution in acetone by adding water in the
absence of the gaseous phase. This observation
can be interpreted on the basis that the freshly



formed lipid—aqueous interface has an affinity
for pre-existing nuclei circulating in either
liquid phase. However, such an interface would
not possess the mechanical rigidity needed to
stabilize nuclei by the ‘crack’ theories of bubble
formation. This does not disprove these theories
in their own context but it does detract from
the emphasis placed upon the concept of
tissue as a sealed system free from vessel-
wall nuclei and therefore capable of with-
standing appreciably more supersaturation than
other gas solutions without cavitating.

Whatever the mechanism of nucleation, the
nature of the interface is important. Harvey
(1951a) records that a paraffin surface always
bubbles profusely in soda water however well
it is cleaned. This emphasis on the hydrophobic
nature of the retaining boundary is particularly
pertinent to all biological material which is
immensely membranous down to the most
microscopic tissue component—and the struc-
tural basis of these membranes is a bimolecular
layer of lipid (Davson, 1964). At first sight
this might appear to offer an enormous hydro-
phobic surface inducive to cavitation in all
cells and sub-compartments but the lipo-
protein molecules are considered to be orientat-
ed with their polar protein ends facing outwards
on both sides of the membrane to present
more hydrophylic surfaces in uninjured tissue.

Liquid—liquid systems However, thepropen-
sity for lipid inclusions in many cells and the
high solubility of gases in these fat droplets,
has aroused some interest in cavitation at the
interface between aqueous and hydrophobic
liquid phases (Hills, 1967a). These studies
show that when bubble formation occurs
in oil-water systems, it invariably does so at
this interface. The appearance of bubbles is
random so that, on any given occasion, one
cannot predict whether they will appear or not.
When they form, they become visible within a
minute or so of decompression and few develop
later. This is compatible with the concept of
a pre-existing ‘reservoir of nuclei’ advanced
earlier for single liquids and is again similar
in so far as an increase in the degree of super-
saturation produces more bubbles.

However, the absolute level of supersatura-
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tion needed to produce bubbles at the water—oil
interface in the same numbers was appreciably
lower and sometimes negligible—often less
than two feet of sea water. This raises the
question of whether the interface itself can
initiate bubble inception or whether it simply
facilitates the activation of nuclei attracted to
it from the reservoirs normally present in each
phase. The latter explanation seems more likely,
since fine interspersion of the two phases to
create 10-100fold larger interfacial area did not
produce significantly more bubbles (Hills,
1967a). This indicates that a fat surface
promotes activation of a wider range of the
size spectrum of nuclei in the reservoir for a
given degree of supersaturation.

These studies also showed that bubble for-
mation at the liquid-liquid interface was depen-
dent upon the solubility of the gas. One would
naturally expect larger bubbles but a lesser
degree of supersaturation (smaller B value)
was needed to produce the same average number
of bubbles of the more soluble gas.

Many of these findings were confirmed by
Evans and Walder (1969) who went on to show
that, in common with the single-phase systems
already discussed, the liquid-liquid interface
has a ‘memory’ for hydrostatic pressure (800
kg. cm™2). This largely confirms that there is
also a reservoir of nuclei in two-phase systems.

Summary

This review of nucleation has tended to avoid
more than a mention of the standard theoretical
treatments because not only do these require
significant mathematical description to be ap-
preciated but most are directed towards pure
denucleated liquids under idealized conditions.
However, even these yield a probability dis-
tribution of nucleation rather than a fixed
threshold as assumed in the decompression
ratio of Haldane and co-workers used to
compute diving tables (p. 110). Their implied
‘trigger point’ conforms with other descriptions
of the concept of the metastable limit popular
at the turn of the century but subsequently
abandoned in other disciplines. Even so, there
is a fairly steep rise in the predicted probability
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curves over a relatively narrow range of
supersaturation which could be construed as
a ‘trigger range’ for the dissolved gas as a whole.
This immediately raises again the question of
whether the first appearance of bubbles in the
critical tissue(s) or the point of appreciable
nucleation should be considered.

Looking purely at experimental results, there
is no doubt that bubble formation can be
suppressed in gas solutions with very high
degrees of supersaturation by previously sub-
jecting them to very high hydrostatic pressures
in very clean vessels with hydrophylic walls.
However, divers are not exposed to these
extreme hydrostatic pressures in practice and
any attempt to do so in the gas-breathing diver
is likely to cause much more trouble due to the
increased gas uptake. It is tempting to speculate
here about liquid breathing (p. 209) to
denucleate the diver under the better-controlled
conditions in which he finds himself pre-dive
or pre-decompression. Moreover, in passing
from these idealized solutions towards a more
biological situation by considering hydrophobic
surfaces, less rigid gels, lipid inclusions and
non-denucleated solutions, the distribution
curve is shifted towards lower and lower
degrees of supersaturation; and the work on
shrimp indicates that tissue is no exception to
this trend.

In conclusion, it is this writer’s opinion that
current knowledge of nucleation in the physical
sciences would predict that bubble inception
is random and will occur very readily in tissue.
This really ‘puts the ball back in the court’ of
the physiologists to decide whether:

(1) Only one micro-region of tissue needs
to activate nuclei for sufficient growth to lead
to bends, when theory would show that
this occurrence should be random and with
so many possible sites within any one tissue
the probability of bubble growth would be
appreciable for any condition exceeding
zero-supersaturation; or

(2) bends are determined by the average
micro-region of tissue. when the degree of
supersaturation for the steeper increase in
probability of nucleation would become a

more relevant description and come closer to
the concept of a ‘trigger point’ or metastable
limit.

Hence it would be fair to conclude that
nucleation theory is compatible with a fairly
broad ‘trigger point’ if the overall bubble
population of a tissue is relevant in determining
bends but it is also compatible with virtually
no metastable limit (zero-supersaturation) if
the worst micro-region determines the im-
minence of symptoms. However, before taking
this argument further, it is desirable to know
how such average or local sites will permit
these freshly activated gas nuclei to grow into
bubbles.

Bubble Growth

Once established, a stable gaseous phase will
grow by acquiring gas from its adjacent super-
saturated solution. Unlike nucleation, the
growth of a bubble is governed by physical
laws which are well established and capable
of exact mathematical description. This
difference arises largely from the transition
from a micro- to a macro- system as gas passes
out of solution, so that it is then sufficient to
apply standard rather than statistical ther-
modynamics and kinetics in analysing growth.
Before considering the complex case probably
encountered in vivo, of growth of a random
distribution of nuclei, there are a few basic
features to be considered first.

The interface

At one time it was believed that the interface
per se between two phases represented a
resistance to the transfer of solutes which was
described quantitatively by an ‘invasion coeffi-
cient’ (Bohr, 1899; Krogh, 1918). However,
it is now well established that phase boundaries
offer no intrinsic resistance but that transfer
is limited purely by diffusion or convection of
the solute within the adjacent films of the two
phases. This is expressed in the universally
accepted ‘two-film’ theory of Whitman (1923)



which actually assumes equilibrium between
the two phases at their points of contact in
calculating solute transfer.

Convection

If one of the phases is in motion, such as the
blood in which a bubble is growing, then the
resistance is less than if the gas were transmitted
to the interface purely by diffusion. The resis-
tance imparted by such fluid boundary layers
has been the subject of the most complex
mathematical analyses all-too-characteristic of
studies of fluid dynamics. For a comprehensive
summary of convection and the more analytical
approaches to solute transfer, the reader should
consult the textbook by Rohsenow and Choi
(1961).

On the other hand, engineers needing
immediate practical solutions to heat and mass
transfer problems have long adopted a semi-
empirical approach by which they describe the
resistance of each phase boundary by a film
coefficient. This they relate to dimensionless
groups of parameters, such as the Reynold’s
number, by empirical indices whose values are
well established for the common flow situations.
An elementary non-mathematical introduction
to this technique applied to physiological
problems has been presented by Hills (1974a).

Moving bubble

The study of bubble dynamics has been traced
by Plesset (1963) to Besant and Rayleigh who
formulated expressions describing collapsing
bubbles containing vapour and insoluble gas.
Starting from their simple equations, later
writers have derived more general solutions to
the expressions for bubble growth or collapse
to account for heat transfer, mass transfer and
force balance (Westwater, 1964).

Most interest in bubble dynamics has centred
around boiling due to its great commercial
importance in steam generation and petroleum
refining but this is a particular case of vaporous
cavitation where the surface tension is negligible
and the limiting factor is heat transfer (Scriven,
1959). There are many treatments of bubble
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formation by gas transfer which account for
viscosity (Szekely et al., 1972), surface tension
(Epstein and Plesset, 1950; Harvey, 1951a;
Westwater, 1964; Nims, 1951; Hills, 1966;
Albano, 1970; Albano and Columba, 1971)
and, in static systems, the elasticity or compli-
ance of the medium (Nims, 1951; Hills, 1966;
Gent and Tomkins, 1969; Yang and Liang,
1972; Vann and Clark, 1975).

Most approaches approximate the boundary
layer of the moving bubble to an encapsulating
spherical shell of static fluid separating gas
from the bulk of the fluid as though this were
infinitely well stirred. Making further mathe-
matical assumptions, Epstein and Plesset (1950)
arrived at the solution that the rate of change of
bubble radius (r,) is given by

dr, DS(Ap)[1 1
e = [};_'_—\/(HDE):I (15)

where Ap is the degree of supersaturation of
the bulk of the liquid phase relative to bubble
gas (i.e. the driving force for growth), D is
the diffusion coefficient, S is the solubility
expressed as a volume of gas reduced to
standard pressure per unit volume per unit
tension, while p, is the gas density expressed
in the same volume units of gas per unit volume
of the gaseous phase. Equation 15 was also
obtained by Yang et al. (1972).

For large times () or small bubbles (1/r,
large), the term 1/,/(zDf) in Equation 15
can be ignored relative to 1/r, (Westwater,
1964), when the bubble radius can be derived
as:

r,=+/(25(Ap)Dt/p,) (16)

Similar expressions have been derived by
Szekely et al. (1972), while Liebermann (1957)
points out that increase in surface tension
with an expanding surface area could cause
Ar, to fall below the predicted value for an
expanding bubble.

Making the assumption that the effective
diffusion shell has an equivalent thickness
(d) equal to the bubble radius, Bateman and
Lang (1945) use the following expression for
the change in bubble volume (V,):
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where R is the universal gas constant, T is
the absolute temperature and A is the surface
area. An equivalent form of this expression
has been used by Harvey (1951a), Wyman
et al. (1952) and Buckles (1968).

Experimental studies Wyman et al. observed
the decay rate of bubbles in stirred unsaturated
sea water to calculate that the diffusion shell
had an effective thickness () of 33 um. Bateman
and Lang (1945) obtained a linear relationship
between /3 and time for decompression of
water to 193 mm Hg while, at higher pressure
(293 mm Hg), there was linearity between
V2/3 and t. This change can be explained by
the fact that, by measuring the total volume of
a gas solution, these authors were really moni-
toring a complex mixture of growth superimpos-
ed upon time-dependent nucleation (Hills,
1966). Because of this, results based upon
direct observation of individual bubbles should
be much simpler to interpret and more mean-
ingful in establishing the nature of bubble
growth.

Thus Liebermann (1957) observed small
stationary bubbles and those allowed to rise
freely in supersaturated water to find r, oc /2.
A greater time dependence (r,oc /%) was
found by Yang et al. (1972) for larger bubbles
rising freely and more so (r, oc ) for ‘stagnation’
flow.

Multiple and reactive gases

When the bubble contains several gases, then
the appropriate growth equation must be
applied to each gas separately. They only
interact in so far as Dalton’s law must apply
to the gaseous phase only, i.e. Equation 3 must
hold. Thus, if one gas is being taken up very
rapidly by a bubble because it is very soluble
(e.g. nitrous oxide) or has a high diffusion
coefficient (e.g. helium), the other gases will be
diluted and their partial pressures in the bubble
reduced accordingly. In this way, if a subject
with a predominantly nitrogen bubble is swit-
ched to helium, not only will the bubble grow
as a result of its faster uptake of helium but the

dilution of bubble nitrogen by helium will
reduce the rate of loss of nitrogen by counter-
diffusion—as demonstrated experimentally in
gelatin solutions by Strauss and Kunkle (1974).

When one of the bubble gases can react
with the diffusion medium, such as oxygen
with blood pigments, the rate of transfer is
greater than predicted for an inert gas of the
same solubility and diffusivity. In very broad
terms, this arises because the solubility (S)
is effectively replaced by the rate of change
of content (C) with tension (p) at equilibrium,
i.e. (dC/dp) is substituted for S where there is
rapidly reversible assimilation of the gas.
This type of analysis has been applied to the
specific case of the uptake of oxygen from a
bubble by blood (Tanasawa et al, 1971;
Hilastala and Fahri, 1973).

Reversible chemical affinity of the medium
for the transmitted gas can also lead to facilitat-
ed diffusion (Wittenberg, 1970) such as oxygen
by haemoglobin (Scholander, 1960) and carbon
dioxide by buffers (Schoenfisch et al., 1975).

Static bubble

The resistance to the transfer of any one gas
across the air-liquid interface of a bubble is
determined almost entirely by the boundary
characteristics of the liquid. By comparison,
other gases in the bubble make a negligible
contribution to the overall resistance even
though this may be slightly higher if they are
being transmitted in the opposite direction
(Hills, 1971c). The basic reason is that the
mutual diffusion coefficient for one gas across
another is of the order of 10* times larger
than for the same gas across liquid water.
However, this applies to resistance only and
not to the effect on the driving force arising
by dilution of the transmitted gas by other
gases within the bubble as indicated in the
previous section. Hence there is negligible
error in assuming that the gases are effectively
‘fully stirred’ within any bubble of the size
envisaged in decompression sickness.

The rate-controlling resistance for bubble
growth is therefore determined by the liquid
boundary layer and by the overall spatial



distribution of gas within extravascular tissue
in the case of the static bubble. Thus it is
easy to interpret the faster onset of symptoms
with exercise (p. 45) as the more rapid growth
of bubbles to symptom-provoking dimensions
due to the introduction of some convective
transfer into an otherwise static system;
although there are alternative explanations
(p. 96).

In the perfectly static situation, the rate of
transfer (¢) of any one gas across the phase
boundary, e.g. into the bubble, is given by
applying Fick’s law of diffusion to the interface,
ie.

g=ASD(0p[0r),=",, (18)

where (dp/dr) is the tension gradient of that
particular gas at the surface of the bubble
(r=r,). A word of caution in maintaining
dimensional homogeneity when using Equation
18: if the Bunsen coefficient is used for the
solubility (S), then ¢ will have dimensions of
partial molar volume of that gas (reduced to
standard pressure) per unit time. In a multi-
component bubble, this equation must be
applied to each gas individually in order to
obtain the net volume change of the bubble,
& being negative for a dissolving gas.

A quick comparison of Equations 17 and 18
shows that the Bateman and Lang equation
is really an approximation of the general
expression (18) in which the gradient (dp/dr) ,-,,
is approximated to a linear tension drop
(Ap) across the equivalent unstirred shell of
thickness (d), i.e. to (Ap/d). While this can
be justified in flowing systems, no such approxi-
mations can be used in the case of a bubble
growing in a static medium.

However, the gradient at the interface
(@p/0r) ,—,, can only be estimated by first
determining the overall tension distribution
within the diffusion medium, i.e. p as a function
of spatial location (r) and time (f). This is a
particularly difficult task but one which has
three logical steps.

(1) Setting up the general differential equa-

tion which applies at any point in the medium

and which describes all of the physical and
chemical processes involved.
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(2) Determining the ‘boundary conditions’
to be applied to this comprehensive equation
to describe the influence of conditions beyond
the diffusion medium. These refer to both
moving boundaries, such as the surface of
a growing bubble, and to fixed boundaries
determined by tissue geometry which would
also apply before any bubble is formed.

(3) Attempting to obtain an analytical solu-
tion to the differential equation for those
boundary conditions or, otherwise, using
numerical techniques.

The comprehensive equation

Although Fick’s law of diffusion might appear
very simple when described in terms of steady-
state conditions (fig. 64(2)), its form needed
to describe transient situations is much more
complex and reference is often made to it as
the Fick-Fourier equation. However, even this
can be further complicated in living tissue
by any gas transfer effected by blood perfusion
and metabolic assimilation or production of
that gas. Each of these factors can then contri-
bute a term to the Fick-Fourier equation
describing the rate of change of gas tension
(Op/0¢) at a general point of radial location r, i.e.

oplot=D.V:(p) + A0 (p, —p)— M, (19)

(transfer by (transfer (consumed by
diffusion) by blood metabolism)
perfusion)

where V2 is the Laplace operator, A is the blood:
tissue partition coefficient for the gas, O is
the blood perfusion rate defined as the effective
volume of blood equilibrating with tissue per
unit volume of tissue per unit time, p and p,
are the gas tensions of efferent and afferent
blood and M is the rate of tension fall or rise
due to any metabolic consumption or produc-
tion of the gas. Thus M, =0 for an inert gas
and it is positive for oxygen and negative for
carbon dioxide. The diffusion term becomes
zero if there are no gas gradients.

Numerous approximate solutions to this
equation have been derived by Van Liew and
co-workers which have offered good interpreta-
tions of their data for the resolution of tissue
gas pockets which are very large relative to
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intercapillary distances when, on such a macro-
system, blood perfusion can be regarded as
effectively uniform. These solutions are describ-
ed in more detail later in connection with the
perfusion:diffusion confusion (p. 167) and
treatment.

While the universal nature of Equation 19
might have great appeal, it assumes uniform
‘percolation’ of tissue by blood. Thus it is of
limited application to decompression sickness,
since any extravascular bubbles are likely to
be much smaller than the distance between the
capillaries to which blood flow is restricted
in practice, so that macro-scale mathematics
can no longer be applied to such a localized
situation.

In this case, account can be taken of blood
perfusion, not by including it as a discrete
term in Equation 19, but by recognizing that
flow is confined to vessels whose walls then
represent boundaries to the diffusion medium.
These then impose boundary conditions related
to the rate of flow and state of the perfusing
blood.

Boundary conditions If their location is
known, then these fixed-boundary conditions
can be applied in the standard mathematical
forms exactly analogous to those widely used
to describe thermal conduction in solids
(Carslaw and Jaeger, 1959) but it is often
necessary to make extensive approximations
to the geometric model envisaged in order to
obtain an analytical solution. These fixed-
boundary conditions also apply in determining
the distribution of the particular gas as a
function, 6(r;f), of distance (r) and time ()
before any nucleus is activated into growth,
ie.

Ap = Ap,.0(r;1) (20)

where Ap is the change in tissue tension at
that point at time (f) after a change (Ap,) in
blood tension of that gas.

Even though expressions for 6(r;f) may
appear most cumbersome for even the simplest
models, this is nothing by comparison with the
mathematical complexity introduced by the
moving boundary in the form of the gas—tissue
interface of the growing bubble.

Some workers (e.g. Nims, 1951 and Bateman,
1951) seek mathematical simplicity by consider-
ing the case of gas diffusing into a vapour
cavity, i.e. initially a near-vacuum of fixed
dimensions. However, this is incompatible
with the compliant nature of tissue and effecti-
vely ignores the fact that the bubble surface
area (4 in Equations 17 and 18) can change by
several orders of magnitude during growth
from a nucleus (r=r,).

Although much less elegant mathematically,
the computer can be used to ‘number crunch’
solutions to these moving boundary problems
by applying finite difference techniques to
concentric spherical tissue elements of constant
volume whose inner and outer radii change as
the bubble grows or shrinks. However, it has
been the writer’s experience that the program-
mer is then faced with the difficult problem of
obtaining the correct degree of coarseness of
the elements if he is to avoid the programme
‘going critical’—especially when r, may change
by an order of magnitude or two.

Having outlined the basic requirements for
calculating the rate of transfer of a gas from
its solution into a stable gaseous phase, it is
now appropriate to consider the feasibility
of predicting the kinetics for the overall separa-
tion of gas from solution.

Overall separation of gas

The depressing theme emerging from this
discussion is that the separation of gas from
solution is determined by a closely interrelated
combination of nucleation and growth. Un-
fortunately, the activation of nuclei is not well
understood and even when quantitative descrip-
tion is possible, it often requires statistical
treatment of a process which is somewhat
random with respect to location and probably
also to time. By comparison, growth can be
very precisely described in differential form
but the solutions involve immense mathematical
complexity in view of the fixed and moving
boundary problems, not to mention the alter-
nating patency or ‘flickering’ of capillaries which
would superimpose stochastic theory.

Hence it is only feasible to attempt to predict



and to quantify gas separation from solution
if numerous assumptions are made.

Actual approaches

These modifications include not only approxi-
mations to the physical model but different
assumptions regarding the role of the gaseous
phase in inducing decompression sickness.
This being so, the nature of the assumption(s)
provides a convenient means of selecting the
major approaches to the prevention of decom-
pression sickness from the overall list of models
and calculation methods as they are introduced
in historical order in the next chapter.

(1) The original Haldane approach and its
multitude of later modifications (p. 110) ef-
fectively avoid any calculation of the rate or
degree of gas separation by working to a
‘trigger point’, presumably to nucleation. If
this critical threshold is violated, then the
subsequent growth of the gas phase is assumed
to have no effect in determining the outcome
of the dive. Hence their calculations never
need to allow for a gaseous phase provided
they never exceed these ‘trigger points’ and their
descriptions of these nucleation thresholds
is correct. It is further assumed that there are
no tension gradients, so that no boundary
conditions, either fixed or moving, need to
be invoked.

(2) Workers at the Royal Naval Physiological
Laboratory (p. 123), notably Hempleman and
Rashbass, have similarly avoided growth by
working to a ‘trigger point’ but have taken a
linear diffusion model as the mode of uptake.
By so doing they avoid moving (but not fixed)
boundary conditions but have then averaged
tissue gas tension over the whole slab before
applying their critical conditions for nuclea-
tion—a practice also adopted by Wittenborn
for a radial diffusion model (p. 123).

(3) U.S. Air Force workers (p. 126) during
the Second World War, notably Nims and
Bateman, paid much attention to the growth
of a bubble to a critical gas content but for
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calculation purposes regarded the boundary
of the bubble as fixed. They allowed for diffusion
gradients but avoided any fixed boundary
conditions imposed by the tissue by assuming
the medium to be effectively infinite. The
exchange of dissolved gas between blood and
tissue was then assumed to be limited by blood
perfusion by reverting, in effect, to Equation 18
for a non-metabolic gas (M, =0) i.e. using a
macro-approach although the fixed dimension
taken for the bubble would suggest a micro-
system.

(4) The ‘Thermodynamic’ approach effectively
ignores growth by looking only at the ‘worst
possible case’ of random nucleation, i.e. only
at a region where activated nuclei are so dense
that any gas in supersaturated solution is
rapidly ‘dumped’ and then coalesces more
slowly to provoke pain later. Hence the im-
mence of bends is determined simply by the
volume of gas which must separate from
solution to establish a quasi-equilibrium be-
tween liquid and gaseous phases, thus avoiding
‘trigger point’ considerations. These conditions
are applied at each point within a diffusion
model, although recent modifications allow for
some limitation to be imposed by blood flow
(p. 245). However, because this approach avoids
fewer of the factors contributing to mathe-
matical complexity, it is by far the most difficult
to handle in deriving diving tables.

There are many variations to these four
fundamentally different approaches as shall
be seen in Chapter 5. However, they introduce
two other aspects of the basic physical properties
of gases and their solutions beyond nucleation
and growth, viz. coalescence and the volume
of gas which can be deposited from solution.

Coalescence

In an earlier chapter the evidence suggested
quite strongly that the separation of gas from
solution is not only the primary event but the
degree of separation determines the critical
insult for provoking most forms of decompres-
sion sickness. Since the activation of nuclei is
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rapid, when it occurs, it raises the question
of the reason for the delay in the onset of
symptoms. Most proponents of theories of
decompression sickness chose not to offer any
explanation but Nims (p. 126) and Bateman
(p. 126) attribute the induction period to
growth of the bubble to pain-provoking dimen-
sions. This feeling is also reflected by later
workers (Griffiths ez al., 1971).

However, the delay in the onset of limb
bends has also been attributed to coalescence
of the gas initially ‘dumped’ from solution
(Hills, 1966). The concept was introduced in
order to explain the random distribution in
the induction periods for bends to occur follow-
ing the same decompression by the same indivi-
dual (p. 33). Before attempting to compare
the relative merits of this hypothesis with
that based upon growth, however, it is desirable
to know more about the physical nature of
coalescence.

Thermodynamic considerations

Ignoring gravitational considerations, any phase
suspended in another will reach its lowest
overall energy when its total surface area is
a minimum. Thus the lowest energy state for
a gaseous phase dispersed in tissue or blood
must occur when it has formed one bubble, the
net energy change representing a driving force
favouring coalescence; although Liebermann
(1957) emphasizes the stability of bubbles
lying in juxtaposition.

Two bubbles can merge into one either by
direct fracture of the thin liquid film separating
them or by one growing at the expense of the
other as gas diffuses across the intervening fluid
film (Hills, 1966). Since it is most unlikely that
two bubbles meeting in tissue would be of
equal size, the smaller would have a higher
internal gas pressure by virtue of surface
tension. The differential internal pressure be-
tween the two bubbles would provide the
driving force for the diffusion of gas from the
smaller to the larger. Hempleman (1969) has
pointed out that this can explain the observation
that, on the average, ‘bends’ tend to occur
sooner after heliox dives than air dives, helium

taking less time to diffuse from one bubble to
the other by virtue of its appreciably higher
diffusion coefficient. However, differential dif-
fusion rates can also be invoked to provide an
equally plausible explanation for the difference
in average induction periods on a purely growth-
limiting hypothesis. It is therefore desirable
to look at the kinetics of coalescence in more
detail before attempting to compare these
theoretical approaches more critically.

Kinetics of coalescence

The first requirement for two bubbles to merge
into one is that they come in contact, at least
to the extent that they cause mutual deforma-
tion of each other. There would therefore
seem to be two aspects to the kinetics of
coalescence, both of which are best inter-
preted by probabilistic considerations. These
are:

(a) the probability of any two bubbles or

other masses of gas meeting. This would

apply to a merger either by bursting the
intervening film or by gas diffusion across
it; and

(b) the probability of bursting this membrane

must depend upon the number of collisions

and extent of mutual deformation.

The probabilistic nature of both of these
events is particularly compatible with the
random distribution of the onset times of
symptoms (p.33).

Coalescence versus growth

Both steps in the coalescence of two bubbles
should be greatly accelerated by motion. Simple
experiments with two bubbles trapped at an
oil-water interface, or with two globules of
mercury on a clean glass plate, show that the
number of collisions is a most significant
parameter in determining the likelihood of
coalescence (Hills, 1966). There would appear
to be an equal probability of two bubbles merg-
ing at any collision after the first.

This is interesting because the alternate
contraction and elongation of a muscle would
seem to provide a motion most conducive to



the coalescence of gas initially deposited as
films or micro-bubbles within the locomotor
system and its adjacent connective tissues.
Hence it is most significant that exercise during
or after decompression can greatly accelerate
the onset of symptoms (p. 45).

It is difficult to explain this fact on the basis
that growth of the bubble delays the ‘bends’,
since the increased vasodilation and blood
perfusion associated with exercise would enable
blood to compete more successfully with the
bubble in draining the supersaturated regions
of tissue (see fig. 27). This would not only
tend to divert gas away from the bubble and
reduce its growth rate but would also reduce
its ultimate size and hence its likelihood of
provoking symptoms. However, the ‘bends’
incidence is increased with exercise—at least,
with a U.S. Navy style of decompression.
The long first ‘pull’ towards the surface so
characteristic of their profiles (fig. 51) is likely
to deposit much sub-symptomatic gas from
solution. This gas is then most prone to coalesce
in an exercising subject and so provoke bends
before much of that gas can be removed from
the system. Accordingly the effects of exercise
would appear to be easier to explain by coales-
cence delaying the onset of decompression
sickness than by growth. On the other hand,
one must not lose sight of the fact that exercise
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could also potentiate the ‘bends’, and their
onset, through some haematological or bio-
chemical factor contributing to the critical
insult of the type described earlier (p. 55).

Another fact compatible with coalescence
is the greater difficulty of resolving the clinical
symptoms in a diver or caisson worker who has
waited before seeking treatment. It is easy to
envisage how gas deposited from solution
would take longer to be resolved by recom-
pression if left to coalesce or otherwise congre-
gate into a large bubble.

Coalescence would also seem to offer a
rather more plausible explanation than growth
for the occasional case where bends can
actually be induced, or the pain increased, by
recompression—an act which could cause
bubbles to ‘pop’ together. In this way they could
produce a greater deformation of a local
nerve ending despite their individual reduction
in volume.

Intravascular bubbles

So far we have only considered the coalescence
of extravascular gas. However, since circulating
gas emboli are likely to be responsible for some
forms of decompression sickness, particularly
those Type II manifestations involving higher
centres of the brain (p. 63), it is also desirable
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Fig. 27 Depicting the general philosophy of optimizing

decompression: to change environmental parameters in such
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is transferred away from the tissue rather than ‘dumped’
into the nearest bubble or ‘activated nucleus’
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to look at bubble behaviour within blood
vessels.

Studies of bubble coalescence within a fluid
have been conducted in the physical sciences
but usually the work has involved static or
stirred liquids in large containers. However,
it is well established that bubbles are more
likely to co-exist in juxtaposition if the surface
tension is reduced by a surfactant of which
there are many present in the body—particularly
in the lungs (Pattle, 1966). Many components

of blood display various degrees of surface
activity. Thus Harvey et al. (1944a, b) predicted
that intravascular coalescence would not occur
since protein and lipid materials in the blood
form a monolayer on the bubble surface.
Coalescence of gas in actual blood vessels
has been mentioned as an aside in several
studies of the behaviour of an injected bolus
of air observed in the body—such as through
a cranial window (De la Torre, 1962; Waite
et al., 1967). While this work confirmed that

Fig. 28 Showing a large number of injected microbubbles (80 pm

diameter) (a) accumulating within a small artery in the cerebral circula-

tion of a guinea pig and (b) some time after, when they form slugs

of gas whose length is about 11 times the vessel diameter—a very

characteristic intermediate stage in coalescence. Described by Grulke
and Hills (1976)



intravascular coalescence did occur, the obser-
vations were essentially confined to the merger
of bubbles of widely varying size characteristi-
cally produced by random ‘fracture’ of the
bolus and its fragments at vessel bifurcations
(Curtillet, 1939).

Only recently have studies been made using
known numbers of intravascular microbubbles
of uniform and carefully measured diameters
(Grulke and Hills, 1976; Grulke, 1975). This
work shows that the nature of coalescence is
greatly dependent upon number and size of
the bubbles. A single microbubble of air in
the arterial system (40-250 um diameter)
will travel with the velocity of blood until it
reaches a vessel of smaller diameter, when it
will deform and proceed more slowly. It
then causes a dilatation of the distal arterial
system to the extent that the path immediately
ahead may be wider than that already trans-
cended. However, it is soon deformed again
as it passes to smaller dilated arteries and
squeezes through maybe two to three smaller
branches until it eventually stops at a vessel
bifurcation to occlude flow.

If a second bubble enters the same artery
prior to occlusion, then the first is retarded
and will tend to lodge at an earlier bifurcation.
Blood between the bubbles tends to ‘filter’
out through radiating arterioles until the second
bubble catches up with the first. Subsequent
bubbles behave similarly until they form a
chain. When these bubbles, with cylindrical mid-
sections imposed by the vessel walls, come
close enough for their spherical ends to deform
each other, coalescence can occur. This takes
place in two stages—the coalescence of groups
or pairs of bubbles to form ‘slugs’ of gas
followed, often minutes later, by the ‘popping
together’ of these ‘slugs’ to form a continuous
column of air. These air columns are virtually
static, never progressing beyond arterioles,
i.e. the same level in the arterial tree recorded
as the maximum penetration by other gas
formations (Chase, 1934; Lever et al., 1966;
Buckles, 1968). Long intravascular gas columns
have been found post-mortem both clinically
and experimentally following cerebral air embo-
lism (Chase, 1934; Fries ef al., 1957).
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When a large number of microbubbles enter
an artery they almost invariably coalesce within
5-30 seconds of forming intimate accumula-
tions. Once again, they form these characteristic
‘slugs” whose lengths are typically 1-5-2 times
the vessel diameter. They then ‘pop together’
at some later time and often do so simultane-
ously as though a pressure wave were passing
down the vessel. A typical sequence of events
for air microbubbles is shown in fig. 28.

However, microbubble accumulations are
much less conducive to coalescence in the
arterial system if they contain oxygen or the
subject is ventilated on pure oxygen (Grulke
and Hills, 1976)—an interesting aspect discussed
in connection with treatment (p. 230).

Other aspects of coalescence

Another aspect of coalescence which appears
to have received little attention is the ability
for one bubble passing over a surface to ‘wipe
off’ and engulf any other bubbles in its path
which were attached to the surface. A simple
analogy is afforded by the water droplet
running down a ‘steamed up’ window pane
on a cold day. This could provide a simple
mechanism whereby microbubbles released by
decompression could be coalesced within vessels
much larger than any they could occlude.
This could occur at the top of large horizontal
vessels and could well account for some of the
strange effects of body orientation on gas
exchange and the incidence of decompres-
sion sickness, Balldin (1976) providing experi-
mental evidence on xenon clearance to empha-
size the importance of posture.

A similar phenomenon may be responsible
for the ‘irregular gas masses’ which Harvey
(1951b) has observed by microscope in connec-
tive tissue upon withdrawing the round end of
a glass rod following decompression. This
action would be ideal for coalescing films of
gas which is the form in which this writer has
found gas deposited at an oil-gelatin interface
(Hills, 1966)—a form in which intracellular
gas would be very difficult to observe unless
coalesced. This differs from the popular expla-
nation which postulates that lifting the rod
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away from the tissue causes a local negative
pressure which augments atmospheric decom-
pression (Harvey, 1951b; Vann and Clark,
1975). However, it can be argued that removing
the rod reduces the local pressure in the region
of indentation, but this still remains positive
relative to adjacent tissue areas. Hence gas
separation in tissue may be much more extensive
than generally believed but it needs to be
partially coalesced before it can be observed.
This, perhaps, offers a warning against always
thinking of separated gas in terms of bubbles—
just one shape which it can assume.

Collision fission

Another novel phenomenon is collision fission
of microbubbles (Hills, 1974b) which would
appear to be the reverse of coalescence. Micro-
bubbles of diameter less than 200-250 pm
formed by the injection of air into human
plasma in vitro burst into many smaller bubbles
on collision. Their size has little effect on those
of the progeny (40-50 um). On the other hand,
larger bubbles (> 500 ym) tend to coalesce
in the same media. It is tempting to speculate
that collision fission is a possible protective
mechanism by which the body might minimize
the pathological effects of air emboli by reducing
their size, although increasing their number.

At first sight collision fission may appear to
be incompatible with the thermodynamic argu-
ment previously advanced for the driving
force for extravascular coalescence under essen-
tially static conditions. However, the pheno-
menon has only been observed under dynamic
conditions where dispersion of a large bubble
into smaller ones reduces the net terminal velo-
city of the gas and hence the kinetic energy asso-
ciated with its rise under gravitational forces.

One of the interesting findings is that the
ultra-microbubbles produced by collision tend
to dissolve, supersaturating the plasma with
respect to ambient pressure! This can be
attributed to the rise in internal pressure of
bubbles imparted by surface tension (2y/r,)
as the radius (r,) is reduced.

However, if nothing more, the phenomenon
shows how the mechanical state of the gas can

influence the position of phase equilibrium
(fig. 29).

Phase Equilibrium

The activation or formation of nuclei and their
subsequent growth into bubbles are essentially
kinetic processes. Even though the mechanism
of nucleation may not be known, nor the immen-
sely complicated mathematics associated with
growth solved, there is little difficulty in describ-
ing the equilibrium position which both nuclea-
tion and growth are striving to attain. In vivo,
at least, this asymptotic state should strictly
be termed a quasi-equilibrium, since it
represents an idealized situation which would
be achieved by decompression before the overall
gas content of the tissue was altered signi-
ficantly by gas exchange with circulating blood.
However, before determining this maximum
volume of gas which could be precipitated by a
pressure change, it is necessary to express the
conditions for phase equilibrium in terms
conducive to decompression analysis.

The gaseous phase

The total hydrostatic pressure within any bubble
must exceed ambient, the excess (B) being
contributed by tissue compliance (4,) and
surface tension (2y/r,) in accordance with
Equation 14. Moreover, by Dalton’s law, the
total pressure of gas in the bubble (P + B)
must equal the sum of the partial pressures
as depicted in fig. 26.

If this argument is extrapolated to an inactive
nucleus, mechanical equilibrium is given by

Ep’'=P+ B =P+0,+ 2y, 21)

so, that B’ now represents the minimum degree
of supersaturation needed to activate that
nucleus into growth, defining supersaturation
relative to ambient pressure (P). Thus the
‘reservoir of nuclei’ probably present have a
spectrum of B’ values corresponding to their
range of radii (r,).

Liguid phase

Activation of the nucleus into growth will
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Fig. 29 Depicting how a nucleus (radius r,) will not grow if the sum of the local tensions of
the various tissue gases does not exceed the hydrostatic pressure within, while it will grow
and become a bubble (radius r,)if the reverse holds (Equation 22)

depend upon whether the sum of the tensions
of dissolved gases exceeds (P+ B’) and the
condition for bubble growth can now be
rewritten to read that activation of a nucleus
will occur if

Sp>P+ B 22)

where Zp is now the total tension of gases
in solution rather than in the gaseous phase
(Zp’). Thus B’ represents a critical degree of
supersaturation (relative to ambient pressure)
needed for the dissolved gases to activate
that nucleus into growth. The significance of
B’ is depicted in fig. 29 which shows both the
condition for nucleus activation (Equation 22)
and the driving force for growth of a bubble
after inception. This leads to the following
important questions.
(1) Is B’ a significant value in tissue?

(2) Is B’ a constant or is it a function of
environmental conditions—particularly
absolute pressure?

(3) In avoiding decompression sickness,
should the average value of B’ be used
for the whole spectrum or the lowest
value representing the worst possible
case?

These questions form the basis of the most
important of the vital issues on which decom-
pression theories differ (see Chapter 6). While
the answers can only be obtained by considering
actual diving data, at least the foregoing discus-
sion of the physics of bubble formation enables
the problem to be formulated simply.

In using the simple expression above (Equa-
tion 22), it must be remembered (Chapter 1)
that Dalton’s law does not apply in the liquid
phase, i.e. Zp # P+ B and that the sum of the
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tensions (Zp) may be appreciably less than P.
This ‘inherent unsaturation’ must then be
added to B’ to determine the extent of decom-
pression needed to activate the nucleus (r,)
(see p. 243).

With a simple definition of equilibrium, it
is now feasible to try to estimate the volume of
gas liberated in passing from one hydrostatic
pressure to another.

Inert gas balance

Consider the general case of a diver who is in
a steady state at the surface (standard pressure:
P,) before rapidly compressing to a higher
absolute pressure (P,) where he remains for
time 7 before rapidly decompressing to a lesser
pressure P (see fig. 30). If he has breathed the
same mix of the same inert gas, e.g. nitrogen,
all the time then it is possible to relate the total
volume of gas separated from unit volume of
solution (v) to its partial pressure in these
bubbles (Py,) and the local nitrogen tension
before decompression (Py,) by a simple nitro-
gen balance for each point in his tissues:

VPN, = Sy Py, — G — Sy, Py, (23)

(N, separated (in solution  (eliminated) (left in
from solution) before solution)
decompression)

where Sy, is the solubility of nitrogen and G, is
the N, eliminated during decompression. This
expression (Hills, 1966, 1969c) assumes that
growth goes to completion, so that the nitrogen
partial pressure in separated gas has reached
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Fig. 30 Depicting a simple exposure to an
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the tension of nitrogen remaining in solution
(Py,)-

If the uptake is allowed to follow any general
function, ¢(7), then the nitrogen taken up at
P, will give a tissue tension Py, after time t
given by

PN2 = (Po 2 PW)FIN2 il FINZ(Pl = Po)d’(T)
(N, before (N, taken up) (24)

compression)
Expressions exactly similar to Equation 23
and 24 can be written for as many other inert
gases as may be present.

Metabolic gases

The great advantage of Equation 23 is that
it gives the total volume of all gases contributing
to the gaseous phase at the ambient pressure
(P) so that v is a direct measure of the degree
of embolism. These contributions include those
from water vapour, which will always be present
at its vapour pressure (P,) and the metabolic
gases: oxygen and carbon dioxide. Studies of
the partial pressures of these gases within gas
pockets in animals (Campbell, 1924; Van
Liew et al., 1965) show that their partial
pressures very rapidly revert to near-venous
values following any change in external pressure.
Since gas separated from solution by decom-
pression would be more finely dispersed and
in more intimate contact with tissue, there is
little approximation in assigning venous values
to these gases. Substitution of venous values
in Equation 14 then gives the partial pressure
of separated gas (Py,) as

Py,=P+B—P,y — P,y —P,=P+B—m
S 25)
&

That is, the nitrogen essentially takes up
the difference between the total gas pressure
(P + B) and the sum of water and metabolic
gas tensions () as needed to effect a mechanical
balance of the type shown in fig. 26. / D . (:" é)

Volume of ‘dumped’ gas

The maximum volume of gas will be deposited
from solution when decompression is rapid
and growth of the gaseous phase is virtually
complete before any significant amount of
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Fig. 31 Depicting (a) how the unsaturation of tissue
decreases with continuing nitrogen uptake but does
not become zero even at infinite time (see p. 239) and
(b) how gas in excess of phase equilibrium can be
‘dumped’ into the gaseous phase upon subsequent
decompression, reducing the tissue tension of the inert
gas rather than any other (Equation 25). It also shows
how much immediate decompression would be needed
to produce true saturation after a steady-state exposure
(t ~ o0) before the new inherent unsaturation at P
had time to become established

nitrogen is eliminated, i.e. G, = 0. Making this
substitution and eliminating Py,, P,o,, P,co,
and P, from Equations 23-26 gives the total
volume of all separated gas at ambient pressure
(P) as

V= SNZ{[PO =t (Pl &, P())()b(‘[)]FINz
—P—B+m}/(P+ B—m)(26)
where

@7

Equation 26 describes what is essentially the
maximum volume of gas which can separate
from solution for a limited duration (z) on the
bottom (at P,). As expected, it can be seen
that this is particularly dependent upon the
solubility of the inert gas. The volume will be
greatest when the diver has remained at depth
for an effectively infinite time and so reached
a steady state.

m=m—P, Fy,

Decompression from a steady state

Many workers in the field, particularly the
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U.S. Navy, refer to the diver who has spent
many hours at a constant depth as ‘saturated’

but on account of the inherent unsaturation in

tissue arising by virtue of metabolism (p. 239)
only a dead diver can be completely saturated

prior to the start of decompression. The mis-

nomer ‘saturation diving’ really refers to the
man who has reached a steady state by virtue
of equilibration of inert gas between his tissues
and alveolar gas.

If the diver has attained this steady state
at P, then ¢ (z) = 1, when Equation 26 gives

v=_8y,(Fn,-Pi—P—B+m)/(P+B—m)
e

Hence it can be seen that the overall volume
of gas deposited is linearly related to both the
‘bottom’ pressure (P, ) and the ambient pressure
(P) to which the diver is decompressed. The
same also applies for dives of equal ‘bottom’
time (), since ¢ () is then constant in Equation
26. The significance of these relationships in
connection with decompression sickness is
discussed on p. 120.

Multiple inert gases

For the purpose of outlining the principle
involved in determining the degree of embolism
(v), it was convenient to consider just one inert
gas and a popular one at that, viz. nitrogen.
However, equations exactly similar to 23-28
can be derived for helium or any other inert
gas using the appropriate constants. It is now
quite common practice in diving to breath
several inert gases simultaneously or to switch
from one to another. For this reason it is highly
desirable to know the new volume, its contribu-
tions from each inert gas and hence the indivi-
dual driving forces for eliminating or taking
up each inert gas.

A helium balance can be written in a form
exactly similar to Equation 23 which, for negli-
gible elimination (G,=0), can be re-arranged
to give

P;-Ie o PHe R SHe/(V A5 SHe) (29)

The mechanical gas balance (Equation 25)
must be revised to include helium and any
other inert gas (i) as
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Py, +Pu+P,=P+B—m (30

where Py, and P; are the partial pressures of
helium and any other inert gas (i) in the gas
separated from solution. These values are not
known but can be eliminated using Equations
23 (for G, = 0) and 29 to give an expression for
the overall gas volume (v):

Pye*She P;-§;

PNz .SNz fre
(V+Si)

P+B—m= +
(v+Sx) (V4 Sy

(€29)

where Py, and P; are the tissue tensions of
helium and any other inert gas (i) before
decompression.

There are now enough equations to solve
for the unknowns: Py,, Py, P; and v, this
reducing to a quadratic for just two inert gases,
so that, by using actual values for Py , Py, B
and m, it is possible to determine both the total
volume of separated gas and the contribution
from each inert gas. By Avogadro’s law, these
contributions must be proportional to their
respective partial pressures in the gaseous
phase (Py,, Py, etc.) when it is interesting to
see from Equations 23 and 29 that nitrogen
and helium contribute neither in proportion
to their pre-decompression tissue tensions (Px,
and Py,) nor to the corresponding concentra-
tions (Py,.Sy, and Py, .Sy,) but to something
in between.

Single gas in vitro

It can be seen that for the case where nitrogen
is the only inert gas present, the multiple inert
gas equations (30 and 31) revert to those for

a single gas (25 and 23). Moreover, the general
expression for the decompression from a steady
state (Equation 28) can be applied to the case
of pure nitrogen dissolved in water by taking
Fiy,=1, m=m’ =0 and ignoring surface ten-
sion B=0, to give

v=Sy,[(P,/P)—1] (32)

In words, this says that the same volume of
gas is produced at the final pressure in decom-
pressing a gas solution from saturation at
P, to saturation at P irrespective of the absolute
levels of P and P, provided the ratio PR
is kept constant.

This has been derived for this simple case
by Piccard (1941); while the inference that
the same volume of gas is liberated for the same
decompression ratio (P,/P) is also contained
in the original publication of the ‘Haldane’
calculation method for preventing decompres-
sion sickness (Boycott et al., 1908). However,
it is important to appreciate the multiplicity
of assumptions necessary in order to extricate
a simple decompression ratio (P,/P) from the
much more complex relationship between P
and P, likely to hold in vivo (Equation 28).
Moreover, there is the particularly interesting
implication that a near-constant volume of
gas separating from solution is the only condi-
tion needed to produce a constant decom-
pression ratio and hence to provide an
alternative to limited supersaturation as the
explanation for this popular ratio concept
(p. 110) widely used in calculating tables for
the prevention of decompression sickness.
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