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DECOMPRESSION PRACTICE

Divers generally fall into communities defined by a
common purpose such as military, commercial,
scientific, recreational or cave diving. A new com-
munity develops when a critical mass of divers
finds a purpose not shared by others. The equip-
ment, modes of diving and decompression pro-
cedures of the various communities often have
supplemental risks which may be more significant
than the risks of decompression illness.

No-Stop Air Diving

The simplest and most common form of com-
pressed gas diving, no-stop or no-decompression,
does not require decompression stops during
ascent to the surface. The 18m/min (60 ft/min)
ascent rate chosen by the US Navy for the 1958
USN Air Tables has become a de facto standard
(Lanphier 1990). More recently, a 10m/min (33 ft/
min) ascent rate was recommended (Boni et al.
1976), and some dive computers require rates as
slow as 6 m/min (20 ft/min; Lang & Egstrom 1990).
Another recent development in no-stop diving is
the 3-5min ‘safety stop’ at 3-5m (10-15ft; Lang
& Egstrom 1990). A safety stop may achieve the
same effect as a slow ascent by reducing the risk
of decompression illness due to barotrauma or ar-
terialized venous gas emboli (see ‘Neurological
Decompression Illness” and ‘Pressure Profile’), but
this hypothesis remains to be verified empirically.

Over time, the no-stop dive exposure limits
have become more conservative. After caring for
caisson workers affected by decompression illness
at the St Louis bridge, Jaminet (1871) proposed
limits for compressed air exposure of 120 min at
24m (80ft) and 60min at 36m (120ft). The US
Navy limits are 40 min at 24 m (80 ft) and 15 min at
36m (120ft). Newer tables and dive computers
have even more conservative limits (Lewis &
Shreeves 1990; Lewis 1992). Figure 14.31a shows
the range of no-stop air limits for the 1958 USN,
the 1983 DCIEM and 1986 Comex Tables. Over-
layed on these limits are curves representing 0.5,
2.2 and 5% risk estimates for no-stop diving by a
current US Navy model (Weathersby et al. 1992).
According to these estimates, attaining a risk of

0.5% or less as desired by some diving communi-
ties will severely curtail useful bottom time.

In-Water Decompression with Air

Bottom times greater than the no-stop limits are
achieved without excessive risk of decompression
illness if the diver ascends to the surface slowly so
that nitrogen is eliminated from his body without
producing symptoms. Traditionally, decom-
pression stops occur at intervals of 3m (10ft), but
divers can now decompress continuously with the
aid of dive computers. The depth and bottom time
limits for normal decompression diving which will
still allow repetitive diving are shown in Fig.
14.31b for the 1958 USN, 1983 DCIEM and 1986
Comex Tables.

A diver who surfaces before completing a de-
compression stop is subject to an increased risk of
decompression illness. Missed decompression, a
hazard not faced by no-stop divers, can occur due
to premature surfacing as a result of hypothermia,
wave action, equipment failure, dangerous marine
life, or running out of air. Running out of air is
more common with scuba equipment than in sur-
face-supplied diving. Many diving organizations
require an on-site recompression chamber before
allowing decompression diving, not only to treat
possible missed decompression but also because of
the uncertain risk of decompression illness using
some decompression schedules.

This uncertainty has led to several major decom-
pression development programmes with increas-
ing emphasis on testing, documentation and field
evaluation. The 1958 USN Standard Air Decom-
pression Table, developed in one of the earlier pro-
grammes, tested 88 schedules in some 500-600
trials with an incidence of decompression illness of
about 5% (Des Granges 1957a). The acceptance cri-
teria were four incident-free trials per schedule.
The supersaturation ratios of the Haldane decom-
pression model used for profile calculation were
adjusted three times and schedules recomputed as
a result of decompression illness. The trials were
insufficiently documented to be useful as primary
data. Operational records report an overall inci-
dence of decompression illness for the USN Air
Tables of 1.25% (Berghage & Durman 1980).

The 1984 DCIEM Air Table was tested in 1371
trials of nearly 100 profiles with a 3% incidence of
decompression illriess (Nishi et al. 1980, 1981,
1982, 1984; Lauckner et al. 1984a,b, 1985). There
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were approximately 11 trials per profile, and pro-
files were recorded in real-time making them suit-
able as primary data. The trials included no-stop
dives, in-water air and oxygen decompression,
repetitive dives, and surface decompression.
When decompression illness occurred, it was
usually at the limits of the diving range. The series
compartment Kidd—Stubbs decompression model
used to compute the tested profiles was modified
once in response to a perception that schedules for
short and long dives were too long, while sched-
ules for medium length dives were too short (Nishi
& Lauckner 1984). There are no reports of field use
to date.

The 1986 Comex Air Table was developed from
the field records of 57000 commercial dives using
the 1974 French Air Table which had an overall
0.22% incidence of decompression illness (Imbert
& Bontoux 1987). The incidence increased with
dive severity in depth-time zones having inci-
dences of <0.5%, 0.5-2% and 2-3% (Imbert
1991a). A three-parameter model with a single M-
value and an unlimited number of Haldane tissues
was fit to the field data by maximum likelihood
(Imbert et al. 1992). The new table was found to
have an incidence of 0.1% decompression illness
in 32000 dives and became part of the French regu-
lations in 1991 (Imbert 1991b).

Figure 14.32 shows the field incidences of the
1974 French Air Table (Imbert & Bontoux 1987) and
the risk estimates of a recent US Navy model
(Weathersby et al. 1992). Both indicate increasing
risk of decompression illness with depth and bot-
tom time. In agreement with laboratory trials,
however, the field incidences are lower than the
risk estimates. Thalmann (1985) found that a
180 min dive at 20m (60 ft) required triple the USN
Standard Air stop time, while dives of 40 min at
45m (150ft) and 30min at 63m (190ft) required
double the USN stop times. For dives of 60 min at
45m (150 ft) and 40 min at 57 m (190ft), triple the
stop time was inadequate to prevent decom-
pression illness. Thus, while field data provide im-
portant indications of operational performance,
they are not good estimators of risk for schedules
tested under severe conditions to their maximum
limits.

Probabilistic models and statistical verification
techniques offer the promise of air decompression
tables with the same risk for all dives from no-stop
to maximum bottom time. If these tables are
desired to be of low-risk, however, they may
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ness taken from company records for the 1974 French

Air Table (Imbert & Bontoux 1987). (b) Estimated

risk of decompression illness for the 1974 French
Air Table

require significantly more decompression time
than existing tables. The USN Standard Air Table,
for example, requires 8 min of decompression after
an 80min dive at 20m (60ft). This dive has an
estimated risk of 2.8% by a current USN model
(Weathersby et al. 1992). To reduce the risk to
2.0% might require as much as 80 min of decom-
pression. Thus, long decompression requirements
could make the depth-time limits for low-risk air
decompression significantly shorter than the cur-
rent limits shown in Fig. 14.31b.

The depth-time limits of a table are determined
by the decompression time and the total time
allowed in the water. The DCIEM Table, for
example, allows total in-water times of 100-
130min depending on depth. A dive to 30m
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(100 ft) has a maximum allowable bottom time of
55min and a decompression time of 51min. If
double or triple the decompression time is
required as suggested by US Navy trials (Thal-
mann 1985), this dive would not be possible unless
the total in-water time was increased.

A comparison of field data for the 1974 and 1986
French tables provides an estimate of the effect
that increased decompression time might have on
the overall incidence of decompression illness
during operational use. Increasing decompression
time by 30-40% reduced the overall incidence of
decompression illness from 0.22 to 0.1% (Imbert
1991b).

Field data inherently underestimate true risk,
and the issue is far from settled. Further clari-
fication is expected from US Navy trials for the
development of iso-risk air and nitrogen—oxygen
decompression tables, which will replace the cur-
rent USN Standard Air Table.

In-Water Decompression with Oxygen

Bert (1878) pointed out the potential value of sur-
face oxygen breathing for accelerating nitrogen eli-
mination after decompression, and Damant (1926)
used this technique in 1917 during the Laurentic
salvage. The first use of oxygen during decom-
pression may have been in 1928 for deep air diving
with a submersible decompression chamber in
which a diver breathed oxygen from a closed cir-
cuit apparatus at 20 m (60 ft; Davis 1962). Since that
time, oxygen decompression has become an
integral part of deep and long-duration diving.
Oxygen can be used as a substitute for air during
in-water decompression to reduce the risk of de-
compression illness and long decompression
times. The 1986 Comex Tables have an option
which offers oxygen breathing during in-water de-
compression at 6m (20 ft). Compared with the cor-
responding air table, the oxygen table reduces the
decompression time by 50% for 15m (50t) dives
and by 30% for 60m (200 ft) dives. Breathing oxy-
gen underwater, however, introduces the risk of
central nervous system oxygen toxicity, and con-
vulsions have been reported as shallow as 7.6m
(25 ft; Butler & Thalmann 1984). In-water oxygen
decompression is not recommended deeper than
6m (20ft) and then only with careful attention to
_ depth control. Air must be available as a back-up
breathing medium in the event of oxygen toxicity
symptoms, there should be an emergency plan for

convulsions, and there should be a back-up de-
compression plan if in-water oxygen cannot be
used.

Experience has shown that oxygen decom-
pression can be both safe and efficient if diver
selection, training, equipment and supervision are
appropriate. During the excavation of a Bronze
Age shipwreck, for example, 7500 air dives were
conducted at depths of 50-60 m (150-180{t) with
in-water oxygen decompression at 3 and 6m (10
and 20ft; Fife et al. 1992). There were three inci-
dents of decompression illness and no symptoms
of oxygen toxicity.

When the 1974 French Air Tables were used
with oxygen decompression at 3 and 6m (10 and
201t), over 11000 dives were conducted with a
0.7% incidence of decompression illness. The inci-
dence of decompression illness with oxygen de-
compression was 2-3 times lower than with air
decompression for dives of the same depth and
bottom time (Imbert & Bontoux 1987). No oxygen
toxicity incidents were reported.

Surface Decompression with Oxygen

During salvage of silver from the Empress of Ireland
in 1914 and gold from the Laurentic in 1917-24, the
weather or military situation sometimes forced
Royal Navy divers to surface before completing
decompression and be recompressed in a ship-
board pressure chamber (Damant 1926; Davis
1962). Salvage of the US Navy submarines 5-51 in
1925 and S-4 in 1927 were also conducted with
surface decompression (Van Der Aue et al. 1951).
Subsequent work by Hawkins and Shilling
(1936) and Van Der Aue et al. (1945) refined the
technique, but the most important step was the
use of oxygen in the chamber, first as an ad hoc
measure by Gouze (1944), and later in chamber
trials by Van Der Aue et al. (1951). Van Der Aue’s
surface decompression table was published in the
USN Diving Manual and is unchanged to this day.
There is less risk of central nervous system oxy-
gen toxicity in a dry environment than underwater
(Yarborough et al. 1947), but episodes of oxygen
toxicity occurred at 50 and 60ft (15 and 18m)
during surface decompression from helium-oxy-
gen dives (Molumphy 1950a). Van Der Aue limited
his use of oxygen to 40ft (12m) but still noted
a 1% incidence of mild central nervous system
symptoms. Fire is a further hazard of oxygen use.
Oxygen equipment must be oil-free and exhaled
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oxygen exhausted outside the chamber. Diver
selection and training must emphasize the avoid-
ance of ignition sources and flammables (Nashi-
moto 1967).

The USN Surface Decompression Table Using
Oxygen (Sur-D O,) enables long working bottom
times in rough seas and strong currents with mini-
mal in-water decompression. USN Sur-D O, has
been adopted and modified by military and civ-
ilian divers worldwide (Arntzen & Eidsvik 1980).
Some reports, however, suggest that Sur-D O, is
associated with a higher incidence of neurological
symptoms than in-water decompression and that
hot-water suits (as opposed to dry suits) may be a
contributing factor (Shields & Lee 1986; Imbert
1991b; Imbert et al. 1992). Other reports take issue
with this conclusion and argue that the pro-
cedures, not the mode of diving, is the problem
(Beyerstein 1992; Mills 1992; Overland 1992).

The Sur-D O,/hot-water suit issue reinforces the
importance and limitations of operational dive
records (secondary data) aside from their roles in
business management and occupational safety.
When the incidence of decompression illness is
less than 1%, tens of thousands of dives are
necessary to generate enough incidents on which
to base inferences concerning risk factors. An op-
erational setting is the only environment where
this is possible, but without exact knowledge of
dive conditions and profiles, confident con-
clusions are not possible. In the case of Sur-D O,
and hot-water suits, for example, it cannot be
certain whether the increased incidence of decom-
pression illness was due to their use on higher risk
dives. Further data are required to answer this
question.

Repetitive and Multi-Level Diving

The second of two dives made in close succession
is a repetitive dive, and the time between dives is a
surface interval. The repetitive dive bottom time
must be reduced or its decompression time
increased to compensate for residual inert gas
remaining from a previous dive. The simplest
scheme for determining repetitive dive decom-
pression requirements takes the sum of the bottom
times at the greatest depth, but this is restrictive
for long surface intervals. Of the many methods
for determining repetitive dive bottom times, that
of the US Navy is the most flexible if somewhat
complex.

The USN Tables were computed with a multi-
tissue Haldane decompression model (Chapter
13), but during surface intervals between repeti-
tive dives, nitrogen elimination from all tissues
was calculated with a single tissue having a
120 min half-time (Des Granges 1957b). This half-
time theoretically clears all tissues of residual
nitrogen in a 12h surface interval, and the next
dive is no longer considered repetitive. The actual
surface interval for complete nitrogen clearance is
unknown. Theoretical intervals for various tables
are: 6 h for Rogers (1988), 8 h for 1974 French, 12h
for 1986 Comex and 18 h for DCIEM. The US Navy
Repetitive Tables were tested in 4—6 trials of 61
two-dive profiles (Des Granges 1957b). All trials
were of decompression dives, and decompression
illness occurred in three subjects on profiles with
maximum depths of 220 and 260 ft (67 and 79 m).

Repetitive and multi-day diving are common in
all diving communities. Recreational diving acci-
dent data suggest that multiple dives have a
greater incidence of decompression illness than
single dives (Vann ef al. 1989b), but information on
risk or incidence is scarce. Risk estimates for
selected two-dive profiles using the DCIEM Sport
Diving Tables are 1.1-3.3% (Tikuisis & Nishi
1992). Field records for the 1974 French Air Tables
indicate a 0.3% incidence of minor symptoms
(none neurological) in 5400 two-dive profiles
including both no-stop and decompression ex-
posures (Imbert et al. 1992).

Dive trials by the US Navy indicated that the
USN no-stop repetitive dive procedures may be
overly conservative (Thalmann 1985). Rogers
(1988) computed recreational diving tables with
shorter surface intervals using a 60 min rather than
a 120 min Haldane tissue half-time to clear residual
nitrogen in 6h rather than 12h surface intervals.
These commercially developed tables were sub-
jected to one of the most extensive repetitive dive
trials ever conducted outside the military (Powell
et al. 1988). There were 1400 man-dives of 40 pro-
files including single-day, multi-level dives and
multi-day dives with four and six dives per day for
six consecutive days. Except for 228 open-water
dives, however, all were dry chamber trials. There
was only one incident of decompression illness,
which occurred on the second day during chamber
trials of six dives per day for 6 days. Open-water
evaluation of these procedures is continuing.

Multi-level diving is a variant of repetitive
diving in which a diver does not return to the
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surface. Commercial, recreational and military
diving is frequently multi-level. Commercial
diving companies have adapted the USN Repeti-
tive Diving Tables to allow extended working
times during ‘repet-up’ diving in which a dive
begins deep and approaches the surface in gradual
stages (Merriman 1992; Overland 1992). Other
repet-up or multi-level dive procedures have been
developed (Gernhardt et al. 1992; Rogers 1988;
Imbert et al. 1992; Lewis 1992). The US Navy has
modified the USN Repetitive Dive Tables to allow
long multi-level dives where the deep and shallow
stages can be in any order (Thalmann & Butler
1983).

Surface Interval Oxygen

In-water oxygen decompression and surface de-
compression extend bottom time significantly but
introduce the risk of oxygen toxicity and require
complex equipment. An alternative use of oxygen
which achieves some bottom time extension with
less risk and equipment overhead is to breathe
oxygen during the surface intervals between repe-
titive dives. Surface interval oxygen (510,) repeti-
tive diving procedures are published in the French
Navy Air Tables (Meliet 1990), and 510, has been
used to reduce pre-flight surface intervals (Edel
1970) and the risk of decompression illness after
caisson work (Nashimoto 1989). In chamber and
field trials of repetitive nitrogen-oxygen diving
(Fawcett et al. 1992; Vann et al. 1992a), 30 min of
510, increased no-stop dive times by 34-120%
over EAD (Equivalent Air Depth) diving with air
breathing surface intervals (Dinsmore 1989).

Dive Computers and Recorders

Early pneumatic and analog computers were not
widely accepted as they were undependable and
deviated from USN Air Table performance (Hug-
gins 1987). Improvements in pressure transducer
and digital technology coupled with the growing
popularity of recreational diving have made mass-
produced dive computers possible at reasonable
cost and reliability.

The first commercially successful digital dive
computer was tested without incident in 1983
during 110 dry chamber dives (Huggins 1992).
Many mass-produced dive computers are now
available, all using variants of the Haldane decom-
pression algorithm, but no futher decompression

trials have been conducted (Lewis 1992). The de-
compression ‘safety’ of computer and table diving
is debated vigorously (Lang & Hamilton 1989), but
accident reports do not offer compelling evidence
for a higher incidence of decompression illness
with computers (Vann et al. 1989b). Accident data
compiled by the Divers Alert Network (DAN) indi-
cate that decompression illness occurs after deeper
dives and after more multi-level and decom-
pression dives with computers (Vann et al. 1989b).
The only direct comparison between computer
and table incidence is from recreational diving
aboard the Ocean Spirit where there were no inci-
dents of decompression illness in 44277 computer
dives and seven incidents in 33403 table dives
(0.02%; Gilliam 1992). Large studies of this nature
are important, but additional information is
necessary for these studies to be useful in quanti-
fying the decompression risks of table and com-
puter diving. Rather than rely on self-reported
symptoms, the absence of symptoms must be
actively verified to minimize denial or lack of
recognition. Dive profiles also must be verified
to avoid errors in computer application or table
selection.

Computers minimize errors in table selection by
accurately tracking depth—time profiles. Indeed,
one of the most significant contributions the dive
computer can make to decompression safety will
be to record these profiles in real-time. A number
of special-purpose dive recorders are available
(Peterson 1992; Gotoh 1992; Henderson et al. 1992;
Heinmiller 1992), and several mass-produced dive
computers can store depth—time data. These
instruments allow recorded profiles to be down-
loaded to personal computers for storage and
analysis. Dive computers/recorders will make ac-
curate open-water dive trials possible and, when
linked to diving accident reports, may enable large
primary databases to be developed which could be
analysed for decompression risk by probabilistic
methods. All divers enrolled in such projects,
however, must be evaluated by trained personnel
to achieve reasonable certainty that no incidents of
decompression illness are missed. Self-reporting is
unreliable as minor symptoms are often not
revealed.

Nitrogen—Oxygen Diving

There are two kinds of non-saturation nitrogen—
oxygen diving: fixed percentage and fixed partial
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pressure. Fixed percentage nitrox, also known as
oxygen enriched air or enriched air nitrox (EAN), uses
a breathing gas with greater than 21% oxygen. The
advantages of fixed percentage nitrox are reduced
nitrogen absorption at depth and accelerated nitro-
gen elimination during decompression (see ‘Oxy-
gen Window’). The disadvantages are the need for
oxygen-clean equipment to reduce fire hazard, the
complexity of gas mixing, the requirement for ac-
curate gas analysis, and the importance of depth
control to stay within the mixed-gas oxygen ex-
posure limits to minimize the risk of central ner-
vous system oxygen toxicity (NOAA Diving Manual
1979).

The most widespread application of fixed
percentage nitrox diving is NOAA’s adaptation of
the US Navy Air Tables using 32% oxygen with the
Equivalent Air Depth (EAD) principle (Eq. 2;
NOAA Diving Manual 1979). The no-stop exposure
limit at 15m (50 ft) is 200 min with 32% nitrox, for
example, while the limit is only 100 min with air.
Nitrox is not suitable for deep diving, however,
because of the increased risk for central nervous
system oxygen toxicity. NOAA’s upper limit for
oxygen partial pressure exposure is l.6ata
(162kPa), which makes 39m (130 ft) the greatest
allowable depth with 32% oxygen. The NOAA
National Undersea Research Program has
extended EAD diving for use with mixes of any
oxygen percentage (Dinsmore 1989).

A military application of fixed percentage nitrox
diving uses semi-closed circuit scuba which injects
a fixed oxygen percentage gas (frequently 32.5, 40
or 60% oxygen) into a recirculating breathing
system that absorbs carbon dioxide (Morrison &
Reimers 1982; US Navy Diving Manual 1982). The
oxygen partial pressure in the breathing loop is
several per cent lower than in the injected gas due
to oxygen consumed by the diver. Decompression
is conducted according to specially computed
tables or EAD corrections to standard air tables
(see ‘Equivalent Air Depth’). Semi-closed circuit
scuba uses less gas than open circuit scuba but is
technically complex and expensive to purchase
and maintain.

Closed circuit, mixed-gas scuba, which controls
the oxygen partial pressure to a predetermined
set-point, uses even less gas than semi-closed
scuba and is even more complex and expensive
(Morrison & Reimers 1982; US Navy Diving Manual
1982). An electronic control system adds oxygen to
the breathing loop when oxygen sensors detect a

partial pressure below the set-point. In theory,
only metabolically consumed oxygen need be
provided, but a diluent gas is also needed during
descent to inflate the breathing bags. Closed cir-
cuit, mixed-gas scuba is impractical for all but the
military and a few specialized civilian diving or-
ganizations. Two versions, the Mk 15 and Mk 16
UBAs (Underwater Breathing Apparatus), are cur-
rently used by the US Navy (US Navy Diving
Manual 1982).

The oxygen set-point for the Mk 15 and Mk 16
UBAs is 0.7ata (71kPa), which results in oxygen
percentages above 21% at depths shallower than
23.3m (77ft) and percentages lower than 21%
deeper than 23.3m. Decompression requirements
can be reduced with higher set-points, but the
maximum set-point is limited by central nervous
system oxygen toxicity. Oxygen convulsions
occurred at a set-point of 1.6ata (162kPa), but a
1.4 ata (141 kPa) set-point was used without symp-
toms of oxygen toxicity in 110 wet, working dives
at 30 and 45 m (100 and 150 ft) with 60 min bottom
time (Vann 1982b). Trials comparing 0.7 and
1.4ata (71 and 141kPa) for 60 min dives at 30 and
45m (100 and 150 ft) indicated a 2-3 fold reduction
in decompression time with the higher set-point
(Vann 1982a,b). A civilian version of the Mk 15
UBA has also used 1.4 ata (141 kPa; Hamilton et al.
1988a).

The development of 0.7ata (71kPa) decom-
pression procedures by the US Navy for the Mk 15
UBA was the first verification of a decompression
algorithm rather than validation of a table (Thal-
mann 1984, 1985, 1986; Thalmann et al. 1980). De-
compression was controlled in real-time by a
computer algorithm to allow for variations from
planned dive profiles due to problems with the
equipment or subjects (Thalmann 1984). Air de-
compression schedules computed from the final
algorithm after 673 man-dives were up to three
times longer the USN Standard Air schedules.
This was confirmed in 837 man-dives (Thalmann
1985). The results of the 1510 man-dives will serve
as primary data in the development of a probabilis-
tic model for computing air and nitrogen—oxygen
tables.

Helium—Oxygen Diving

Helium-oxygen is generally used below 50-72m
(165-240ft) to avoid the nitrogen narcosis which
occurs during air diving. The first helium dive
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trials, conducted in the 1920s by the US and Royal
Navies, assumed that the helium and nitrogen
partial pressures acted independently in decom-
pression calculations (Momsen 1942). The result-
ing incidents of decompression illness lead to the
conclusion that helium might be unsuitable for
diving.

Experiments resumed in the 1930s when End
(1937, 1938) demonstrated the practicality of
helium-oxygen diving to 120m (400 ft), and the
US Navy developed the USN Partial Pressure
Table (Momsen 1942) which was used, while still
under trial, for the salvage of the USS Squalus in
1939 (Behnke & Willmon 1939). Further testing
was not altogether successful (Molumphy 1950a,b;
Alexander et al. 1970; Summitt & Crowley 1970),
and there is little other documentation on short,
deep helium-oxygen ‘bounce’ diving by the Navy.
US Navy helium-oxygen experience is better
documented for shallow water diving with the
semi-closed Mk 6 UBA (Workman & Reynolds
1965) and the closed circuit Mk 16 UBA (Thalmann
1986). The Canadian Forces have recently devel-
oped helium-oxygen decompression tables (Nishi
1990).

The commercial diving industry modified the
USN Helium Partial Pressure Table for its own use
in the 1960s and continued active development
throughout the 1970s. The resulting tables are
unpublished with largely undocumented history
and performance. The development of helium de-
compression procedures for 30-60min dives at
120-180 m (400-600ft) proved to be a significant
challenge (Hamilton 1976). Commercial helium
bounce diving became less common in the 1980s
and 1990s with the acceptance of saturation diving
and the development of remotely operated
vehicles (ROVs). Large diving companies which
may have made 1000 helium bounce dives per year
in the 1970s might now make only 50 (Imbert et al.
1992).

Because helium is less soluble than nitrogen,
helium dives might be expected to permit faster
decompression than nitrogen dives. This appears
true for saturation decompression (see ‘Saturation
Diving’) and perhaps also for dives shallower than
18m (60ft), but differences for deeper dives are
small at best and difficult to demonstrate with sta-
tistical significance (Duffner & Snider 1959; Hem-
pleman 1967, Thalmann 1985; Thalmann et al.
1989).

Helium is not only less soluble than nitrogen but

appears to be exchanged more rapidly (see ‘Inert
Gas Exchange’). Rapid elimination might explain
faster decompression from helium saturation dives
while rapid absorption might make helium and
nitrogen decompressions more nearly equal for
short, deep dives. Momsen (1942) reported the
need for deep, and unanticipated, decompression
stops to accommodate the ‘initial out-rush’ of
helium upon leaving the bottom. Cabarrou et al.
(1978) reported a similar need.

Decompression after helium diving usually
occurs with air or oxygen to save helium and/or
decompression time and, consequently, there is
little data on which to base a direct comparison of
helium and nitrogen decompression illness. Such
information is available, however, from recent Mk
15 and Mk 16 UBA studies for similar dives with
no gas changes during decompression (Thalmann
et al. 1980; Vann 1982b; Thalmann 1984, 1985,
1986). The overall incidences of decompression ill-
ness were 3.7% for helium (64 of 1723 dives) and
5.2% for nitrogen (103 of 1976 dives), but serious
symptoms accounted for 40.1% of all helium inci-
dents (26 of 64) and 15.5% of all nitrogen incidents
(16 of 103; P < 0.001).

Another troublesome aspect of helium is an
apparently greater propensity than nitrogen to
cause adaptation (see ‘Adaptation to Decom-
pression’). This might explain the inconsistency of
helium trials and would argue for infrequent use
of the experimental subjects to avoid developing
helium decompression procedures suitable only
for adapted or worked-up divers.

The use of helium and nitrogen in the same dive
produces interesting effects because of their differ-
ent exchange rates. Consider a diver saturated
with nitrogen who is isobarically placed in helium.
Cutaneous counterdiffusion (see ‘Skin Bends and
Counterdiffusion’) is transient rather than steady-
state as the diver is breathing, as well as im-
mersed, in helium. Counterdiffusion also takes
place internally where perfusion and diffusion
transport helium into tissue faster than nitrogen
can be eliminated. A transient supersaturation
occurs, the magnitude of which increases with
depth (D’Aoust & Lambertsen 1982). When three
divers switched from nitrogen to helium at 30m
(99 ft), all developed severe itching within 1h and
joint pain within 5-7h suggestive of bubble
growth. Similar experiments at 20 m (66 ft) caused
less itching and no pain (Hamilton et al. 1982).

An opposite effect occurs when the switch is
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from helium to nitrogen. Consider a diver who
breathes helium-oxygen at depth and changes to
air during decompression. Helium leaves his
tissues faster than nitrogen enters, and the result-
ing undersaturation appears to allow accelerated
decompression. This technique was used in
record-setting dives to 303m (1000ft; Keller &
Biithlmann 1965; Bithlmann 1975) and is standard
for most deep helium-oxygen bounce diving
(Hamilton 1976). Despite standard operational
practice, however, Thalmann (1986) found no
difference in the incidence of decompression ill-
ness after helium-oxygen dives when air or
helium-oxygen was breathed during decom-
pression. Momsen (1942), moreover, reported
unspecified adverse effects in divers shifting to air
deeper than 165 ft (49.5 m), and subsequent experi-
ments which used rapid shifts deeper than 33m
(110 ft) noted vertigo and nausea suggestive of ves-
tibular or inner ear decompression illness (Hamil-
ton 1976).

Compressed Air or Caisson Decompression

Decompression after diving has received more
attention by the medical and research communi-
ties than decompression after caisson work
(McCallum 1967). Compressed air exposures are
generally longer (4-8 h) and at lower pressures (9-
30m) than dives but allow less decompression
time than the high DClI incidence USN Exceptional
Exposure Table (Workman 1957; Kindwall 1989).
Official caisson decompression regulations are fre-
quently untested extrapolations of procedures for
shorter duration diving exposures, and workers
were often decompressed for a lunchtime surface
interval (split-shift) which doubles their decom-
pression stress (Paton 1967). Decompression illness
is statistically associated with aseptic osteonecrosis
(Davidson 1976; Ohta & Matsunaga 1974; Cross
1987; Zhanget al. 1991), but fear of job loss can make
the reported incidence (1.4%) less than the inci-
dence noted by anonymous survey (26%; Kindwall
1989).

A recent experimental study of caisson decom-
pression procedures indicated that air schedules
which might be of adequate length were too long
to allow sufficient work in an 8 h day (Kindwall et
al. 1983). A 4h exposure at 20m (66ft), for
example, required nearly 5h of decompression.
For compressed air work to be practical and
reasonably safe, the only alternatives may be daily

exposures with oxygen decompression or long-
duration saturation exposures. Preliminary tests
by Kindwall et al. (1983) suggested a 4h exposure
at 20m might require only 2h of oxygen decom-
pression. Oxygen has been used in Germany
during decompression from pressures in excess of
30m (100 ft; Faesecke et al. 1990). The incidence
of decompression illness was 0.6% in 3400 ex-
posures.

Saturation Diving

During an exposure of 24—-48h at constant press-
ure, a diver’s tissues become saturated with his
inspired inert gases, and further time at depth
requires no additional decompression. Saturation
dives are logistically complex but avoid the
stresses of multiple decompressions in circum-
stances where long bottom times are desirable.
The inspired oxygen partial pressure is generally
limited to 0.3-0.5 ata (30-51 kPa) to avoid pulmon-
ary oxygen toxicity while in saturation (Chapter 6),
but raised to 0.4-0.6 ata (40-61 kPa) during decom-
pression. Most saturation diving occurs at depths
below 61 m (200 ft) with helium as the inert gas. At
depths of 300m (990ft) and deeper, nitrogen or
hydrogen is added to the helium to ameliorate
the high pressure nervous syndrome (Chapter
8). Nitrogen narcosis limits nitrogen—oxygen
saturation diving to depths shallower than 36 m
(120 £t).

During working saturation dives, divers live or
are ‘stored’ in a habitat or deck chamber and com-
mute to the work site by swimming or in a submer-
sible decompression chamber. Such excursion dives
can be ascending or descending. Oxygen partial
pressures during excursions range from 0.4 to
1.4 ata (40 to 141kPa) with air as the excursion gas
from nitrogen—-oxygen saturation. No-stop air
excursions which permit direct return to nitrogen—
oxygen storage without decompression have been
tested and published with complete operational
procedures (Hamilton et al. 1988b,c; Hamilton &
Schane 1990).

The size of an excursion increases with the stor-
age depth, and excursions of unlimited duration
are allowed within a restricted depth range above
and below storage. Unlimited duration excursions
from helium-oxygen saturation were tested by the
US Navy during the development of saturation
decompression procedures (Larsen & Mazzone
1967; Summitt et al. 1970a,b,c,d). Operational
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Fic. 14.33. US Navy unlimited duration helium—oxygen saturation excursion limits. Upward excursion limits
in 100 ft increments are shown. Breathing gas is at least 0.42 bar PO, in helium (see Thalmann 1989b)

limits were published in 1978) Spaur et al. 1978),
but made more conservative in 1989 after reports
of decompression illness from the field (Thalmann
1989b). The use of unlimited helium—oxygen
excursions is illustrated in Fig. 14.33, where the
storage depth can lie anywhere on a vertical line
between the ascent and descent limit lines.

During descending excursions, a diver absorbs
inert gas in excess of that present at storage, and
during ascending excursions, inert gas may be eli-
minated or retained as bubbles. If a descending
excursion on nitrogen—oxygen occurs within 36 h
of beginning decompression to the surface during
nitrogen—oxygen saturation, Hamilton et al.
(1988b) compress up to 11 m (35 ft) deeper than the
storage depth and decompress back to storage
over as long as 6 h.

For helium-oxygen, the US Navy allows an im-
mediate upward excursion before final decom-

pression. The extent of this excursion is measured
from the deepest point of the dive on the descent
limit line upward to the ascent limit line (Fig.
14.33). Comex begins final decompression from
storage without upward excursion and normally
allows excursion dives of not more than 10m (33 ft;
Imbert & Bontoux 1988). Procedures developed
during the Atlantis dive series at Duke University
also begin without upward excursion (Vann 1984;
Bennett ef al. 1987a,b).

As saturation decompression schedules evolved
during the 1960s, 1970s and 1980s, the ascent rate,
inspired oxygen partial pressure, inert gas species
and saturation depth emerged as factors which
might influence the risk of decompression illness.
During decompression from helium-oxygen satu-
ration dives, Vorosmarti et al. (1978) found that
raising the inspired oxygen partial pressure from
0.22 ata (22 kPa) to 0.4 ata (40 kPa) reduced the inci-
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dence of decompression illness from 52% (14 inci-
dents in 27 dives) to zero (no incidents in 42 dives;
P < 0.0001).

A simple model relating inspired oxygen partial
pressure (P10,) to the rate of ascent from a satu-
ration dive assumes that ascent rate is a linear
function of oxygen partial pressure (Hennessy
1978; Vann 1984, 1986; Eckenhoff & Vann 1985;
Hamilton et al. 1988c; Imbert & Bontoux 1988)

rate = k X P10, (13)
To develop a saturation decompression procedure,
the value of k in equation (13) is adjusted in suc-
cessive dives until the incidence of decompression
illness becomes acceptably low.

The effect of saturation depth was suggested by
a comparison of decompression illness incidences
for air or nitrogen—oxygen dives deeper and
shallower than 30m (100 ft; Barry et al. 1984). The
incidence for the shallower dives was 13% (14 inci-
dents in 107 dives) and for the deeper dives 31%
(14 incidents in 45 dives; P < 0.01). The value of k
in equation (13) was estimated empirically for both
nitrogen and helium (Vann 1984) and sub-
sequently derived as a decreasing function of
depth using a bubble model and likelihood analy-
sis of 233 man-decompressions (Vann 1986).

The empirical estimates of k (Eq. 13) indicated
that ascent rates for helium could be 2-3 times
faster than ascent rates for nitrogen at the same
saturation depth (Vann 1984). The ascent rates
were approximately equal for helium—oxygen
saturation at 600m (1968 ft) and nitrogen—oxygen
saturation at 30m (99 ft).

CONCLUSION

Decompression illness is an interesting disease
covering a range of fields within physics, physi-
ology and medicine. Beyond this academic
interest, however, is the practical problem of con-
ducting safe decompression in diving, aerospace
and caisson work. A quantum improvement in de-
compression safety is possible because of recently
introduced statistical methods and computer tech-
nology. The greatest obstacle to progress is the
lack of reliable exposure and epidemiological data
from the laboratory and field. Cooperation be-

tween interested organizations is essential if
needed data are to be forthcoming.

DIVING MANUALS AND
DECOMPRESSION TABLES

US Navy Diving Manual, NAVSEA 0994-LP-001-9020, Vol. 1,
Rev. 2, December 1988; Vol. 2, Rev. 2, October 1987.

1974 French Air Table, Bulletin Officiel du Ministere du Travail,
Fascicule Special No. 74-48 bis, Mesures particulieres de
protection applicables aux scaphandriers, 14 Juin 1977.

1986 Comex Air Table, Manuel de Procedures de Decompression
a I'Air, 1987. Comex Services, 36 Boulevard des Oceans,
B.P. 143, 13275 Marseille Cedex 9, France.

NOAA Diving Manual, 2nd edn. Ed. J. W. Miller. US Depart-
ment of Commerce, December 1979.

Lauckner, G. R. & Nishi, R. Y. (1984) Decompression Tables
and Procedures for Compressed Air Diving Based on the
DCIEM 1983 Decompression Model. DCIEM No. 84-R-74.

Royal Navy Diving Manual, Ministry of Defence B.R. 2806,
March 1972.
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