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EAD theory allows existing air decompression
tables to be used with nitrogen-oxygen mixtures
having elevated oxygen fractions.

The EAD is the depth of an imaginary air dive
that would have the same nitrogen partial press-
ure as an actual dive with a gas having an oxygen
fraction greater than air. EAD is given by

1 — F1op) (D + 10m)
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where D is the actual depth, and Fip, is the
inspired oxygen fraction. If the actual depth is
39m (130 ft) and the Fi, is 32%, for example, the
EAD is 32m (107 ft) and air decompression sched-
ules for 33 m (110 ft) should be used.

The EAD theory should be reasonable at low
inspired oxygen partial pressures (P1o,’s) where
the venous oxygen tension is relatively unchanged
but might fail at high partial pressures if the meta-
bolic requirements of tissue are met by oxygen
dissolved in the blood. Weathersby et al. (1986b)
tested the EAD theory during no-stop dives at
various depths for bottom times of 30, 60 and
240min and P1oy’s of 0.21-1.3ata (21-131kPa).
The mean incidences of decompression illness are
shown in Fig. 14.18 at high and low Pip,’s. Each
point represents the average of 76-82 dives. The
incidence of decompression illness increased
slightly at the higher P1p, for one dive series and
decreased in two series. This could indicate either
higher or lower risk at elevated Pig,, but neither
conclusion was supported statistically. A lower
risk might be explained by decreased tissue per-
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F1G. 14.18. The incidence of decompression illness as
a function of Pig; for humans from studies by Logan
(1961) and Weathersby et al. (1986b)

fusion and nitrogen uptake due to oxygen-induced
vasoconstriction.

Another study tested decompression dives with
bottom times of 15, 30, 60 and 180 min at P1o,’s of
1.0-1.8ata (101-182 kPa; Logan 1961). The results
of this study are also shown in Fig. 14.18. Three
dive series were inconclusive as there was no de-
compression illness. During two series, one inci-
dent occurred in five trials at the lower P1o, and
two incidents in five trials at the higher P1p,. These
trials did not strictly test the EAD theory, how-
ever, as decompression took place with a higher
P16, than in air. This would advantageously accel-
erate nitrogen elimination.

Logan (1961) concluded that oxygen partial
pressures between 1.2 and 1.6ata (121 and
162 kPa) make a small and statistically insignificant
contribution to decompression risk and that this
risk does not warrant abandoning the EAD theory.
The results of Weathersby et al. (1986b) do not
contest this conclusion, at least up to oxygen par-
tial pressures of 1.3 ata (131 kPa). While the partial
pressure at which the EAD theory begins to fail is
unknown, oxygen partial pressures much higher
than 1.3 ata (131 kPa) may not be altogether useful
due to the increasing risk of central nervous
system oxygen toxicity.

PROBABILISTIC MODELLING

A decompression model is a set of concepts which
relates the occurrence or non-occurrence of de-
compression illness to changes in ambient press-
ure and breathing gas composition. The purpose
of a model is to avoid an unacceptable incidence of
decompression symptoms. A model may incorpor-
ate environmental or physiological factors such as
exercise, temperature, body fat, etc., if sufficient
data are available to justify their inclusion.

Models range from empirical mathematical func-
tions with no physiological rationale to detailed
descriptions of the biophysical processes believed
to be relevant. The perfect model would predict
the nature and onset time of every incident of de-
compression illness. Such a model does not yet
exist and may never exist, but imperfect models
have had reasonable success in computing useful
decompression procedures (Chapter 13; Wienke
1991).
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Deterministic and Probabilistic Models

Decompression models consist of two parts, gas
kinetics and ascent criteria. The gas kinetics calcu-
late a decompression ‘dose” which accumulates
and dissipates as the pressure varies over time,
whereas the ascent criteria relate the dose to the
occurrence of symptoms. Ascent criteria can be
deterministic or probabilistic. Deterministic ascent
criteria classify dives as ‘safe’ or ‘unsafe” according
to the magnitude of the dose. Probabilistic criteria
compute the probability of decompression illness
from the dose and ascend such that this prob-
ability does not exceed a level of risk previously
judged to be acceptable.

Consider the inert gas exchange kinetics in a
perfusion-limited tissue compartment in which the
gas tension, P(t), is defined by

P(t) = Pa + (P — Pa)e ™ )

where Pa = (1 — Fip,)PB and ¢, P, Pa, PB and Fip;
are the time, initial inert gas tension in tissue,
arterial inert gas tension, the barometric pressure
and the inspired oxygen fraction. The rate con-
stant, k, is an adjustable parameter used for
finding the best description of empirical decom-
pression data.

A deterministic ascent criterion might define the
dose as the supersaturation ratio, r(t):

P(t) — P8 _ Pa + (P — Pa)e ™

PB PB

r(t) < - P (5)
which is required not to exceed some maximum
value. Should this criterion be violated, a diver
would be subject to an excessive risk of decom-
pression illness, but the extent of this risk and
what could be done to recover from the violation
could not be determined. Violation of ascent cri-
teria is a particular problem when computing sur-
face decompression schedules with deterministic
models.

Probabilistic ascent criteria transform the dose
into a decompression illness probability, P(DCI).
One transformation method uses a sigmoidal
dose-response function such as the Hill equation:

r(t)™

PO =

(6)

where N and rso are adjustable parameters, with
tso being the dose for P(DCI) = 0.5. A more formal
approach uses a risk function described by:

t
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The supersaturation ratio, r(t), is integrated over
time from ¢; = 0, when it first becomes positive, to
t, = 24h, after which symptoms rarely occur. As
risk cannot be negative, integration is stopped
when r(t) becomes negative and restarted when it
is positive. The derivation of equation (7) is dis-
cussed in ‘US Navy Models'. —7 72 %03

The probabilistic ascent criterion constrains
P(DCI) to below an independently determined ac-
ceptable limit (see ‘Acceptable Risk of Decom-
pression lllness’). Unlike a deterministic model,
however, this can be accomplished by an infinite
number of profiles each having a different decom-
pression time. The shortest profile is usually the
most desirable, but determining which profile
requires the least decompression time is computa-
tionally intensive (Weathersby et al. 1985a). Should
a diver violate his prescribed profile, the risk of
decompression illness accumulates in a quantifi-
able manner but can be decreased by prolonging
the decompression. With a deterministic model,
recovery from a violation of the ascent criterion is
not possible.

The deterministic ascent criterion of equation (5)
requires that the dose not exceed a threshold which,
if violated, will result in an unacceptable but
unkown risk of decompression illness. Figure
14.19 illustrates the threshold concept in a probabi-

P(DCI)

P(DCI) 1ax

'max
Supersaturation Ratio, r(t)

Fic. 14.19. A deterministic ascent criterion based

upon a supersaturation threshold. When the supersa-

turation exceeds the threshold r.,,, the population
has a risk P(DCI) ax-
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F1G. 14.20. The incidence of decompression illness as a
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function of bottom time for no-stop air dives at 18 m
th the following bottom
min (2/21); 100 min (2/13). Dry divers exercised at a
n (0/10); 90 min (0/20); 100 min (1/20). The 95% confi-

dence intervals are shown (Thalmann et al. 1989)

listic context. The x axis represents the supersatu-
ration, r(t), and the y axis represents P(DCI),
which lies between 0 and 1. When the threshold,
"max, 1S exceeded, P(DCI) makes an immediate
transition from 0 (no-DCI) to P(DCI),..., the
unknown but acceptable incidence of decom-
pression illness. This is tantamount to the entire
population having the same risk.

While many useful decompression procedures
have been developed with deterministic models,
the concept of a population threshold is inconsis-
tent with observation. Some divers develop de-
compression illness after innocuous dives, but
others safely complete stressful dives. Decom-
pression illness may be an all-or-none phenom-
enon for the individual, but only a fraction of a
population sample may develop decompression
illness for a given exposure. This has been demon-
strated for both animals (Flynn & Lambertsen
1971; Berghage et al. 1974) and humans. Figure
14.20 shows the incidence of decompression ill-
ness as a function of no-stop bottom time for
divers exposed to 20m (60 ft) while breathing air

(Thalmann et al. 1989). The divers exercised while
dry or immersed in cold water. In both conditions,
the incidence of decompression illness increased
smoothly with the bottom time showing no evi-
dence of a threshold. A Hill equation (Eq. 6) was fit
to the raw data and 95% confidence limits” were
computed under the assumption that decom-
pression illness is described by the binomial distri-
bution (Berghage et al. 1974). The dry dives are just
below the lower confidence limit of the wet dives,
demonstrating greater risk for immersion in these
no-stop exposures.

A diver with decompression illness—a P(DCI)
of 1.0—derives little comfort from knowing his ex-
posure had an exceedingly low probability of
symptoms. The resolution of this apparent para-
dox may lie in the variability of susceptibility to
decompression illness as a result of environmental
factors, individual risk factors and factors that are
unpredictable. Instead of a common threshold for
the entire population as in Fig. 14.19, each diver
may have a different threshold for every dive he
makes (Vann et al. 1992). Susceptible divers would



400 R.D. VANN & E. D. THALMANN

have low thresholds and resistant divers high
thresholds, but the threshold for a particular indi-
vidual may be unpredictable.

This concept is illustrated in Fig. 14.21, where
the maximum supersaturation threshold (r,n.y)
that can be tolerated without symptoms is distri-
buted over the population in a density function.
Susceptible individuals fall in the region of low
Tmax, Whereas resistant individuals fall in the
region of high r,,,..

The probability of decompression illness for a
given dive is the fraction of the population for
which the threshold is exceeded. In Fig. 14.21, for
example, P(DCI) for a dive with a threshold r;,,,, is
the area under the density function (the integral)
to the left of r,,.. Figure 14.22 shows that this
integral is a sigmoidal dose-response curve. Thus,
P(DCI) does not refer to individual probability, but
that fraction of the population that will develop
symptoms.

In an alternative interpretation of probability,
Fmax 1S replaced by a time integral of an accumulat-
ing dose. In this case, the fraction of the population
with symptoms will increase as the dose increases
and can be predicted within certain confidence
limits. Whether a particular individual develops
symptoms, however, is a random event which
cannot be predicted with certainty.

Primary and Secondary Data

The probability of decompression illness usually
cannot be defined for the entire population of
dives or divers but only for a small sample of that
population. This estimate of ‘true’ probability is
more certain if the dive profiles in the population
sample are precisely defined to within a metre and
a few minutes. Other essential information which
increases the estimate precision includes descrip-
tions of symptoms (should they occur), their onset
time, treatment and treatment outcome. All dives
must be reported, including those which are safe.
The dive circumstances and diver characteristics
are also important. This information is referred to
as primary data to indicate it is the primary stan-
dard for deriving probability estimates from de-
compression models (Weathersby & Survanshi
1990). Primary data are usually developed in
expensive laboratory trials, but accurate depth—
time recorders and medical evaluations of all
divers may someday make primary data available

Population Density

"max
Supersaturation Threshold, rmax
F1G. 14.21. A density function which defines how the
supersaturation threshold for decompression illness
is distributed across the population. The largest part
of the population develops decompression illness at
intermediate thresholds. Smaller fractions have low
thresholds and are susceptible or high thresholds and
are resistant. P(DCI) for a dive with a threshold 7y, is
the fraction of the population having thresholds of
less than 7.
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Fic. 14.22. The integral of the density function in

Fig. 14.21 is a dose-response curve which defines

how P(DCI) varies with supersaturation threshold.

P(DCI) is the fraction of the population which de-
velops decompression illness

from selected open-water dives (see ‘Dive
Computers’).

The nature of the primary data affects the accu-
racy and uncertainty of the P(DCI) estimates. The
most useful databases are large and diverse with
dives distributed over a range of decompression
illness probabilities. A well-documented database
used by the US Navy for model comparisons, for
example, has 921 man-dives with a mean incidence

of decompression illness of 5.6% (Weathersby et al.
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1992). These data were derived primarily from
laboratory trials in which high incidences of de-
compression illness, while statistically desirable,
would be unacceptable by modern standards.

At present, all symptoms (i.e. pain, neurologi-
cal, etc.) are assumed to have an equal probability
of occurrence and are equally weighted. This is the
only alternative until sufficient data are available
to allow individual symptoms to be differentiated
through modelling. Symptoms must be accurately
described, however, and while the Type I (minor)
and Type II (serious) classifications of Golding et
al. (1960) are helpful in selecting therapy, they are
non-specific and are often applied inconsistently
(Kemper et al. 1992). A recently proposed classifi-
cation system based upon objective description
may help provide the needed information (Francis
& Smith 1991).

Secondary data are derived from exposures
where the conditions are not documented with the
accuracy of primary data and may be influenced by
procedural (inaccurate time keeping, calculation
error, non-reporting of symptoms, etc.), environ-
mental (cold, rough water, current, etc.) and
physiological factors (work, dehydration, injury,
etc.). Secondary data are usually from open-water
exposures where variations from planned profiles
or multi-level profiles are not recorded, and dives
are specified only by table or maximum depth and
total time. Secondary data are mainly used to
monitor the incidence of decompression illness in
operational settings (Shields & Lee 1986), but have
also been employed to guide model development
as in the 1986 Comex Air Tables (see ‘In-Water
Decompression with Air’). Published decom-
pression tables are neither primary nor secondary
data, but with well-documented statistics con-
cerning their use, can be useful benchmarks for
comparison with other tables.

Primary and secondary databases are main-
tained by many individuals and organizations, but
there is little agreement as to what should be their
structure and content (Sterk & Hamilton 1991).
These issues will be resolved as databases are de-
veloped and shared.

Parameter Estimation and Maximum Likelihood

Whether deterministic or probabilistic, all models
have certain parameters (e.g. blood flow, tissue
half-time, supersaturation, etc.) for which numeri-
cal values must be found such that the model pre-

dictions conform reasonably well to empirical
data. For deterministic models, profiles are ana-
lysed for some measure of decompression dose
which violates a threshold (e.g. a compartment gas
loading; Freitag & Hamilton 1974), and the model
parameters are adjusted such that violations occur
mostly on unsafe rather than on safe dives. This is
more successful for data with many replicated
trials of a few profiles, which provide measures of
decompression illness risk, rather than for few
trials of many profiles. Estimating deterministic
parameters is a subjective process, but one which
has provided useful decompression procedures
over many years (Dwyer 1956; Thalmann 1984,
1985, 1986; Boni et al. 1976).

Parameter estimation for probabilistic models
also begins with a decompression dose, such as
defined by equation (5), which is used to compute
a P(DCI) for every dive in the database. Each dive
will have one of two outcomes—decompression
illness or no decompression illness—with corres-
ponding probabilities, P(DCI) and 1 — P(DCI).
P(DCI) is computed from a decompression model
described by relationships such as equation (6) or
equation (7). The probability of the observed out-
come is defined as the likelihood, L. If decom-
pression illness has occurred, L = P(DCI); if not, L
= [1 — P(DCI)].

For a database with three dives, two of which
result in decompression illness, the likelihood is:

Lgsesvase = P1(DCI)'P2(DCI)’[1 - P3(DCI)]

analogous to the joint probability for coin tosses.
The likelihood of a database is the computed prob-
ability of all the observed outcomes.

For a dive profile i which is tested k times with j
ig,gidgntg of d‘ecbouiﬁpregsjqp illness, the likelihood
is:

L; = P(DCIy-[1 — P{DCI)]* =/

The likelihood of an entire database with n profiles
is the product of the likelihoods for each individual
profile:

Ldatabase = LI'L2' v Lz ae 'Ln (8)

The value of Lyaapase changes as the parameters
in the model are varied. When_the parameter
values are found that maximize Lgaabase, the maxi-
mum_likelithood has been determined, and the opti-
mal parameter values have been estimated. These
parameter estimates define the best description of
the database by the model, and are objective with
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accuracy and uncertainty which depend only on
the model and data (Weathersby et al. 1984). Prob-
abilistic models do not require replicated dives as
is desirable for deterministic models. A thousand
different profiles with one exposure each are
handled just as a single profile with a thousand
exposures. Since multiplying probabilities results
in a small number, the natural logarithm of the

likelihood is reported and appears as a negative
quantity called the log likelihood (LL).

The maximum likelihood is determined by itera-
tive adjustment of the model parameters through
non-linear regression. Weathersby et al. (1984)
used an optimization procedure based on the Mar-
quardt (1963) algorithm, which computes standard
errors on the parameter estimates (Bailey & Homer
1976). The standard errors reflect the inherent
uncertainty of statistical modelling and are
expressed as upper and lower 95% confidence
limits on estimated probabilities of decompression
illness (Weathersby 1990). Confidence intervals for
dives which are well-represented in a database are
smaller than for poorly represented dives. Large
confidence intervals indicate dives for which more
testing may be desirable. Interpolation between
profiles that are well-represented in the database is
warranted with the expectation that the risk of
decompression illness will not differ significantly
from the risks of nearby profiles. Extrapolation to
dives outside the range of the data requires cau-
tious testing as actual and estimated risks may be
substantially different (Weathersby et al. 1984).

Maximum likelihood methods can estimate the
parameter values which best describe the data for
any model, but they do not eliminate the judge-
ment necessary to construct good models. Of two
models, the one with the greater maximum likeli-
hood (least negative LL) is a better description of
the data, but tests to determine if a difference be-
tween likelihoods is statistically significant are
available only for general and restricted models. A
general model has many parameters. A restricted
model is a subset of a general model derived by
setting one or more parameters of the general
model to zero. General and restricted models can
be compared using the likelihood ratio test
(Weathersby et al. 1984) to determine if parameters
in the general model are statistically justified. The
likelihood ratio test can also be used to determine
if the same model describes two different data sets
equally well or if two different sets of parameter
values provide equivalent fits to the data. The like-

lihood ratio test is inappropriate for comparing
models based on different premises, however,
such as models with tissue compartments in paral-
lel and in series. Comparisons of this nature
require absolute goodness-of-fit criteria which
have not yet been firmly established.

Acceptable Risk of Decompression lliness

An acceptable risk of decompression illness is the
incidence that would be tolerable during oper-
ational use if a procedure or algorithm were
followed exactly to its limits for an infinite number
of exposures. Acceptable risk may be different
from the incidence observed in operational use, in
which procedures are usually not followed to their
limits and often followed incorrectly. Most useful
procedures appear to have a finite risk of decom-
pression illness. The choice of acceptable risk is a
matter of judgement, circumstance and field of
work. The factors affecting acceptable risk include
the likelihood of those exposed to admit symp-
toms, their reliability in following procedures,
their ability to recognize and not deny symptoms,
the simplicity of the procedures, the presence of
supplemental risks, the availability of recom-
pression facilities and medical personnel, the im-
portance of the task, the effect of decompression
illness on confidence and morale, the potential
organizational or legal consequences, and the
possibility of permanent injury.

Compressed air workers, for whom decom-
pression procedures are generally considered inad-
equate, have a history of tolerating decompression
illness as an occupational hazard (Kindwall 1989).
Recreational divers frequently deny or do not
recognize their symptoms. Other risks such as
hypothermia and oxygen toxicity must be con-
sidered as well as the risk of decompression
illness (see ‘Decompression Practice’). Neurologi-
cal symptoms are generally considered less ac-
ceptable than pain-only symptoms, and their
occurrence can lead to recommendations for signifi-
cant curtailment of diving practice even when the
overall incidence of decompression illness may be
less than 0.5% (Shields & Lee 1986).

A survey concerning acceptable operational risk
indicated a wide range of opinion concerning de-
compression illness pain while generally agreeing
that neurological symptoms were unacceptable
although perhaps not altogether avoidable (Fig.
14.23; Vann 1991). Based upon ground-based
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Frc. 14.23. A survey of opinions concerning the acceptable risk of decompression illness (Vann 1991)

studies, acceptable risk was proposed for Space
Shuttle operations at 6% moderate pain (Waligora
(1986). Neurological decompression illness was
rare in these studies, and decompression illness
has not been reported during extravehicular
activity by in-flight space crew. For crew aboard
the less accessible Space Station, acceptable risk
was proposed at 1%.

Within the hyperbaric community, the US Navy
would accept decompression procedures with an
upper 95% confidence limit of 3-4% based on
several hundred dive trials and the expectation of
a lower operational incidence (Thalmann 1989a). A
2% incidence was considered acceptable for cais-
son workers (Paton 1967). Commercial diving
companies would accept an incidence of 0.1-0.5%,
while scientific and recreational divers desired
zero incidence (Vann 1991; Lang & Vann 1992).
The selection of a low acceptable risk must be
weighed against increased decompression time
and restricted no-stop limits. This choice will vary
between diving communities.

During laboratory trials, supplemental risks are
minimized (see ‘Decompression Practice’), proto-
cols are critiqued by Institutional Review Boards,
and experimental subjects give informed consent.
Lanphier (1989) reviewed the ethical and insti-
tutional aspects of experimental trials. Trials with a
wide range of risks for decompression illness may
be desirable to verify the accuracy of model risk
estimates. Some of these trials may exceed opera-
tionally acceptable risk, but the likelihood of injury
is generally less than in the field as medical

personnel and treatment facilities are immediately
available. Acceptable risk during trials depends
upon the nature of the expected symptoms and
their response to treatment. Neurological symp-
toms and residua are more frequent in diving than
in altitude exposures, for example, where symp-
toms usually resolve during descent to ground
level (Waligora 1986). This permits altitude trials
with an incidence of decompression illness of up
to 50-90% (Balldin 1973b; Vann et al. 1989Db).

There is a movement towards increased safety in
diving. During the 1970s, there was competitive
emphasis on rapid decompression in commercial
diving (Hamilton 1976), but the recent trend has
been towards industry cooperation, low-risk pro-
cedures, and fast, aggressive treatment of inci-
dents of decompression illness (Galerne 1989;
Beyerstein 1992). When many dives are con-
ducted, however, even a low incidence of decom-
pression illness can result in an unacceptable
number of cases, particularly if a substantial frac-
tion are neurological (Shields & Lee 1986). It may
be difficult, therefore, to achieve an acceptably low
risk with decompression times that are not unrea-
sonably long (see ‘In-Water Decompression with
Air’). The goal of statistical modelling is to provide
the tool to permit rationale choices between risk
and time in the water.

US Navy Models

The first probabilistic model of decompression
data applied a dose-response analysis to no-stop
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upward excursion dive trials from helium-oxygen
saturation (Weathersby et al. 1984). This simple
approach defined the decompression dose as the
supersaturation ratio (Eq. 5), which was trans-
formed into a P(DCI) occurrence using a Hill
equation (Eq. 6) as a dose-response function. The
resulting expression for probability was applied to
the experimental data through the likelihood
equation (Eq. 8), and the model parameters were
estimated.

The next approach was to treat decompression
illness as a systems failure in which a system
(diver) exposed to a stress (dive) has a finite prob-
ability of failure (DCI). The mathematics of this
approach have been developed in failure time
analysis (Kalbfleish & Prentice 1980) and survival
analysis (Elandt-Johnson & Johnson 1980).

Consider the large population of divers in Fig.
14.24 who have been exposed to various decom-
pression stresses. Decompression incidents begin

to_occur some time after the dive and accumulate

with time to a maximum number. If the curve in
Fig. 14.24 is divided by the total number of divers,
the resulting function approximates the failure dis-
tribution, F(t), which is the cumulative P(DCI) over
time. The probability of surviving past a particular
time, ¢, is the survivor function:

S(t) =1— E(t)
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FiG. 14.24. The cumulative distribution of decom-
pression illness onset times from a primary database
(Weathersby et al. 1992). When divided by the total
number of dives in the database, this curve approxi-
mates the failure distribution which is the cumulative
P(DCI) over time
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The derivative of F(t) is the probability density
function:

ity = Srey = - s

which is the instantaneous rate at which symp-
toms occur for the entire population. The ratio of
the probability density function and the survivor
function is the hazard or instantaneous risk function,

r(t):

rt) = £ = - 55 5150 ©)

which is the relative failure rate or the instan-
taneous rate at which symptoms occur among
survivors, i.e. those not yet having developed
symptoms. Solving equation (9) for S(t) by inte-
gration gives

S@) = exp(— ffr(x)dx)
0

The probability of not developing symptoms be-
tween t; and t, is:

P(no-DCI),, ,, = S(ty ts) = exp(— fbr(x).dx) (10)

while the probability that symptoms will develop
is:
&

P(DCI),,,, = F(ty,t)) =1 — exp(— f r(x)-dx) (11)

h

In applying failure time analysis, the US Navy
used instantaneous risk functions based on the
supersaturation ratio (Eq. 5). The initial appli-
cation only considered the occurrence of de-
compression illness and not the onset time
(Weathersby et al. 1985b). This was achieved by
setting t; = 0 and t, = 24 h, beyond which decom-
pression illness was unlikely. To use symptom
onset time, the time up to which a diver was
symptom-free, t;, must be known as well as the
time, f,, at which he reported symptoms.
Although t, is usually known with some precision,
t; may be more difficult to establish. The interval
from t; to t, is the period of uncertainty. For a diver
who reports symptoms 10min after a symptom-
free examination, this interval is 10 min, but for the
diver who goes to bed symptom-free and awakens
with symptoms, the interval is the time he was
asleep. Rules have been suggested for estimating
t; from t, when t; is unknown (Weathersby et al.
1992).
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When decompression illness does not occur, the
outcome probability is computed by the inte-
gration of equation (10) with t; = 0 and t, = 24 h.
When decompression illness does occur and the
onset time is known, the probability of the
observed outcome is now the joint probability of
no decompression illness before t; and decom-
pression illness in the interval from t; to t,. This
joint probability is the product of equations (10)
and (11):

P(DCI), ,, = P(no-DCl),,, X P(DCI),, ,,
= (exp(— ~[‘llr(x)-dx — ftzr(x)-dx))
0 h
(12

Symptom onset time was implemented through
two definitions of instantaneous risk, which are
illustrated in Fig. 14.25 (Weathersby et al. 1992).
Figure 14.25 (top) shows a no-stop dive to a press-
ure Papp and the corresponding inert gas tension,
Pris, described by equation (4). In Fig. 14.25 (bot-
tom), r, is the instantaneous risk defined by a
supersaturation ratio (Eq. 5). The maximum post-
dive risk of decompression illness occurs immedi-
ately upon surfacing, implying early symptom
onset. The second definition of instantaneous risk,

X |1 — exp

Fama
Pressure
'?_TIS
Instantaneous
Risk, r(t)
-
Time ——p>

F1G. 14.25. The top figure shows a no-stop dive to a
pressure Papp. The exponential response of the
tissue inert gas tension (Eq. 4) is Pris. The bottom
figure shows the response of the instantaneous risk,
r(t). For ry, the instantaneous risk is proportional to
the supersaturation ratio (Eq. 5). For r,, it is pro-
portional to the time integral of the supersaturation
ratio. The total P(DCI) is a function of the area under
each instantaneous risk curve. (Reproduced with per-
mission from Weathersby et al. 1992)

s, integrates the supersaturation ratio over time
(Fig. 14.25, bottom). This delays the maximum risk
well into the post-dive period.

Both representations of instantaneous risk were
applied to experimental data using maximum like-
lihood, and both described the data equally well
when only the occurrence of decompression ill-
ness was considered (Weathersby et al. 1992). With
the inclusion of symptom onset time, however, r,
failed to describe the data, while a greater maxi-
mum likelihood indicated an improved description
for r,. Thus, the power of the parameter esti-
mation process to discriminate between poor and
good models on the basis of their maximum likeli-
hoods was enhanced by including symptom onset
time.

Probabilistic decompression modelling by fail-
ure time analysis has been used to: estimate the
risks of the USN Standard Air Tables (Weathersby
et al. 1985b), air saturation tables (Hays ef al. 1986),
repetitive nitrox dives (Albin & Weathersby 1991)
and air and He-O, dives (Tikuisis et al. 1991); com-
pare USN, Canadian and British air tables (Weath-
ersby et al. 1986c); and compute iso-risk (equal
probability) air tables (Weathersby et al. 1985a).
Probabilistic models could be used to develop low-
risk no-stop tables for recreational divers for
whom treatment is not readily available and
higher risk tables for commercial or military diving
where longer bottom times without excessive in-
water decompression time might be desirable. Sur-
face decompression procedures can be computed
by probabilistic models without violating the
ascent criterion during the surface interval. Com-

putational complexity is the main drawback of pro- (

babilistic models.

Other Models

Deterministic models can be made probabilistic by
transforming the dose into a probability using a
dose—response function such as the Hill equation
(Eg. 6). Haldanian models have been converted in
this manner (Vann 1987) and were used to develop
the 1986 Comex air tables (Imbert 1991), but Hal-
danian models were not as successful as the US
Navy implementation of failure time analysis in
describing databases of dissimilar dives (Parsons et
al. 1989).

While the US Navy used supersaturation as the
basis for instantaneous risk, bubbles are another
logical choice given their suspected role in decom-
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pression illness. Various bubble simulations have
been used to develop deterministic decompression
procedures (Vann 1982a; Hennessy & Hempleman
1977; Thalmann 1984, 1985, 1986; Gernhardt et al.
1992). A bubble model might be a suitable instan-
taneous risk function for failure time analysis but
has yet to be implemented. Current probabilistic
bubble models use dose-response functions to
convert the bubble-dose into P(DCI) (Vann 1986,
1987).

Figure 14.26 shows three parallel tissues, each
containing a bubble which grows or shrinks
according to the difference between the internal
nitrogen partial pressure and the nitrogen tension
in tissue (Fawcett et al. 1992). These bubbles are
surrounded by diffusion barriers which make their
growth a gradual process consistent with delayed
symptom onset. Nitrogen exchange between
blood and tissue is perfusion-limited as in a Hal-
dane tissue compartment.

Upon arrival at the surface after a dive, the
bubble in each tissue grows gradually, passes
through a maximum, and resolves. The greatest
risk of decompression illness is assumed to occur
when the largest of the bubbles reaches its maxi-
mum volume. The maximum volume is trans-
formed into a P(DCI) by a Hill equation. Figure
14.27 illustrates the time course of the risk of de-
compression illness during a series of no-stop
repetitive dives (Gerth ef al. 1992).

Many simulations of bubble kinetics are poss-
ible. The implementation of Fig. 14.26 treated
bubbles as flat sheets of gas with constant surface
areas subject to a constant tissue elastic pressure
and unaffected by surface tension. This approach
seems roughly consistent with radiographic
studies of altitude decompression illness (Fig.
14.1) and allowed an analytical solution of the first-
order differential equation describing bubble
growth for a step change in pressure or gas com-
position. When spherical bubbles and surface ten-
sion are included, bubble resolution is accelerated
and decompression time reduced for small radii
(Gernhardt et al. 1992).

Diving procedures were developed by probabi-
listic bubble models for nitrogen—oxygen satu-
ration decompression (Vann 1986), in-water
oxygen decompression during repetitive air diving
(Fife et al. 1992) and surface interval oxygen during
repetitive nitrox diving (Fawcett et al. 1992; Vann et
al. 1992). These procedures have worked reason-
ably well in preliminary trials.

Heart & Lungs
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Frc. 14.26. A three-tissue bubble model. Inert gas
exchange in tissue is perfusion-limited, while gas
exchange between a bubble and tissue is diffusion-
limited. Gas must diffuse across a barrier to enter or
leave a tissue. Vi, is the bubble volume, P, is the
pressure due to tissue elasticity, K4 is the diffusion
barrier permeability, A, X Q is blood inert gas solu-
bility times blood flow, and A; X Vs tissue inert gas
solubility times tissue volume. P(DCI) at any given
time is a function of the largest bubble volume (Faw-
cett et al. 1992)

Decompression Trials

The statistical methodology used in probabilistic
decompression modelling is not new, but its appli-
cation to decompression is recent and rapidly
evolving. Estimates of the risk of decompression
illness often have a wide range of uncertainty as
indicated by their confidence limits. While the pre-
cision of risk estimation will improve as primary
data accumulate, the estimates discussed in this
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F1G. 14.27. The time course of estimated P(DCI) in a two-bubble model during repetitive air diving to 24m
(80 ft). Bubble growth and risk are delayed by diffusion (Gerth et al. 1992)

chapter should be viewed as ‘indices’ of risk which
are useful for ranking decompression procedures
but do not necessarily represent their true values.
One of the primary objectives of decompression
trials is to assess the accuracy of risk estimation.

Decompression trials can have a number of
goals: to investigate the effects of risk factors; to
validate the acceptability of dive profiles; and to
verify the predictions of decompression models.
The overall objective is to measure the incidence of
decompression illness with the greatest possible
certainty and ensure the most efficient use of
resources.

Laboratory trials for investigating a risk factor
would test a group of subjects twice, with and
without the risk factor, to determine if it were
associated with a significant change in the inci-
dence of decompression illness. A two-tail, chi-
square test with Yates correction for small sample
size (Mode 1961) and statistical significance set at
P < 0.05 reveals the following requirements: (1)
there must be at least 5-6 incidents of decom-
pression illness in one test if there are no incidents
in the other; (2) there must be at least 7-8 incidents
in one test if there is one incident in the other.
These estimates are nearly independent of the
total number of trials. While this comparison will
indicate if a risk factor is significant, quantitating
the risk is a more difficult proposition (Weathersby
1989).

Five incidents of decompression illness rep-
resent an observed incidence of 50% in 10 trials or
5% in 100 trials. Whether five incidents or a 50%
incidence is acceptable depends on the nature of
the expected symptoms, the simplicity and effec-
tiveness of treatment, and the Institutional Review
Board which must approve the trials (see “Accept-
able Risk of Decompression Illness’). Altitude
studies with an incidence of decompression illness
of 50-90% have been conducted because symp-
toms were minor joint pain with a low risk for
permanent injury when treated promptly. Serious
symptoms are more common in diving studies,
and few are tolerated on any one test profile. An
unacceptable incidence of serious symptoms is
usually avoided if test profiles do not exceed de-
compression incidences of 5-7% (Thalmann
1989a).

Berghage et al. (1974) proposed, and provided
supporting evidence from animal experiments,
that the statistical uncertainty of decompression

trials could be_described by the binomial distri-

bution. The binomial distribution has been tabu-
lated in publications which list the number of
trials, the number of successes (incidents of de-
compression illness) and the upper and lower
limits for 95 and 99% confidence around the
observed incidence (Diem 1962). In the discussion
below, attention is focused on the upper 95% con-
fidence limit as an index of decompression ‘safety’
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A sequential selection rule

Reject

Incidence of decompression illness

Accept

0 5 15

20 25 30 35 40

Number of dives
Fic. 14.28. An open sequential design of a decompression trial. Each dive trial represents a step to the right

and each incident of decompression illness a step up.

A trial ends when either the upper or lower bound is

crossed. Profiles are rejected early in a test series if there are early incidents of decompression illness. Profiles
are accepted before reaching the end of the series if no incidents occur. This strategy reduces the number of
required tests. (Reproduced with permission from Homer & Weathersby 1985)

where 95% (or P < 0.05) is the lowest commonly
accepted level of statistical significance.

Reference to binomial tables indicates that 35
trials with a zero incidence of decompression ill-
ness have an upper 95% confidence limit of 10%.
Should one incident occur (a 2% incidence), 54
trials are necessary for a 10% confidence limit.
Acceptable risk for operational procedures is prob-
ably less than 10%. To achieve an upper 95%
confidence limit of 1%, 370 incident-free trials are
required. With one incident (a 0.2% incidence),
600 trials are needed.

While the acceptable risk of decompression ill-
ness is closer to 1% than 10%, resource limitations
usually make verification of acceptable risk practi-
cally unachievable in a single dive series even
at minimal statistical significance. Haldane, for
example, conducted the first decompression trials
with two tests per profile which served only to rule
out catastrophic failures (Boycott et al. 1908).
Schedules in the USN Standard Air Table were
accepted after four incident-free trials (Des
Granges 1957a) with an upper 95% confidence
limit of 60%. In the 1970s, decompression pro-
cedures were accepted after 12 incident-free trials
with an upper limit of 27% (Hamilton 1976). More
recently, procedures have been accepted with not
more than one incident in 30 trials for each tested
profile (an upper limit of 22%) and an overall inci-
dence of 4% for all profiles tested (Thalmann 1984,
1985, 1986, 1989a).

Decompression trials can only conduct a finite

number of dives. While the number of dives and
incidents of decompression illness are desired to
be low and the results to be statistically certain, all
three conditions cannot be met simultaneously
(Survanshi et al. 1992). If the trial size and number
of incidents are minimized, the answers will be
uncertain. If certain answers and a minimum
number of incidents are required, the trial size will
be large. Efficient trial designs are essential to
achieve the greatest certainty, but even so, enough
trials usually cannot be conducted to make the
results statistically defendable at desired levels of
acceptable risk.

The simplest decompression trial, the fixed
design, tests a profile a fixed number of times and
accepts it if the number of incidents of decom-
pression illness do not exceed a number judged to
be acceptable. Should this number be exceeded,
the profile is rejected, and the model or acceptable
risk is adjusted to make decompression illness less
probable. A more efficient sequential design (Fig.
14.28) accepts profiles as low risk before reaching
the maximum number of trials if no incidents have
occurred, while profiles are rejected as high risk
after a few trials if incidents occur early in the
series (Homer & Weathersby 1985).

The statistical characteristics of fixed and
sequential designs are described by power curves
(Fig. 14.29) in which the x axis is the true (but
unknown) P(DCI) of a‘profile, and the y axis is the
probability of accepting that profile. The results of
évery trial design are represented by a different
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F1G. 14.29. A typical power curve for a trial design shows how the probability of accepting or rejecting a

profile varies with the true P(DCI). There is a different power curve for every trial design. Alpha is the

probability of rejecting a ‘safe’ profile and beta is the probability of accepting an ‘unsafe’ profile. (Survanshi ef
al. 1992)

power curve. If the true P(DCI) in Fig. 14.29 were
Py, for example, the probability of accepting the
profile would be good, and the type I statistical
error of rejecting a satisfactory profile (indicated by

Py, the probability of rejecting the profile would
also be good, and the type II error of accepting an
unsatisfactory profile (indicated by beta) would be
low. The region between P, and P, is the zone of
indifference, which is small for statistically certain
results.

Power curves are helpful for accepting or reject-
ing test profiles. Large trials have steep power
curves and small zones of indifference, but most
trials are small with indifferent outcomes. Figure
14.30 shows power curves for the outcomes of
three fixed trial designs, all having raw decom-
pression illness incidences of 5%. A fixed rule of
two incidents in 40 dives has an 80% chance of
rejecting profiles with true risks of 8% or more.
Changing the rejection rule to 15 incidents in 300
dives rejects profiles with risks of 6% or more, but
the difference between 6 and 8% profiles may be
too small to justify the large increase in the
number of dives per profile since fewer profiles
can be tested. A similar analysis for sequential trial
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F1c. 14.30. Power curves for three fixed design trials
each with a raw incidence of decompression illness of
5%. The three rejection criteria are: 2/40, 5/100 and 15/
300 incidents/dive trials. The probability of accepting
a profile is shown against the true P(DCI). (Repro-
duced with permission from Homer & Weathersby

1985; Survanshi et al. 1992)

T
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designs shows that they provide the same infor-
mation as fixed designs but require fewer dives
(Homer & Weathersby 1985; Survanshi et al. 1992).

Validation trials seek to ensure that profiles do
not exceed some maximum acceptable incidence of
decompression illness. A validation trial can be
successful even if the validated profiles are overly
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conservative, and the number of observed inci-
dents is less than expected. Verification trials, on
the other hand, test the accuracy of estimated risk
and require trials of profiles that may exceed oper-
ationally acceptable risk. This avoids overly
conservative procedures and improves risk esti-
mate precision but results in more incidents
during testing than would be acceptable in the
field. While validation trials might take place
under closely controlled open-water conditions,
verification trials can only be conducted safely
under laboratory conditions with rigorous medical
supervision.

Having selected a trial design, test profiles and
criteria for changing these profiles must be chosen.
Profile changes are made by adjusting the model
parameters as a result of an unacceptable number
of profile failures or serious incidents of decom-
pression illness. Profile change criteria are estab-
lished before testing begins and are a matter of
judgement. When the profiles are recomputed
after a change, those which are judged more
conservative (i.e. lower risk) than previously
accepted profiles are usually not retested.

Test profile selection depends upon the type of
diving. For single dive schedules, no-stop times,
maximum bottom times and one intermediate time
might be chosen at representative operational
depths (Thalmann 1984, 1985, 1986, 1989a). For
repetitive diving, a factorial design of depth, bot-
tom time and surface interval might be used (Faw-
cett et al. 1992). Another approach is to choose
dives for which there is little experience in the
primary data. For dives which extrapolate beyond
the range or mode of the primary data, cautious
testing is warranted.

For decompression procedures that are new, are
of uncertain risk, or are significantly different from
established procedures, controlled chamber trials
must be conducted before open-water trials are
possible. Controlled field trials of new procedures
are justified without previous chamber trials, how-
ever, if they represent minor modifications to
existing procedures or when sufficient data exist to
establish reasonable certainty of a low risk of de-
compression illness. Schreiner and Hamilton
(1989) discussed decision guidelines for decom-
pression procedure development in a workshop
on procedure validation.

Two approaches to testing operational con-
ditions are possible. In the first, chamber dives or
closely controlled open-water dives attempt to

reproduce the operational workload and water
temperature. The second approach conducts tests
under conditions believed to impose near-maxi-
mum decompression stress. The evidence con-
cerning what constitutes maximum stress is
mixed, however, one study finding a large differ-
ence between dry, resting and wet, working divers
(Vann 1982a) and another study finding little
difference between dry and immersed exposures
(Weathersby et al. 1990). While recognizing these
uncertainties, US Navy decompression trials are
conducted with immersed divers who perform
mild exercise at depth and rest during decom-
pression (Thalmann 1984, 1985, 1986, 1989a). The
water temperature is adjusted to produce the
maximum expected operational cold stress, while
the inspired oxygen partial pressure is maintained
at its lowest expected level.

Ideally, profiles are tested exactly as they are
computed, but ear clearing and chamber oper-
ations cause occasional unplanned deviations. The
uncertainty this introduces is eliminated by com-
puting profiles in real-time according to the algor-
ithm being tested (Thalmann 1983, 1984, 1986).
This provides a record of the exact test profiles for
subsequent use as primary data. Diver-worn
computers in which depth is adjusted according to
the algorithm while simultaneously recording the
depth—time profile may eventually allow open-
water trials to be used as primary data.

When a dive series is finished, the depth-time
domain over which the tables will be used is
defined by acceptable risk at maximum reasonable
dive times. For procedures computed by deter-
ministic models, every profile must be treated
independently, and the uncertainty of the overall
incidence of decompression illness is similar to the
uncertainties of the individual profiles. For pro-
cedures computed by probabilistic models, on the
other hand, estimation of an overall risk for the
entire trial is justified when the profiles are iso-risk
and quantitatively derived from empirical data.
Thus probabilistic models provide a more accurate
estimate of overall risk of decompression illness
for a given trial size than do deterministic models.
Several iterations of trials may be necessary before
a set of procedures is judged to be ready for field
use (Hamilton & Schreiner 1989).
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