SCR Specialty: Semiclosed Rebreather

Spezial-Kurs für Sporttaucher zum halbgeschlossenen Kreislaufgerät

DRÄGER DOLPHIN ®

Kursüberblick

- Anforderungen
- Ziele
- Kursinhalt / Theorie
- Kursinhalt / Praxis
- Prüfung

Kursüberblick (1)

- Anforderungen:
- Mindestalter 18 Jahre
- PADI Advanced Open Water Diver, oder: Äquivalenz,
 z.B.: CMAS **
- Rescue Niveau empfehlenswert
- mindestens 50 TG geloggt
- PADI NITROX Diver oder: Äquivalenz

Kursüberblick (2)

- Ziele:
- vertiefte Kenntnisse und Fertigkeiten
- über semiclosed Rebreather (SCR)
- Vertiefung "Sauerstoff-Thematik"
- Vertiefung "Gas-Handling"

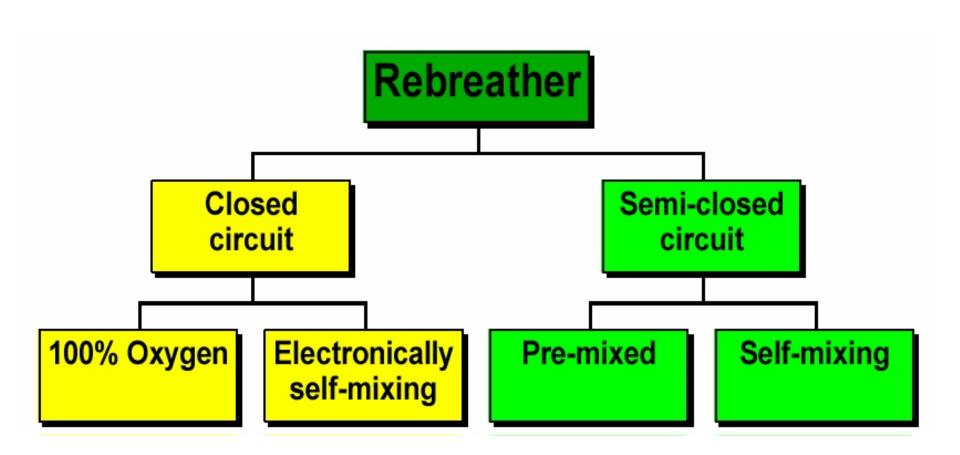
Kursüberblick (3)

- Kursinhalt / Theorie:
- Funktionsweise / Typen von SCRs
- Vorteile / Einsatzgebiete / Nachteile
- Besonderheiten
- Geschichte des Rebreather-Tauchens
- Überblick über diverse Rebreather
- Gefahren beim Rebreather-Tauchen
- Tauchgangs (TG)-Planung

Kursüberblick (4)

- Kursinhalt / Theorie:
- die TG Planungsblätter
- Tauchen mit dem SCR DRÄGER DOLPHIN
- das SCR Manual

Kursüberblick (5)

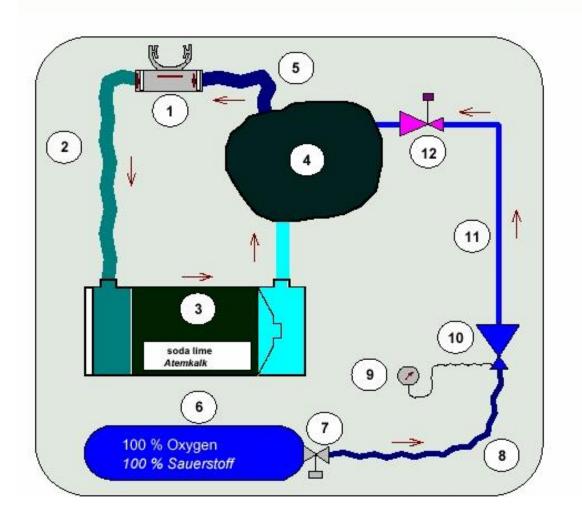

- Kursinhalt / Praxis:
- die Komponenten des DOLPHIN
- Gerätehandling
- Post- / Pre- / Dive-Checks
- Pflege, Wartung & Desinfektion
- Transport & Lagerung
- wet exercises, d.h.: Pool Training und
- die Freiwasser TGs

Kursüberblick (6)

- Die SCR Diver Prüfung:
- schriftlicher (z.T. Multiple-Choice) Test
- 35 Fragen ->
- 28 müssen korrekt beantwortet werden
- Taschenrechner, Deco-(Luft) Tabelle,
- z.b.: Deco 92 Version2 oder Deco 2000

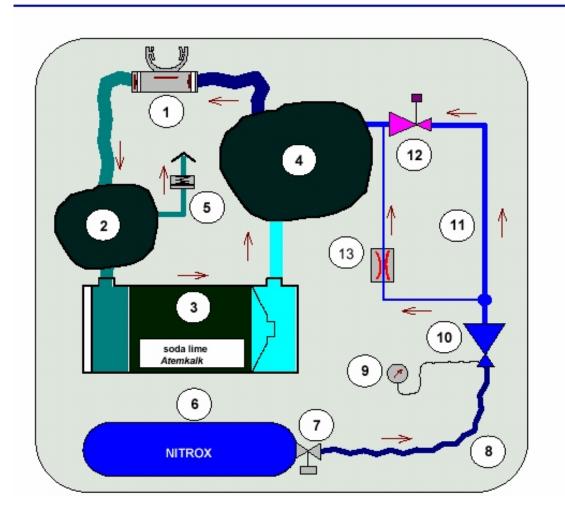
Funktionsweise / Typen (1)

Funktionsweise / Typen (2)


- Prinzipielle Funktion von Rebreathern
- erklärt anhand Schnittzeichnungen
- eines Oxygen Rebreathers
- eines SCR (semi closed rebreathers)
- eines CCR (closed circuit rebreathers)
- mit freundlicher Genehmigung von DRÄGER DIVE
- Dank an Tobias Dräger, ehem. Director DRÄGER DIVE!

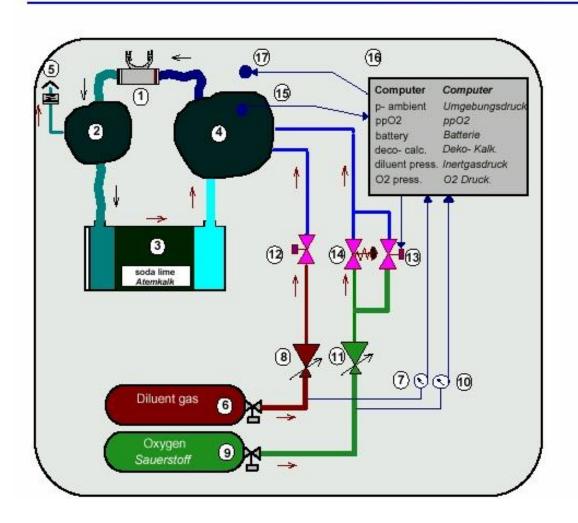
Funktionsweise / Typen (3)

Closed circuit oxygen rebreather


- 1 mouthpiece
- 2 exhalation hose
- 3 CO₂-Scrubber cartridge
- 4 breathing bag
- 5 inhalation hose
- 6 gas cylinder
- 7 cylinder valve
- 8 hp-line
- 9 pressure gauge with hose
- 10 pressure reducer
- 11 mp-line
- 12 lung demand valve

Funktionsweise / Typen (4)

Pre-mixed semi-closed circuit rebreather


- 1 mouthpiece
- 2 exhalation breathing bag
- 3 CO₂-Scrubber cartridge
- 4 inhalation breathing bag
- 5 pressure relief-valve
- 6 gas cylinder nitrox
- 7 cylinder valve
- 8 hp-line
- 9 pressure gauge with hose
- 10 pressure reducer
- 11 mp-line
- 12 lung demand valve
- 13 dosage unit

Funktionsweise / Typen (5)

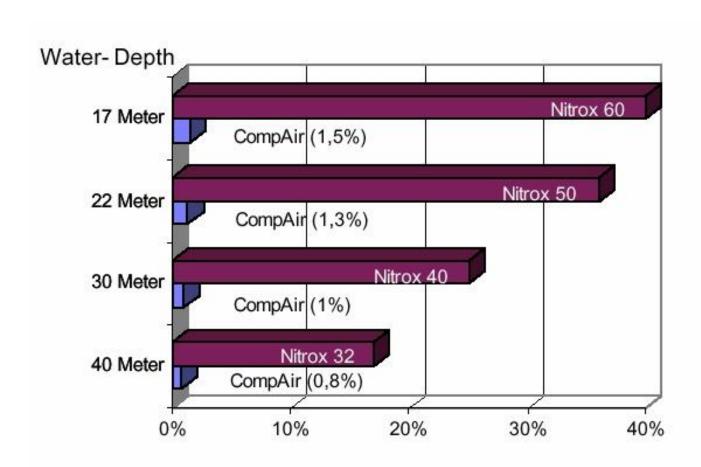
Self-mixing closed circuit rebreather

- 1 mouthpiece
- 2 exhalation breathing bag
- 3 CO₂-Scrubber cartridge
- 4 inhalation breathing bag
- 5 pressure relief-valve
- 6 gas cylinder diluent (He, N2, ...)
- 7 pressure gauge diluent
- 8 pressure reducer diluent
- 9 gas cylinder O₂
- 10 pressure gauge O₂
- 11 pressure reducer O₂
- 12 lung demand bypass valve
- 13 solenoid valve O2
- 14 bypass valve O₂
- 15 O₂ sensors
- 16 Computer
- 17 display

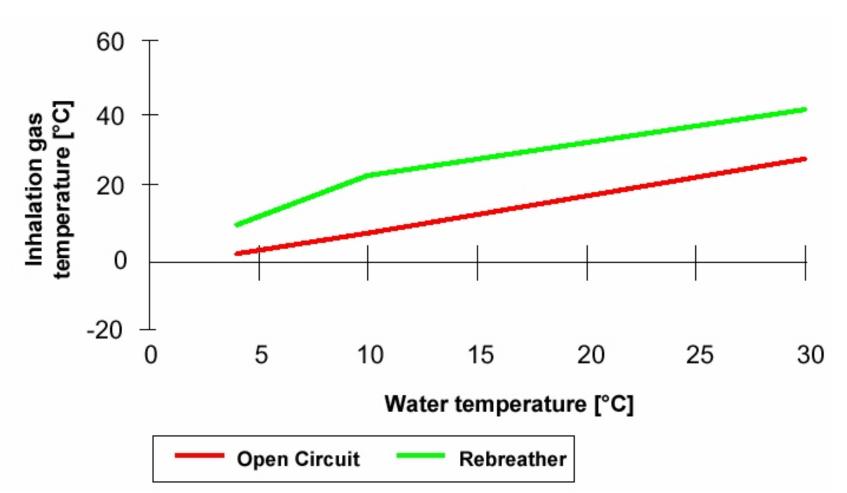
Funktionsweise / Typen (6)

Table 18-5. Single-Depth Oxygen Exposure Limits.

Depth	Maximum Oxygen Time
25 fsw	240 minutes
30 fsw	80 minutes
35 fsw	25 minutes
40 fsw	15 minutes
50 fsw	10 minutes


Aus dem USN Diving Manual: maximale Tauchtiefen und TG-Dauer für Sauerstoffrebreather

Vorteile / Einsatzgebiete (1)


- kaum Luft-Blasen / Geräusche
- -> Militär, UW-Photographie, Höhlentauchen
- feuchte / warme Atemluft sowie
- ökonomischere Ausnutzung der Atemgase
- -> länger und angenehmer tauchen!
- -> tiefer tauchen (mit Helium als Diluent!)

Vorteile / Einsatzgebiete (2)

Utilisation

Vorteile / Einsatzgebiete (3)

Nachteile!

- Komplexere TG Planung
- spezielle Gefahren
- umfangreichere Ausrüstung / Ersatzteile / Kosten
- längere TG-Vorbereitung und TG-Nachbereitung
- Anschaffungspreis hoch
- Ausbildung
- Gewicht: (Dolphin tauchfertig wiegt ca. 17 kg)
- Logistik:
- Gase, Kalk, MSDS, ...

Nachteile!

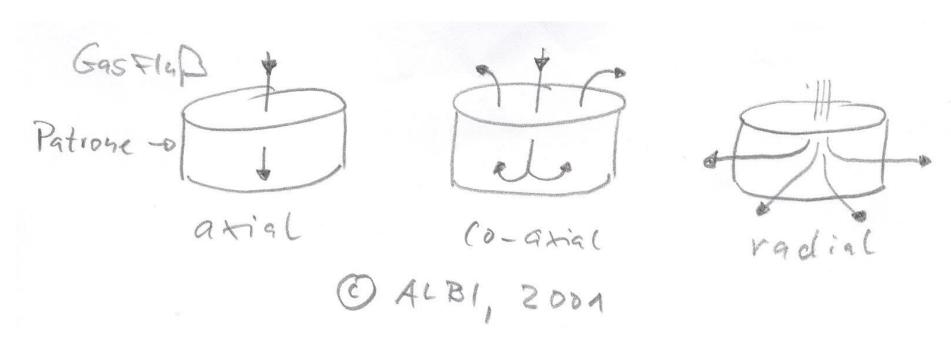
- MSDS: Material Safety Data Sheet
- zum Transport im Flugzeug

To whom it may concern,

We hereby certify that the Sodalime type DiveSorb® manufactured by:

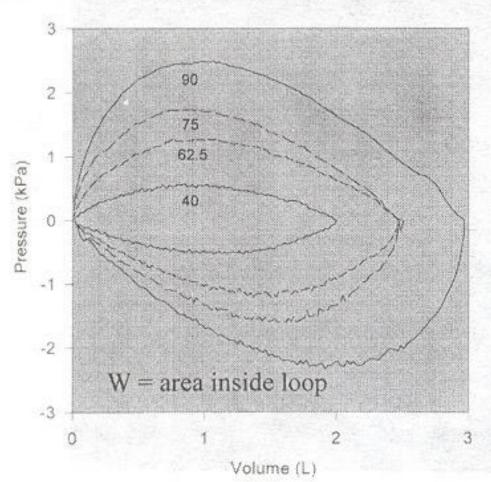
Dräger Sicherheitstechnik GmbH, Lübeck Germany, contains less then 4% (four Per Cent) Caustic Soda (NaOH) and is classified as non-hazardous and that it is not restricted in any way for transport, by car, ship or airplane. The label showing the corrosive symbol is a label for USE of the product – NOT for transport.

Signed, 9th March 2001


J.J.P.M. Loomans

DrägerDive

• Atemkalk (Scrubber)

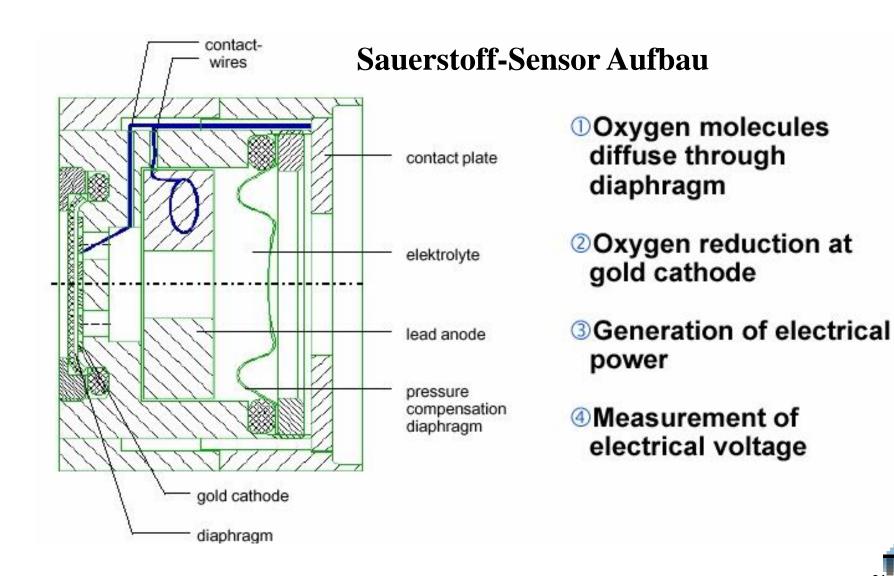


- Scrubber Design (Design der Kalkpatrone)
- Sauerstoff Kontrolle
- WOB (work of breathing)

+ Feuchtigkeit, Staubgehalt, Granularität des Atemkalks

Work of Breathing (W) Changes With Ventilation (lpm)

WOB = work of breathing im PV Diagramm


Y Achse: P = Druck

X Achse: **V** = Volumen

Sauerstoff Monitor, z. B.: OXYgauge® von DRÄGER

Geschichte des Rebreather-Tauchens

- Sowie:
- Überblick über diverse Rebreather
- Siehe separate Datei im Anhang:
- Geschichte.pdf

Gefahren beim Rebreather Tauchen (1)

- Hypercapnie
- Hyperoxie
- Hypoxie
- caustischer Cocktail
- hygienischer "Unfall"
- extreme Dekompressionsverpflichtungen

Gefahren beim Rebreather Tauchen (2)

- Hyperoxische Myopie
- Mittelohr Sauerstoffabsorptions-Syndrom
- Allergische Reaktionen
- Kohlenmonoxid Vergiftung

Gefahren beim Rebreather Tauchen (3)

Hypercapnie:

- Kohlendioxid Vergiftung
- Symptome: beschleunigte Atmung, Atemnot, Kopfschmerzen, Schwindel
- Ursachen: Probleme mit dem Atemkalk, Channelling, Pendelatmung, Esoufflement

Gefahren beim Rebreather Tauchen (4)

- Hyperoxie:
- Sauerstoff Vergiftung
- ZNS / Paul Bert
- Pulmonal / James Lorrain Smith
- ZNS Symptome: V.E.R.S.U.S.
- (Visuelle Störungen, Extremes Ohrenklingeln, Rastlosigkeit, Euphorie, Angst, Spontane Krämpfe, Zuckungen, Unbehagen, Übelkeit, Schwindel)
- rasch / ohne Vorwarnung!

Gefahren beim Rebreather Tauchen (5)

Hyperoxie:

- Ursachen: MOD überschritten, falsche TG Planung, falscher Pre-Mix
- Vorsicht: Sauerstoffpartialdruck Grenzen!
- zwischen 1,2 und 1,6 atm pO₂
- Vorsicht bei:
 - Stress
 - körperliche Anstrengung
 - Medikamente

Gefahren beim Rebreather Tauchen (6)

Hypoxie:

- Sauerstoffunterversorgung
- (Symptome): Sehstörungen, Taubheitsgefühle, Atemnot, Jucken
- Ursachen: falscher Pre-Mix bzw. Dosierung, Flow-Check vergessen, Düse verstopft, Spülen vergessen, Einschalten vergessen, Atemgase verunreinigt oder verbraucht (Fini!)

Gefahren beim Rebreather Tauchen (6a)

- Hypoxie:
- Einschalten vergessen:

Gefahren beim Rebreather Tauchen (7)

- Caustischer Cocktail (Mischung Atemkalk + Wasser):
- Symptome: Reizung der Atemwege, unproduktiver Husten, Atemnot, pfeifende Atmung
- seifiger Geschmack der Atemluft, "Gurgeln", Abtrieb, Atemwiderstand
- Ursachen: Wassereinbruch in den Scrubber
- Gegenmittel: Auxiloson (Cortisonspray)

Gefahren beim Rebreather Tauchen (8)

- Hygienischer "Unfall":
- Symptome: je nach dem ...
- Ursachen: "vergessene" Desinfektion,
- unsachgemäßes Trocknen, Lagern, ...

Gefahren beim Rebreather Tauchen (9)

- Extreme Dekompressionsverpflichtungen:
- i.d.R. nur bei CCR
- und bei Helium

Gefahren beim Rebreather Tauchen (10)

- Hyperoxische Myopie:
- sauerstoffbedingte Kurzsichtigkeit
- durch Linsentrübung
- > 45 h, > 1,2 atm pO_2
- Mittelohr Sauerstoffabsorptions-Syndrom:
- Barotrauma an der Oberfläche

Gefahren beim Rebreather Tauchen (11)

- Allergische Reaktionen:
- Gummi, Kunststoffe, Desinfektionsmittel
- -> anaphylaktischer Schock!
- Kohlenmonoxid Vergiftung:
- durch Rauchen
- Zunahme des Partialdrucks in der Tiefe!

Vermeidung der Gefahren

- TG Planung!
- Sorgfältiger Zusammenbau!
- Wartung/Pflege!
- Kontrolle mit Instrumenten!
- Nahe der Oberfläche nicht mit dem Rebreather atmen!
- Im Zweifel auf das Bail-out System wechseln!

Vermeidung der Gefahren

Zusammenfassung:

If in doubt, bail out !!!

TG Planung

- EAD
- MOD
- Best Mix
- Sauerstoffverbrauch
- Sauerstoffgehalt im Atembeutel
- Standzeit / maximale Tauchzeit
- CNS / %CNS / OTU

TG Planung (1)

- <u>EAD:</u>
- Equivalent Air Depth
- EAD [m] = (%Stickstoff / 79) * (Tiefe + 10) -10
- Bsp.: TG mit Nitrox 45 auf 24 m:
- 55 / 79 * (24 +10) -10 = 13,67m
- d.h.: EAD entspricht 14 m (aufrunden!)

TG Planung (2)

- MOD:
- Maximum Operation Depth
- MOD [m] = max. erlaubter $pO_2 * 10 / O_2$ Anteil -10
- Bsp. für Nitrox 45: 1,6 * 10 / 0,45 10
- 16 / 0,45 10 = 25,55 m
- also MOD = 25 m (abrunden!)

TG Planung (3)

- maximal erlaubter pO₂:
- absolute Obergrenze: <u>1,6 atm</u>
- contingency planning
- Deco Phase
- max. Wert für durchschnittliche TGs:

1,4 atm

- Bottom Phase
- siehe Nitrox Diver Manual / Kurs

TG Planung (4)

- maximal erlaubter pO₂:
- abzuziehen sind jeweils 0,1 atm für
- kaltes Wasser
- Grundzeit länger als 30 min.
- Dekompressions-TG
- Anstrengung
- Wiederholungs-TG

TG Planung (5)

- Best Mix:
- Best Mix Sauerstoff:
- O₂ Anteil = 1,6 / Umgebungsdruck
- Best Mix Stickstoff:
- N₂ Anteil = 4,0 / Umgebungsdruck

TG Planung (6)

- Best Mix Beispiele:
- Best Mix O₂: TG 32 m
- O_2 Anteil = 1,6 / 4,2 = 0,38
- also Nitrox 38
- Best Mix N₂: TG 70 m
- N_2 Anteil = 4,0 / 8,0 = 0,5
- kein Nitrox 50 !, da pO₂: 0,5 * 8 = 4 Bar !

TG Planung (7)

- Best Mix Beispiele:
- deshalb O_2 Anteil = 1,6 / 8,0 = 0,2
- also für den 70 m TG:
- 20 % O₂, 50% N₂, 30 % He
- bedeutet: Rest Helium = 30 %
- wird als TRIMIX bezeichnet: Tx 20/30
- zu Risiken und Nebenwirkungen leßt das TRIMIX Manual und befragt euren TEC-Instruktor!

TG Planung (8)

Sauerstoffverbrauch:

- in L / min.
- Ruhe: 0,5 L / min.
- gering: 0,7 0,8 L / min.
- normal: 1,0 L / min.
- mittel: 1,25 L / min.
- hoch: > 2.5 L/min.
- siehe NOAA Manual, 3-7

TG Planung (9)

Sauerstoffgehalt im Atembeutel:

- eingeschwungener Zustand, ca.:
- O₂ Anteil im Atembeutel =
- (O₂ Anteil Pre-Mix * Flow) O₂ Verbrauch
- Flow O₂ Verbrauch
- oder Faustformel: 80 % Regel
- Bsp.: Pre-Mix Nitrox 60, d.h. im Atembeutel
- bei mittlerer Anstrengung 60 * 0,8 = 48
- also ca. (!) 48 % O₂

TG Planung (10)

- Sauerstoffgehalt im Atembeutel / Bsp.:
- Nitrox 32, Flow (Düse) ca. 14,2 L / min.
- Sauerstoffverbrauch sei 1,5 L / min.
- (0.32 * 14.2) 1.5 / 14.2 1.5 = 0.239
- also ca. (abrunden!) 23 % O₂ im Atembeutel!
- D.h.: EAD mit 77 % N₂ berechnen statt mit 68 % !!!

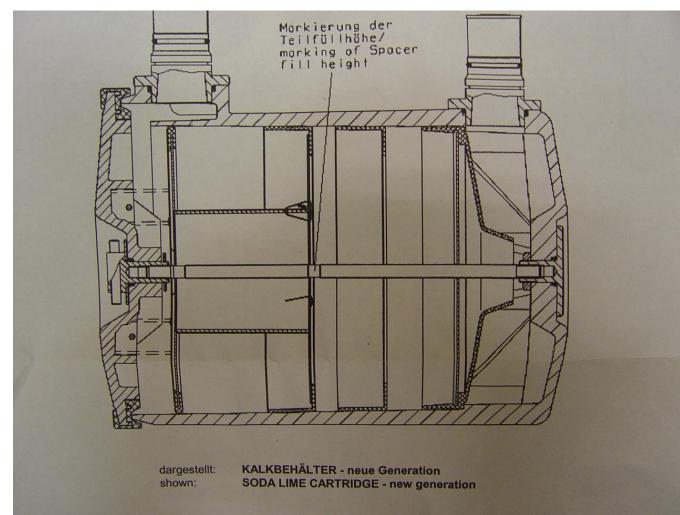
TG Planung (11)

- OBACHT!
- MOD aus Pre-Mix!

 EAD aus Sauerstoffgehalt im Atembeutel!

TG Planung (12)

- Standzeit:
- maximal mögliche Verwendungszeit des Atemkalks;
- DOLPHIN: ca 3 h, laut DRÄGER: 2 h!
- Stand Mai 2002: für Ägypten/Europa bis 4 h zugelassen!
- verteilt auf mehrere TG an einem Tag
- korrektes Kalk-Handling vorausgesetzt!


TG Planung (12 a)

- Standzeit mit Reduzierstück:
- laut
- DRÄGER:
- max. 60 min.!

TG Planung (12 b)

- Einbau des Reduzierstücks:
- (Spacer)

TG Planung (13)

- maximale Tauchzeit (pro TG):
- aus Atemgasvorrat und Flow
- Bsp.: Pre-Mix Flasche 4 L @ 200 Bar
- 4 L * 180 = 720 L
- Flow sei (z.B. für Nitrox 50) 7 L / min.,
- 720 / 7 = 102 min.
- max. TG-Dauer

TG Planung (14)

1,45

1,40

- Sauerstoff-Uhr / CNS Clock / %CNS:
- (CNS: ZNS; zentrales Nervensystem)
- NOAA Tabelle für maximale Sauerstoffexposition

135

150

PO₂ [atm] Maximum Single Exposure [min.]
 1,60
 1,55
 1,50
 120

TG Planung (15)

• Bsp. mit %CNS:

Oxygen PO ₂	Single Dive Limit												
(atm)	(minutes)	5	10	15	20	25	30	35	40	45	50	55	60
1.20	210	2%	5%	7%	10%	12%	14%	17%	19%	21%	24%	26%	29%
1.25	195	3%	5%	8%	10%	13%	15%	18%	21%	23%	26%	28%	31%
1.30	180	3%	6%	8%	11%	14%	17%	19%	22%	25%	28%	31%	33%
1.35	165	3%	6%	9%	12%	15%	18%	21%	24%	27%	30%	33%	36%
1.40	150	3%	7%	10%	13%	17%	20%	23%	27%	30%	33%	37%	40%
1.45	135	4%	7%	11%	15%	19%	22%	26%	30%	33%	37%	41%	44%
1.50	120	4%	8%	13%	17%	21%	25%	29%	33%	38%	42%	46%	50%
1.55	82	6%	12%	18%	24%	30%	36%	42%	48%	55%	61%	67%	73%
1.60	45	11%	22%	33%	44%	56%	67%	78%	89%	100%	111%	122%	133%

TG Planung (16)

- OTU (oxygen tolerance units):
- 1 OTU = Dosis 100 % O₂ bei 1 atm in 1 Minute aufgenommen
- für REPEX (repetitive excursions) Methode
- i.d.R nur bei CCR bei längeren Tauchexpeditionen und bei längeren TGs immer bei max. pO₂

TG Planung (17)

OTU <u>Tabelle:</u> Oxygen Tolerance Units; aus NOAA V4 2001, Table 3.7, S. 3-25

PO ₂	OTU /	pO <u>2</u>	OTU /
[atm]	min.	[atm]	min.
0,50	0,00	1,25	1,39
0,55	0,15	1,30	1,48
0,60	0,27	1,35	1,56
0,65	0,37	1,40	1,63
0,70	0,47	1,45	1,70
0,75	0,56	1,50	1,78
0,80	0,65	1,55	1,85
0,85	0,74	1,60	1,92
0,90	0,83	1,65	2,00
0.95	0,92	1,70	2,07
1,00	1,00	1,75	2,14
1,05	1,07	1,80	2,22
1,10	1,16	1,85	2,28
1,15	1,23	1,90	2,35
1,20	1,32	2,00	2,49

Tabelle 155: OTU Tabelle nach Hamilton / REPEX, I

TG Planung (18)

REPEX Tabelle

Tauch Tage	Durchschnittliche Dosis	Maximale Total-Dosis (Summe für alle Tage)
1	850	850
2	700	1400
3	620	1860
4	525	2100
5	460	2300
6	420	2520
7	380	2660
8	350	2800
9	330	2970
10	310	3100
11	300	3300
12	300	3600
13	300	3900
14	300	4200
15 – 30	300	Nach Anforderung

Die TG Planungsblätter

- Für SCR DOLPHIN
- zwei Varianten:
- -> für vorgegebenen Pre-Mix
- -> oder für Mission, also für:
- vorgegebene Tiefe / Zeit
- siehe separate Datei:
- Planblatt.pps

Tauchen mit dem SCR DRÄGER DOLPHIN

- Besonderheiten bei der TG Planung
- Komponenten
- Zusammenbau
- Over-/Underpressure Checks
- Pre-/Post Dive Checks
- Auseinanderbauen & Desinfizieren
- Pflege & Wartung
- Wet Excercises

Tauchen mit dem DOLPHIN (1)

- Besonderheiten bei der TG Planung:
- mit der 5 L Pre-Mix Flasche kann die maximale Standzeit überschritten werden!
- Ab ca. 20 30 Bar Restdruck kann die Konstantdosierung aussetzen!!
- Minimaler / maximaler Flow beachten !!!

Tauchen mit dem DOLPHIN (1a)

- Neu in 2003:
- abweichend vom DRÄGER DOLPHIN Manual (keine Deko-TGs zugelassen):
- BSAC (mit TDI, IANTD) erlauben: "min dec" (minimale Dekompression)!
- Max. 10 min., tiefster Stopp 6 m
- Voraussetzungen: Deko-Plan, Gasreserven, Bail Out etc. und entspr. Zertifizierung des Tauchers !!!

Tauchen mit dem DOLPHIN (2)

Komponenten:

- 1. Mundstück mit Drehwalzenschieber und Richtungsventilen
- 2. Atemschläuche
- 3. Dosiereinheit mit den Düsen und lungenautomatischem Bypass
- 4. Ausatembeutel (Gegenlunge)
- 5. Überdruckventil
- 6. Behälter für den Atemkalk (Scrubber)

Tauchen mit dem DOLPHIN (3)

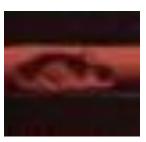
- 7. Einatembeutel
- 8. Nitrox Ventil mit
- 9. Druckminderer (1. Stufe)
- 10. Nitrox Mano-(Fini)meter
- 11. Pre-Mix Flasche
- 12. Kunststoffgehäuse, Schale
- 13. Integriertes Jacket
- 14. Bail-Out System (alternative Luftversorgung)

Tauchen mit dem DOLPHIN (4)

Tauchen mit dem DOLPHIN (5)

Zusammenbau:

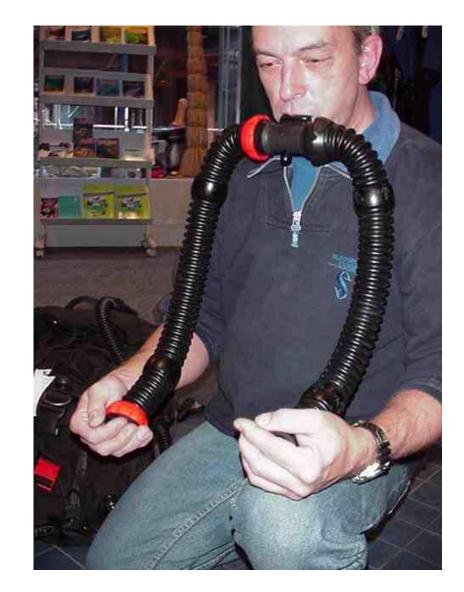
- prinzipiell alle Teile vor dem Zusammenbau prüfen!
- auf Beschädigungen, Risse, Löcher, Verschmutzungen, Kalkpartikel, ...
- Die Steckverbindungen müssen hörbar einrasten und danach auf korrekten Sitz geprüft werden
- im Zweifel: Molykote / Halocarbon


Tauchen mit dem DOLPHIN (6)

- Zusammenbau:
- Molykote 111 f
 ür O-Ringe, LP Teile
- Halocarbon 25S für HD Teile
- Bsp.:
- schwergängiger
- Dreh-
- walzenschieber:

Tauchen mit dem DOLPHIN (7)

- defektes Richtungsventil:
- Risse, Löcher:

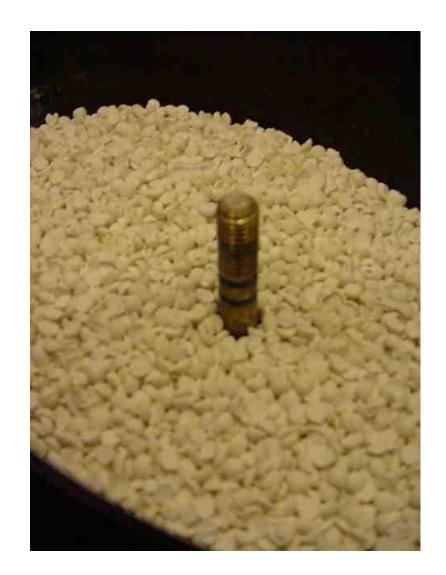

- ungenügende Verschraubungen:
- Kalkpartikel o.ä. auf den Dichtflächen:

Tauchen mit dem DOLPHIN (8)

- Test beim
- Zusammenbau:

Tauchen mit dem DOLPHIN (9)

- Patrone kurz
- Ausschwenken;
- Befüllen der
- Kalkpatrone,
- z.B. im Freien:
- einrütteln
- Verdichten (!) zur
- Vermeidung des
- Channeling


Tauchen mit dem DOLPHIN (10)

- Befüllen der
- Kalkpatrone:
- Verdichten
- bzw. Ein-
- setzen der
- Manschette

Tauchen mit dem DOLPHIN (11)

- Befüllen der
- Kalkpatrone:
- bis zur
- max. Einfüllhöhe
- (Markierung)

Tauchen mit dem DOLPHIN (12)

- Flowmeter zur Kontrolle des Flow
- = Massenfluß an der Oberfläche
- L / min.:
- erforder-
- licher Flow
- abhängig
- von Pre-Mix!
- s. Tabelle!

Tauchen m. d. DOLPHIN (12a)

Pre-Mix, Flow und Tauchzeiten bei einem Gasvorrat 4 L
 200 Bar:

Pre-Mix:	Max. Tauchtiefe:	Flow: (I/min.)	Mittlere Tauchzeit:
[% O ₂] / Farbkodierung	(m)	minimal /	(min.)
		maximal	
32 / ohne	40	14,2 / 16,9	46
40 / blau	30	9,4 / 11,3	67
50 / rot	22	6,55 / 7,95	95
60 / schwarz	17	5,1 / 6,4	124

Tauchen m. d. DOLPHIN (12 b)

- Obacht: Pool Düse für 100 % Sauerstoff
- Flow ca. 2,5 L /min.

Tauchen mit dem DOLPHIN (13)

- Overpressure Check
- Bypaßventil testen
- Underpressure Check
- in 3 5 m Wassertiefe:
- Pre-Dive Check (Bubble-/Buddy Check)!
- Dive Checks (Geräusche, Tarierung, Fini, Ventile, Dosierung)

Tauchen mit dem DOLPHIN (14)

- Post-Dive Check:
- Kalkpatrone / Atembeutel auf Wassereinbruch kontrollieren
- nach dem Tauchen:
- auseinanderbauen, reinigen
- desinfizieren und trocknen!

Tauchen mit dem DOLPHIN (15)

- Kalkentsorgung ----->
- Spülen mit klarem Wasser
- Reinigungsmittel: EW80 clean
- Desinfektionsmittel: EW80 des

Desimektionsmitter. Evvou des

nachspülen und:

SEHR GUT TROCKNEN

(!!!) lassen

(u.U. Fön)

Tauchen mit dem DOLPHIN (16)

- Wet Excercises (Pool & Freiwasser):
- 3-maliges Spülen der Loop (Abtauchen, Auftauchen, nach Bail-Out Übungen)

Tauchen mit dem DOLPHIN (17)

- Wet Excercises (Pool & Freiwasser):
- Tarieren
- Atmen in verschiedenen
- Lagen
- Herausnehmen des
- Mundstückes,
- Handhabung
- des Drehwalzenschiebers

Tauchen mit dem DOLPHIN (18)

- Wet Excercises (Pool & Freiwasser):
- Erlangung des verlorengegangenen Mundstückes

Tauchen mit dem DOLPHIN (19)

- Wet Excercises (Pool & Freiwasser):
- Ausschütten der Atemschläuche
- Wechsel aufs Bail-Out
- Wechselatmung

Tauchen mit dem DOLPHIN (20)

- Wet Excercises (Pool & Freiwasser):
- Ablegen des Geräts, Einstellen des Überdruckventils
- simulierte Deko-Stopps
- in 9, 6, und 3 m Tiefe

Tauchen mit dem DOLPHIN (21)

- Wet Excercises (Pool & Freiwasser):
- Warum: simulierte Deko-Stopps als Übung?
- Sporttaucher: empfohlener / erforderlicher Sicherheits-Stopp: 3 - 5 min. / 3 - 5 m.
- Tec: präzises Einhalten der Zeit- / Tiefenvorgaben wg.:
- OxTox / DCI Hits (andere Gemische)!!!

Tauchen mit dem DOLPHIN (22)

Ohne sorgfältig gefüllten Scrubber zu tauchen ist in etwa so wie mit 200 Sachen und geschlossenen Augen durch die Ortschaft zu donnern!

ALBI, 2001 (oder: ohne Fallschirm aus dem Flugzeug zu springen ...)

Tauchen mit dem DOLPHIN (23)

Would you like your Scrubber sunny side up?

OBACHT:

Lager- & Betriebstemperaturen für Atemkalk und die Sauerstoff-Sensoren beachten !!!

Tauchcomputer & SCR

- Standard (Luft-) Computer: NO GO!
- (bzw.: Bottom Timer oder back-up!)
- NITROX Computer: programmieren auf Stickstoffgehalt des Atembeutels!
- (Pre-Mix Einstellung gibt lediglich ZNS-Belastung wieder!)
- SCR: Aladin Air ZO2 mit oxy2 Sensor
- Oder andere Multi-Gas Computer mit Sensoren
- (CCR: set point programmieren)

Das SCR Manual

- Zusätzlich:
- Index
- Schnittzeichnungen
- DECO 92 Version 2
- Glossar
- Synonyme
- TG Planungsblätter

provided by:

THE

SUB MARINE CONSULTING

GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

WWW.SMC-DE.COM

TG Planungsblätter für SCR

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv - San Francisco - Stuftgart

- Zwei Planungsblätter für SCR
- mit den Formeln
- -> für vorgegebenen Pre-Mix,
- (vorgegebenes Nitrox)
- -> oder f
 ür vorgebene Mission
- (TG Profil, Tiefe & Zeit)

Planungsblätter Pre-Mix (1)

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv - San Francisco - Stuftgart

- Für vorgegebenen Pre-Mix:
- nach Gasanalyse:
- Festlegung max. erlaubter PO₂
- Berechnung MOD
- Max. TG Dauer
- Festlegung Anstrengung / Sauerstoffverbrauch, daraus:
- Sauerstoffgehalt im Atembeutel, und damit
- die EAD

Planungsblätter Pre-Mix (2)

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv - San Francisco - Stuttgart

- Aus der EAD und einer beliebigen Dekompressionstabelle für Pressluft:
- die Nullzeiten
- und die Sauerstoffschädigungen
- des aktuellen
- sowie der vorigen TGs

Planungsblätter Pre-Mix (3)

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv — San Francisco — Stuttgart

- Pre-Mix: 40 %, kaltes Wasser, GZ > 30 min.
- max. erlaubter PO_2 : 1,6 2 * 0,1 = 1,4
- MOD = 14/0,4 10 = 25 m
- 4 L * 180 = 720 L, Flow = 11 L / min.
- 720/11 = 65 min., Verbrauch O₂ 1,2 L/min.
- Atembeutel Anteil O₂ = 0,4 * 11 1,2/(11 1,2)= 0,326, also 32 %
- EAD = 1 0.32 / 0.79 * (25+10) 10 = 20.12 also 21 m

Planungsblätter Pre-Mix (4)

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv - San Francisco - Stuttgart

- EAD 21 m, d.h.: NDL = 31 min
- Wdh.-Gr.: E (31 min) aus Deco 92 V 2
- %CNS = 31 / 150 = 0,206; also 21 %
- OTU = 31 * 1,63 = 50,53; also 51
- vorige bzw. nachfolgende TGs mit
- Stickstoffbelastung (Wdh.-Gr.) und
- Sauerstoffschädigung (%CNS, OTU)
- berücksichtigen!

Planungsblätter Mission (1)

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv — San Francisco — Stuttgart

- Vorgebene Tiefe / Zeit: Jura, 39 m / 25 min.
- Best Mix = 1.6 / 4.9 = 0.326, also Nitrox 32
- Flow 16 L / min., 720 / 16 = 45 min.
- Verbrauch O₂ 0,8 L / min., d.h.:
- Atembeutel Anteil O₂ = 0,32 * 16 0,8 / 15,2 = 0,284;
 d.h. Nitrox 28, daraus:
- EAD = 34,65 (35 m) bedeutet (Deco 92 V2):
- (36 m / 27 min.) Deko: 9m/2' 6m/6' 3m/13'
- Konsequenz: max. erlaubter PO₂: 1,5
- (u.U auch nur 1,4 wg. kaltem Wasser ...)

Planungsblätter Mission (2)

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv — San Francisco — Stuttgart

- Deshalb: Best Mix = 1,5 / 4,9 = 0,306
- entspricht Nitrox 30
- bzw.: 1,4 / 4,9 = 0,285, wäre EANx 28
- OBACHT:
- nicht regulär betauchbar!
- da Mindest-Pre-Mix Nitrox 32 für SCR DOLPHIN
- d.h. Gasanalyse mindestens 31 % O₂ !!!
- aber It. Best Mix Nitrox 30 (bzw. 28) maximal einsetzbar!

TG Planer SCR (für vorgegebenen Pre-Mix)

• Pre-Mix: % O ₂	nax. erlaubter PO ₂ : 1,6 = Bar
• MOD = <u>max. PO₂ * 10</u> – 10 = <u>*</u> % O ₂ Pre-Mix	<u>10</u> – 10 = m ≤ geplante Tauchtiefe!
Atemgasvorrat = (Flaschenvolumen *	Fülldruck) – 20 = * 20 = Bar
Mittlerer Flow: I / min. für diese	n Pre-Mix
 Max. TG Dauer = Atemgasvorrat / Flo 	w = / = min.
• geplante Tauchzeit: min. ≤ Sta	ndzeit min.!
Anstrengung:; O ₂ -Verbauc	ch: I / min.
• % O ₂ Atembeutel = <u>(% O₂ Pre-Mix * F</u> Flow – O = %O ₂	low) – O ₂ -Verbrauch = ₂ -Verbrauch
• EAD = <u>1 - %O₂ Atembeutel</u> * (Tauchti 0,79	efe +10) - 10 =
* (+ 10) – 10 = m E	AD
Stickstoffsättigung vom vorigen TG:	
• WdhGr.: , OFP: :	n:min ⇒ WdhGr.:,
• ZZ für WdhTG: min.	
 Mit EAD & Tauchzeit + ZZ in Pressluf 	ttabelle bei m:/ min.:
• ⇒ WdhGr:, NDL: min.	
Sauerstoffschädigung vom vorigen TG:	
• %CNS:, OFP:: h:n	nin ⇒ Faktor:
%CNS * Faktor:	, OTU:
aktuell geplanter TG: + %CNS:	, + OTU:
Summe von den TGs: = %CNS:	= OTU:

T	G Planer SCR (für vorgegebene Tiefe / Zeit)				
•	Geplante Tiefe: m geplante Zeit: min. ≤ Standzeit: min.				
•	max. erlaubter PO ₂ : 1,6 = Bar				
•	Best Mix= max. PO ₂ / Tiefe + 10 = / + 10 = % O ₂ Pre-Mix				
•	MOD = $\frac{\text{max. PO}_2 * 10}{\text{% O}_2 \text{ Pre-Mix}} - 10 = \underline{\qquad} * 10 - 10 = \underline{\qquad} m \le \text{geplante Tauchtiefe!}$				
•	Atemgasvorrat = (Flaschenvolumen * Fülldruck) – 20 = * 20 = Bar I				
•	Mittlerer Flow: I / min. für diesen Pre-Mix				
•	Max. TG Dauer = Atemgasvorrat / Flow = $___$ / $___$ = $___$ min. \le geplante Zeit!				
•	Anstrengung:; O ₂ -Verbauch:I / min.				
	% O_2 Atembeutel = $(\% O_2 \text{ Pre-Mix * Flow}) - O_2\text{-Verbrauch} = Flow - O_2\text{-Verbrauch}$ = % O_2				
•	EAD = $\frac{1 - \%O_2 \text{ Atembeutel}}{0.79}$ * (Tauchtiefe +10) – 10 =				
_(0,79 * (+ 10) – 10 = m EAD				
St	ickstoffsättigung vom vorigen TG:				
•	$Wdh.\text{-Gr.:} \ ___ \ , \ OFP: \ __ \ : \ ___ \ h:min \Rightarrow \ Wdh.\text{-Gr.:} \ ___,$				
•	ZZ für WdhTG: min.				
•	Mit EAD & Tauchzeit + ZZ in Presslufttabelle bei m: / min.:				
•	⇒ WdhGr:, NDL: min.				
Sa	nuerstoffschädigung vom vorigen TG:				
•	%CNS: , OFP: : h:min ⇒ Faktor:				
	%CNS * Faktor: , OTU:				
•	aktuell geplanter TG: + %CNS:, + OTU:				
•	Summe von den TGs: = %CNS: , = OTU:				

THE

SUB MARINE CONSULTING

GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

Eine kleine Geschichte des Rebreather Tauchens

Eine kleine Geschichte des Rebreather Tauchens (1)

MARINE CONSULTING

THE

Tel Aviv - San Francisco - Stuttgart

- Exkurs aus dem SCR Rebreather Kurs
- erhebt keinen Anspruch auf Vollständigkeit
- nach bestem Wissen & Gewissen ...
- bzw. was halt so auf dem WEB verfügbar war
- und: ein kleiner Überblick über existierende Rebreather
- wenn ein Gerät hier nicht erwähnt wird, so bedeutet das keinerlei Wertung!

Eine kleine Geschichte des Rebreather Tauchens (2)

SUB MARINE CONSULTING

GROUP

THE

TEL AVIV - SAN FRANCISCO - STUTTGART

- Quellen, hauptsächlich:
- siehe SCR Manual auf: <u>Manuals_4_free!</u>
- bzw.:
- United States Navy (USN) Diving Manual, Version 4
- National Oceanic and Atmospheric Administration (NOAA) Manual Version 4
- und die homepage der DRÄGER Werk AG

SUB MARINE CONSULTING

Der erste Rebreather der Welt (1 AVIV - SAN FRANCISCO - STUITGAR

- 1876, Henry Fleuss:
- Erfinder von Mischgas-Kreislaufgeräten
- kleiner Kupfer-Tank, max. 40 Bar Sauerstoff
- Scrubber: Seil-Knäuel mit Pottasche getränkt
- Gaszufuhr: manuell (on demand!)

THE

MARINE CONSULTING

Der erste Rebreather der Welt (2) AVIV - SAN FRANCISCO - STUTTGART

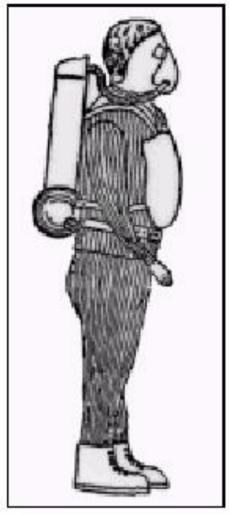


Figure 1-9. Fleuss Apparatus.

Atemkalk und U-Boot Retter (1)

- Ca. 1900, Siebe & Gorman:
- Patentierung von "Oxy-Lite", Atemkalk zur Entfernung von Kohlendioxid (Scrubber)
- Robert Davis:
- Davis-Tauchretter, der erste funktionierende U-Boot Retter

Atemkalk und U-Boot Retter (2) GROUP TEL ALTEL - SAM FRANCISCO - STUTTGART

Man beachte bitte die "Bremse"!

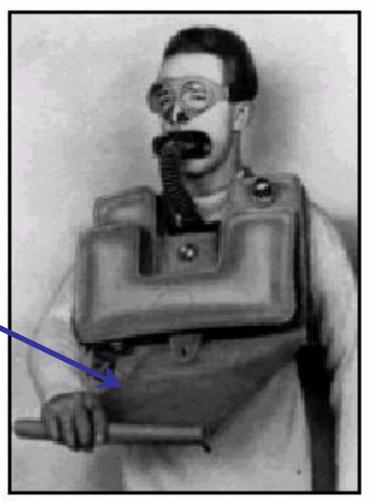


Figure 1-10. Original Davis Submerged Escape Apparatus.

DRÄGER Helmtauchgerät (1)

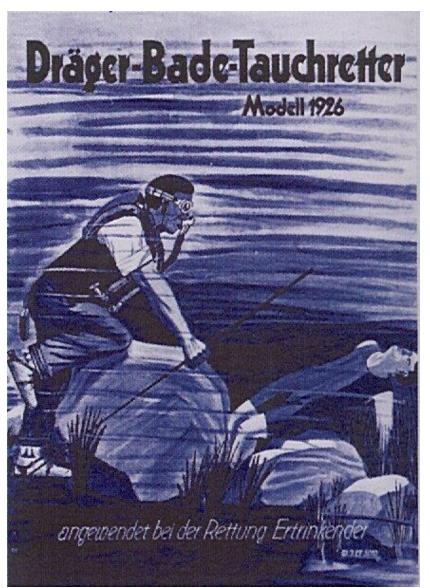
- 1912, Bernhard und Heinrich Dräger:
- Entwicklung des "Dräger Tauchapparates",
- ein autonomes Helm-Tauchgerät
- Gaszufuhr: manuell

SUB MARINE CONSULTING

GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

DRÄGER Helmtauchgerät (2)


SUB MARINE CONSULTING

GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

Der Dräger Bade-Tauchretter

- 1926,
- Sauerstoff-Kreislaufgerät
- zur Rettung Ertrunkener

THE
SUB
MARINE
CONSULTING
GROUP

Tel Aviv — San Francisco — Stuttgart

Mischgas

- 1919, Elihu Thompson: Idee des Einsatzes von Helium zum Mischgastauchen ward geboren
- 1937: Max Nohl taucht mit einem selbstgebasteltem Heliox CCR auf 420 feet im Lake Michigan
- 1940, Dr. Chris J. Lambertsen: militärische Experimente mit Mischgas und
- Entwicklung des "LARU":
- Lambertsen Amphibious Respiratory Unit,
- ein Sauerstoff-Kreislaufgerät

Das LARU

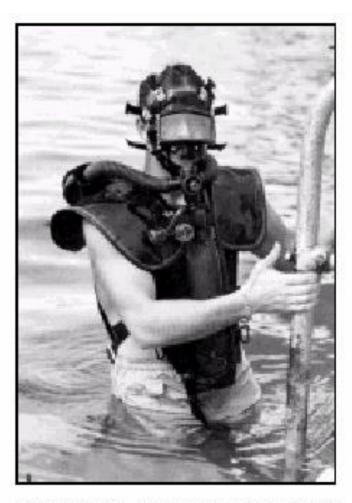


Figure 1-11. Lambertsen Amphibious Respiratory Unit (LARU)

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv - San Francisco - Stuttgart

Hans Hass und die Fa. DRÄGER EL AVIV - SAN FRANCISCO - STUTTGART

- 1941; entwickelt mit dem Ingenieur Stelzner das
- Kleintauchgerät 138 (Sauerstoffrebreather)

SUB Marine Consulting

GROUP

THE

Tel Aviv - San Francisco - Stuttgart

Die USN trägt maßgeblich zur

- Entwicklung der Mischgas-Dekompression bei (1939 erste Heliox Tabellen)
- 1950, Dr. Ed Lanphier: theoretische Grundlagen
- 1953 entwickelt DRÄGER den "Leutnant Lund"
- 1957, Andre Galerne: Nitrox50 für kommerzielle Tauchoperationen
- 1969, SMS1: ein selbstmischendes CCR zum Ausstieg aus Tauchglocken bis 100 m (DRÄGER)

Das DRÄGER SMS I

THE

SUB MARINE CONSULTING

GROUP

SUB MARINE CONSULTING

GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

Das DRÄGER LAR V (1)

- 1975, ein Sauerstoff-Rebreather wird für militärische Zwecke entwickelt und
- von der USN in der antimagnetischen Bauweise bis heute
- als Standardausrüstung benutzt!
- Die DRÄGER Folgemodelle sind die
- LAR VI und VII

Das DRÄGER LAR V (2)

THE

SUB MARINE CONSULTING

GROUP

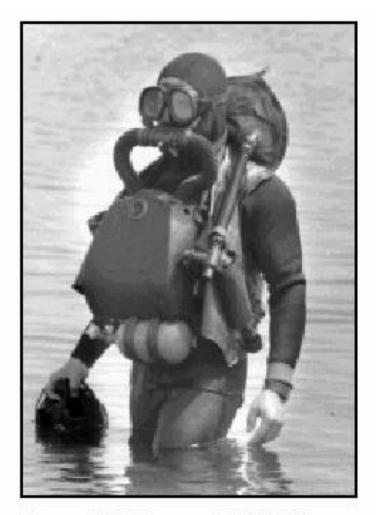


Figure 1-13. Draeger LAR V UBA.

GROUP

THE

TEL AVIV - SAN FRANCISCO - STUTTGART

... und Geschichte des NITROX

- 1977, Dr. J. Morgan Wells, NOAA Diving Officer, führt das NOAA I Gemisch ein (nun NN32), MOD = 40
- 1979, NOAA II (nun NN36)
- 1982, H. Hartung (DRÄGER) 5000 Arbeits-TGs mit Nitrox
- 1988, Dick Rutkowski: Gründung von ANDI (= American Nitrox Divers Inc.)
- 1997, das DOLPHIN kommt als Nachfolgemodell des seit 1995 produzierten ATLANTIS auf den Markt

THE
SUB
MARINE
CONSULTING
GROUP

Bis heute ...

Tel Aviv — San Francisco — Stuftgart

- 2000, Dr. Max Hahn: Physiker und CMAS *** Instructor, war wesentlich bei der Entwicklung moderner Tauchtabellen und Tauchcomputer beteiligt, stirbt bei einem TG mit dem "Buddy Inspiration" CCR im Biggesee
- 2001, NOAA: im Mai erscheint das neue NOAA Diving Manual 4, die NOAA Gemische I & II heißen nun: NN32 & NN36
- 2002, NAUI veröffentlicht die ersten RGBM Tabellen für Luft, NN32 & NN36

Überblick über diverse Rebreather- SAN FRANCISCO - STUTTES

- DRÄGER und A.P. Valves-Geräte:
- mit CE Zeichen
- andere Geräte z.T. nicht für Privatpersonen erhältlich

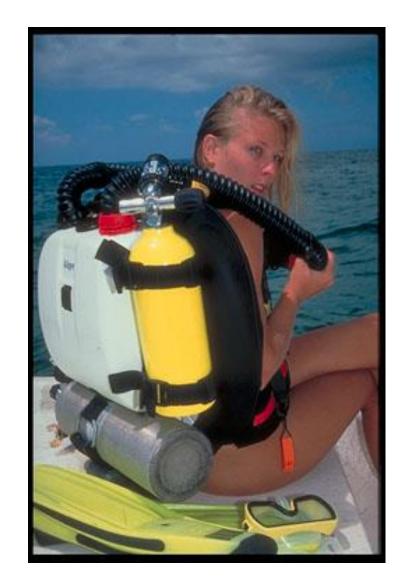
DRÄGER LAR Serie (CCR)

LAR VI, LAR VI n, LAR VII

THE

SUB MARINE CONSULTING

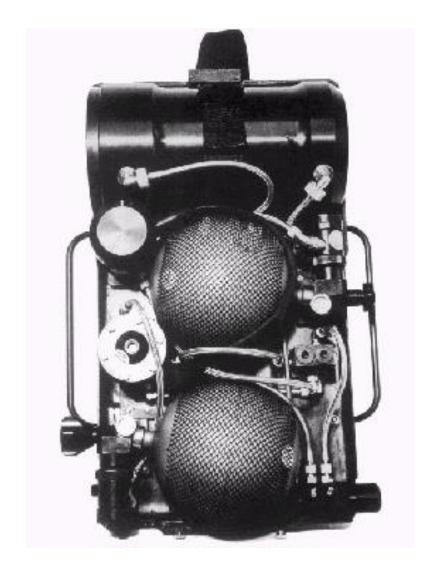
GROUP


SUB MARINE CONSULTING

GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

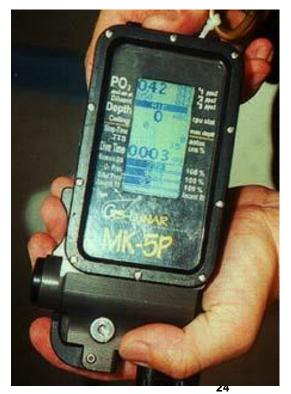
DRÄGER SCR Ray & Dolphin


Siva Plus (SCR)

THE

SUB MARINE CONSULTING

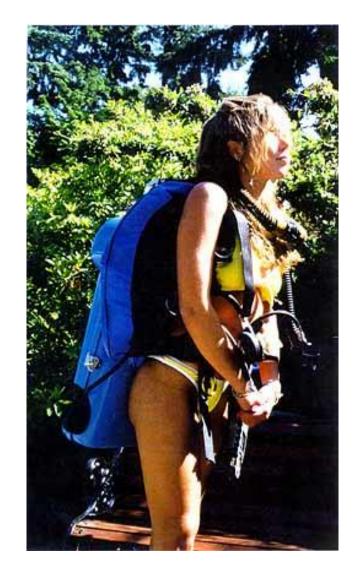
GROUP


CIS Lunar

THE

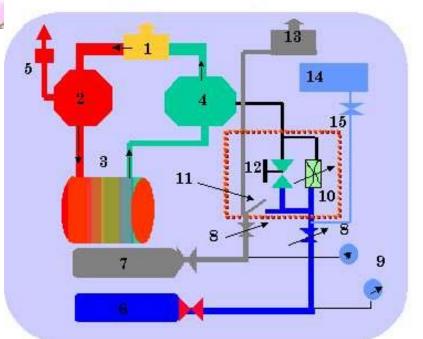
SUB MARINE CONSULTING

GROUP


CCR 2000

THE

SUB MARINE CONSULTING


GROUP

Mares Azimuth

mares AZIMUTH halbgeschlossen es System

- THE
- Sub MARINE CONSULTING
- GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

- 1 Mundstück
- 2 Ausatembeutel
- 3 Kalkbehälter
- 4 Atembeutel
- 5 Überdruckventil (14mbar ± 2mbar)
- 6 Nitroxflasche 1
- 7 Nitroxflasche 2
- 8 Druckminderer
- 9 Druckmesser
- 10 Dosierventil
- 11 Zuschaltventil
- 12 Bypass

10-12 Dosierblock

- 13 2 Stufe Nitroxatemregler
- 14 Jacket
- 15 Inflator

SUB MARINE CONSULTING

GROUP

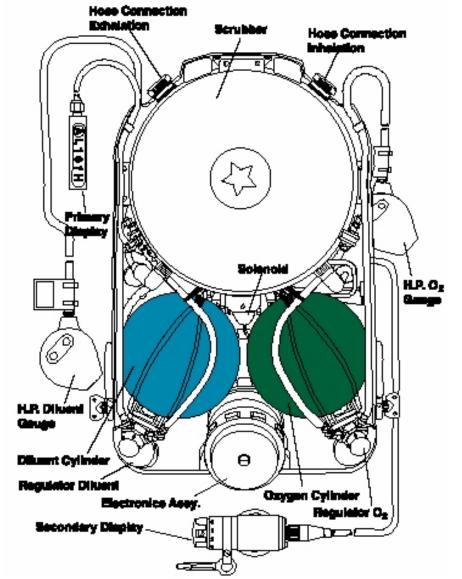
U.S.N. Mark 16 (Mk XVI)

FIGURE 14.7 MK 16 Closed-Circuit System

THE

SUB MARINE CONSULTING

GROUP


Figure 17-1. MK 16 MOD 0 Closed-Circuit Mixed-Gas UBA.

SUB MARINE CONSULTING

GROUP

TEL AVIV - SAN FRANCISCO - STUTTGART

U.S.N. Mark 16 (Mk XVI)

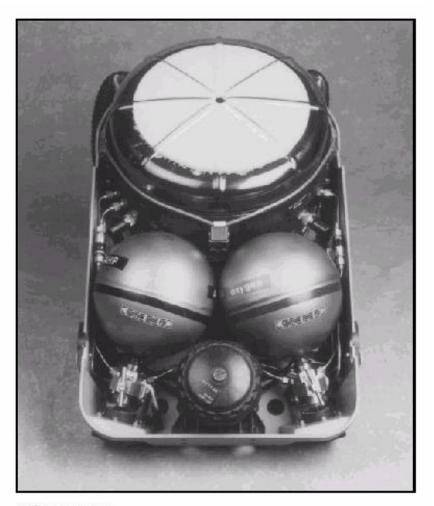
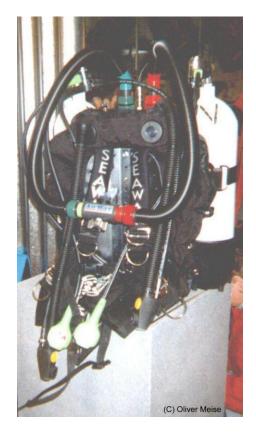



FIGURE 14.8 MK 16 Closed-Circuit System with Shroud Removed

Weitere Geräte

CORA BioMarine UT240

THE

SUB MARINE CONSULTING

GROUP

Tel Aviv - San Francisco - Stuttgart

Weitere Geräte ...

THE

SUB MARINE CONSULTING

GROUP

