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Decompression

10.1 Decompression Theory
Peter Tikuisis and Wayne A Gerth

The tissues of an air-breathing organism are obliged
under the Second Law of Thermodynamics to seek
equilibrium with the gas respired by the organism. The
conditions for this equilibrium vary with the pressure
and composition of the respired gas, but are only
approached over time after the motivating change in
respired gas occurs. Any change in the respired gas
pressure or composition is consequently followed by a
period in which the tissues are in thermodynamic
dysequilibrium. Atmospheric decompression produces
dysequilibria in which tissues contain excessive amounts
of dissolved atmospheric gas. If the decompression is
sufficiently rapid and extensive, the dissolved gas excess
in certain tissues causes a phase dysequilibrium that
can either be sustained metastably, while the excess gas
is eliminated harmlessly by physiologic means, or relieved
in situ by the evolution of gas bubbles. Such bubble
formation can in turn cause one or more of a variety of
pathologic symptoms and signs in humans that are
collectively known as decompression sickness (DCS).
The task of decompression theory is to elucidate the
factors and processes that govern the occurrence of DCS
for use in the control of atmospheric decompressions
to limit the incidence and severity of DCS. This is an
intrinsically quantitative task that requires concep-
tualization, then mathematical representation, of the
processes involved as they behave under the influences
of recognized governing factors. Substantial sim-
plifications are inevitably required due to ignorance or
to achieve mathematical tractability. In the following,
we provide an overview of the basic concepts and
mathematical representations on which modern theories
of decompression are based, endeavoring to adopt
formalism sufficient only to illuminate some of the
simplifications that are made. We then review how
these concepts have been integrated into quantitative
models for control of decompression to limit the

incidence and severity of DCS. The application of
these models to the development of decompression
procedures is discussed in Chapter 10.2. The over-
whelming pathophysiologic link between bubbles and
DCS has been amply reviewed by Vann & Thalmann,
(1993) and by Francis & Mitchell in Chapter 10.4 and

will not be covered here.

The paradigm for the pathophysiology of DCS that has
emerged from decompression research to date, and that
motivates the organization of this overview, is
schematized in Fig. 10.1.1. The central feature of this
paradigm is that various processes cause transitions of
tissues into different thermodynamic states indicated.
in the rectangles. For example, decompression can cause
transition of one or more tissues from a gas-saturated
state into a gas-supersaturated state. The latter is
relieved with return to a gas-saturated state either by
physiologic gas elimination or by in situ nucleation and
growth of gas bubbles. The latter process may in turn
cause DCS. The remainder of this section is devoted to
discussion of these different states and the processes
by which transitions occur between them.

THE GAS-SATURATION STATE

Control of tissue gas-saturation states is central to the
prevention of DCS. For any given tissue, these states
are defined in thermodynamic terms as for any liquid;
i.e. by reference to the pressure-volume properties of
a gas phase that would be in equilibrium with the
liquid, as schematized in Fig. 10.1.2. Each of the three
isothermal systems shown consists of a gas phase in
equilibrium with a liquid phase across a planar gas—liquid
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Schematic of the current paradigm for the occurrence of DCS.

Fig. 10.1.2 Three different isothermal systems consisting of a gas phase in equilibrium with a liquid phase across a planar
gas-liquid interface at which hydrostatic pressures in gas and liquid are equal. The gas and liquid phases in each system are
separated from the atmosphere at pressure Py, by a weightless and frictionless piston. Py, can be considered to represent the
pressure at surface (i.e. 101 kPa, 1.0 ATA). The piston in system (a) is at equilibrium in the position shown with no applied external
pressure. The pistons in systems (b) and (c) are maintained in the positions shown by applied external pressures in directions
indicated by the arrows. The net pressure exerted on the system is the sum of Py, and Peg

interface at which hydrostatic pressures in gas and
liquid are equal. As schematics of tissue gas-saturation
states, the liquid and gas phases in these systems have
properties that are interchangeable with properties of
tissues and gases, respectively, in vivo. For simplicity,
gravitational forces in the systems are neglected. If the
gas phase in each system is considered to be ideal and
composed of any number of gas components (denoted
by the subscript i), Dalton’s law of partial pressures
states that the sum of gas partial pressures in the gas
phase (ZP;) equals the hydrostatic pressure in the gas
phase. Because the systems are at equilibrium, each gas
partial pressure equals its corresponding gas tension in
the liquid phase; p; = P;; so that Zp; = ZP;. Note the
terminology of pressure (P) and tension (p) refer to the
presence of gas in the gas and liquid phases,
respectively, yet both share the same units (e.g. kPa,
ATA, msw, etc.). Liquid vapor is an ever-present
component of the gas phase in each of these systems.
Thus water vapor, with a partial pressure dependent on
temperature only, constitutes a small but constant

component [6.2 kPa (0.062 ATA) at 37°C] in human
physiologic tissue.

If the gas phase in each of the illustrated systems
contains one or more gases in addition to liquid vapor,
the external pressures exerted by the pistons are direct
measures of the liquid phase gas-saturation states with
respect to P, In system (a), the external pressure is
zero, and thus the sum of the gas partial pressures in
the gas phase including the vapor pressure, ZP;, equals
P,., and the liquid is gas saturated with respect to P
In each of the other systems, the magnitude and direction
of the external pressure determines the magnitude of
liquid phase gas undersaturation (negative P,,;) or gas
supersaturation (positive P,,;) with respect to P

In system (b), negative external pressure acts to keep
the system pressure less than P,,;, by an amount equal
to P,,,. The liquid in such a system is gas undersaturated
with respect to P, by this amount. Release of the
external pressure allows the system pressure to relax to
P, This occurs via a diminution of the gas phase
volume from a Boyle’s law effect, and from liquid
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vapor condensation and gas dissolution into the liquid.
If the gas phase is completely consumed by the liquid
after the force on the piston is removed, then the
liquid will remain somewhat gas undersaturated (Zp; <
P,,;) but completely stable at hydrostatic pressure P,.

In system (c), positive external pressure acts to keep
the system pressure greater than P,,,;, by an amount equal
to P,, The liquid in such a system is gas
supersaturated with respect to P,,,;, by an amount P =
P, hence:

ext
Pss = Zpliquid - Pamb' (1)

Release of the external pressure (decompression) results
in an expansion of the gas phase volume. If the system
begins with no initial gas phase, then it is considered
unstable and the only way it can attain equilibrium is
through the formation and expansion of a gas phase.
Moreover, because the gas-supersaturated condition is
an intrinsic property of the liquid (Lewis & Randall
1961), this gas phase formation and growth can occur
at any point within the liquid. A gas-supersaturated
liquid is thus in phase dysequilibrium with respect to
P, a condition in tissue that can have grave con-
sequences. We will consider the stability of a liquid in
this state when we examine the mechanisms of bubble
nucleation.

Implicit from the above is that gas supersaturation
is defined in terms of the total dissolved gas tension,
not in terms of any particular gas component in the
system. Thus, a liquid can be oversaturated with a given
component gas in a multigas system without being gas
supersaturated. Such a condition is one of chemical
dysequilibrium but not phase dysequilibrium. Another
measure of gas supersaturation without any direct
thermodynamic interpretation is the gas supersaturation
ratio, or ‘tissue ratio’ (TR), defined by:

I = Eptissue/Pamb' (2)

GAS CONCENTRATION

In each of the systems of Fig. 10.1.2 at equilibrium, the
composition of either phase is determined completely
by the composition of the other phase. Gas components
that do not interact with saturable sites on macro-
molecules or combine chemically with any other
components of the liquid (or tissue), dissolve in the
liquid according to Henry’s law, which states that the
concentration (c) of a gas in the liquid phase is pro-
portional to its gas tension. Such gas components are
considered inert in diving physiology. The pro-
portionality constant is the Ostwald solubility coefficient
[0 in ml gas/ml/atm at ambient temperature

(Weathersby & Homer, 1980)]; e.g. in blood:

Qplood " Phlood

St Pt 3)
where k is the Boltzmann gas constant and T is the
absolute temperature. Accepted values of 0Oy, at
37°C for N, (nitrogen) and He (helium), the principal
inert gases used in diving, are 0.0158 and 0.0104,
respectively (Christoforides & Hedley-Whyte 1970).
Consequently, at saturation under the same ambient
partial pressures (or dissolved gas tensions), 52% more
N, is dissolved in blood than is He.

The oxygen content of blood consists of O, dissolved
in the blood plasma, which follows Henry’s law, but
also of O, bound to saturable sites on hemoglobin. The
equilibrium O, concentration in blood as a function of
the blood O, tension, p0O,, is closely approximated by
(Lobdell 1981):

Chlood =

Cblood,Oz = pOz aplasma,oz s

n (110_z> " h(&)z”
Pso Pso ) “4)

1 +c (f&)ﬂ + b <&)Zn

Pso Pso
where Hbg is the O, carrying capacity of 100% O,-
saturated hemoglobin in the blood (cc O, perl100 cc
blood) and the factor within the large brackets gives
the fraction of Hb saturation. The constants in the
latter factor, determined by fit to measured human
Hb-O, saturation curves, are: a = 0.34332, b =
0.64073, ¢ = 0.34128, n = 1.58678, and ps is the po,
at which the hemoglobin is half-saturated. The plot of
Equation 4 in Fig. 10.1.3 illustrates that O, solubility
in blood is a highly non-linear function of O, partial
pressure in the normal physiologic range of O,
pressures.

Hbg"

The gas saturation states described above are reached
in tissue via the circulation of blood as the tissue seeks
equilibrium with the atmosphere by absorbing or desorbing
gas to equalize partial pressures between tissue and
atmosphere. This equilibration is attained in two steps;
first between atmosphere and blood in the lungs, and
second between blood and tissue in the various regions
of the body. The kinetics of these gas exchanges govern
the gas saturations attained in various tissues during
compression, and the magnitudes and time courses of
gas supersaturations attained during and after
decompression.
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Fig. 10.1.3  Oxygen solubility in whole blood as a function O, partial pressure [Hbg = 20 ccO, per 100 cc blood; ps, = 3.3 kPa
(25 mmHg)]. At 0, partial pressures in excess of about 20 kPa (150 mmHg), the hemoglobin is fully oxygenated and any further
absorption of O, follows the Henry's law slope (dotted line) for O, solubility in plasma.

Since the inert gases, N, and He, are sparingly soluble
in blood and the exposure time between the inspired
gas and pulmonary blood is sufficiently long for equili-
bration (Hills 1977), gas partial pressures in arterial
blood are usually assumed equivalent to alveolar gas
partial pressures. It should be noted, however, that
small alveolar—arterial partial pressure differences due
torventilation—perfusion mismatch occur in the normal
lung, and that these may be further exacerbated by
bubbles in the pulmonary arterial blood, breathing of
oxygen at high partial pressures, and high transpulmonary
fluxes of inert gas (Brubakk et al 1999, Farhi & Olszowka
1968, Olszowka & Farhi 1969). Notwithstanding these
asymmetries in blood-lung gas exchange, primary
strategies to understand and prevent DCS are focussed
on the kinetics of blood-tissue gas exchange.

All strategies begin with the assumption pioneered
by:Boycott et al (1908) that the whole body is a collection
of m parallel-perfused compartments, as schematized
in Fig. 10.1.4. The different strategies then diverge from
one another in the number of compartments considered
and in how the gas exchanges in any given compart-
ment are characterized. The compartments need not
be explicitly associated with specific anatomical tissues,
because blood flow and other properties relevant to gas
exchange are not uniform throughout any one tissue
(Homer & Weathersby 1986, Homer et al 1990). Thus,
the terms ‘compartment’ and ‘tissue’ are used syn-
onymously to denote a non-descript site or sites that
share the same gas exchange properties but that may
actually represent a collection of different anatomic
sites throughout the body. It is interesting in this regard

____{ }_

Heart and lungs
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Q
Om, .
—_—

Fig. 10.1.4 Schematic of m parallel-perfused compartment
model of the whole body. The arrows indicate arterial and
venous blood flow, and Q is the blood perfusion rate.
Association of compartments with specific anatomical sites is
usually disclaimed except to assert that the modeled
compartments represent tissues or tissue components that are
involved in the occurrence of DCS.

that Weathersby et al (1981) concluded from tissue gas
distribution studies that a single kinetic parameter per
tissue is generally adequate to model blood-tissue gas
exchange. More recently, Flook (1998) adopted the
Mapleson (1963) multitissue model to numerically
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balance total gas uptake and elimination in a physio-
logic model of decompression.

In general, the rate at which the concentration of a
gas changes at any point in a tissue is given by the
combined Fick-Fourier diffusion-rate equation (Wienke
1989):

d ) )
G =D V) + 2 (g ) = Lo~ Zg
t

dt
(5)

where ¢ is time, V is the spatial gradient operator, D is
the diffusion coefficient of the gas in the tissue, Q is
the blood perfusion rate (ml blood/ min), V, is the
tissue volume (ml), ¢,, and c,, are the respective gas
concentrations in arterial and end-capillary or venous
blood (ml gas/ml blood), and 2 yerg and 7', , are the
respective rates of gas consumption by metabolism and
bubble growth (ml gas/ml tissue/min). The first term
on the right side of this expression is the contribution
of diffusion, while the remaining terms give the
contributions of perfusion, metabolism, and bubble
dynamics, respectively. Because N, and He are neither
the reactants nor products of any metabolic process in
human tissue, the Z 'met term in Equation 5 is zero for
these gases. This is the sense in which these gases are
considered ‘inert’ in diving physiology. If there are no
bubbles in the tissue, the Z b, term also vanishes for all
gases in the tissue.

PERFUSION-LIMITED GAS EXCHANGE

Most modern diving practices are based on theories in
which Equation 5 is solved under the assumption that
the tissue is well stirred; i.e. has a uniform dissolved gas
concentration with no internal concentration gradients.
Under this assumption, Equation 5 simplifies to:

p,,  Q

dt a['g ‘ I/l (pa,g - pv,g)

- Zmet,g - Zb,gr (6)

where concentrations have been converted to partial
pressures using Henry’s law in Equation 3, and tissue
gas solubilities, o, ,, have been incorporated into .
and Z,,. Equation 6 simply states that the rate of
change of gas tension in a tissue is equal to the rate of
gas delivery by the blood minus the rate at which gas is
consumed by metabolic processes and bubble growth.
If gas exchange is perfusion limited, meaning that the
venous gas tension is in complete equilibrium with the
tissue gas tension, then p,, = p, o Under this condition,
the inert gas tension in a bubble-free tissue changes at
a rate that is proportional to the difference between
arterial and tissue gas tensions, as follows:

pa,g ‘pt,g (7)

dpg _
dt T
where 7 is the blood-tissue gas exchange time constant
given by:
o,
= = (8)
Q " Ol

The corresponding blood-tissue gas exchange half-time,
t1> = Tln 2, gives the time required to halve an initial
tissue-blood gas tension difference with constant T and
Pag- If the arterial gas tension changes in response to a
time-linear change in inspired gas partial pressure, then
Pag = P4g + My, t, and Equation 7 becomes:

dpry _
dt

where the superscript (0) refers to the initial value at ¢
= 0 and m,,  is the rate of change of the arterial tension
of the gas (= dp,,/dt).

Tissues are considered ‘fast’ or ‘slow’ according to
whether T is small or large, respectively. Equation 8
indicates that T increases with the tissue—blood gas
partition coefficient, 01,/04,,4, of the gas. In general, for
given blood perfusion rates, aqueous tissues with low gas

Mo b+ T@Z,g - pt,g) ) (9)

solubilities are considered ‘fast’ (in terms of saturation

time) whereas fatty tissues with high gas solubilities are
‘slow.” In aqueous tissues, the tissue-blood gas partition
coefficients are slightly above unity for the inert gases.
Consequently, the saturation rates for different inert gases
are approximately the same in such tissues, varying
principally with only the blood perfusion rate. Tissue—
blood gas partition coefficients in fatty tissues, on the
other hand, vary more widely among the different inert
gases. For example, oy, values for N, and He are approxi-
mately 0.076 and 0.0168, respectively, according to their
values in oil (Behnke & Yarbrough 1939). As a result, the
time constant for N, in a fatty tissue is almost three times
as large as that for He, so that the tissue saturates with N,
considerably slower than with He at the same ambient
partial pressures. It is important to note, however that at
saturation under these conditions, the concentration of
N in fat is 452% higher than the concentration of He.
These differences have important implications for the
dynamics of bubble evolution in such tissues.

Equation 9 can be integrated to yield the tissue gas
tension at time ¢:

Puig = Pag + Moyt + (pfy—pi) e
~ gt (1 - e ), (10)

Solution of Equation 10 requires a continuous description
of the pressure and respired gas profile. This is provided
by encoding each profile as a sequence of nodes that
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give the pressure or depth and the inspired gas
composition at particular times in the profile
(Weathersby et al 1992b). An unbroken description of
the profile is then obtained by linear interpolation in
the time domain between successive nodes. Each node
thus gives the conditions prevailing at the end of a
profile stage, that is:

1 a travel stage (compression or decompression);

2 an isobaric stage;

3 a breathing gas switch stage; or

4 a combination travel and breathing gas switch stage.

The model is then exercised on the profile by
sequentially processing these stages, preserving the
model state at the end of each stage as the initial state
for the next stage.

Fig. 10.1.5 shows the N, and He tissue tensions
prescribed by Equation 10 during a hypothetical in-
water O, decompression dive to 43 msw (140 fsw) for
39 min on 84% He (balance O,) followed by a staged
decompression on air to 9 msw (30 fsw), 60 min on
100% O, with two 5 min air breaks at 9 msw (30 fsw),
and surfacing on air [from DCIEM Diving Manual
(DCIEM Diving Manual Part 2 1995)]. The inert gas
uptake and elimination were computed using time
constants of 60 and 27 min for N, and He, respectively,
corresponding to tissue solubilities of 0.0459 and 0.0136
based on a hypothetical tissue composition of 50% blood
and 50% fat. Not surprisingly, the tissue He tension
quickly surpasses the tissue N, tension during the bottom
time of the dive, but reverses during decompression.
Note, however, that the concentration of N, is relatively
high during the entire dive due to its much higher
tissue solubility than He. As will be seen below, the
amount of dissolved gas is pivotal to the development
of bubbles. Hypothetically, if an inert gas of near zero
solubility existed, then the availability of such a gas for
bubble formation would be negligible. Unfortunately,
no known breathable gas exists with a lower solubility
than He in biological fluids/tissues (Weathersby &
Homer 1980). Also relevant to bubble formation is the
degree of gas supersaturation (P,). Note in this example
that P is positive, and that the tissue ratio, TR, exceeds
unity only during the initial period of decompression
(i.e. between 39 and 66 min). The magnitude and
persistence of P vary with the tissue time constants.

The kinetics of blood-tissue O, and CO, exchange
are more complicated, not only because of the non-
linearity of O, solubility in blood (Fig. 10.1.3), but also
because these gases participate in tissue metabolism
and require consideration of the Z,,,, , term in Equation
6 (Van Liew et al 1993, Yount & Lally 1980). Aerobic

metabolism in tissue converts O, practically mole-for-
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Fig.10.1.5 Profile for in-water decompression dive to 43
msw (140 fsw) 39 min where the ambient pressure (P,,,) is
shown in msw gauge. Also shown are (a) tissue gas tension
values (p) in msw absolute and based on time constants of
60 and 27 min for N, and He, respectively, (b) tissue gas
concentrations (cf Equation 3), and (c) gas supersaturation
(Equation 1) and the tissue ratio (Equation 2).
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mole into carbon dioxide (CO,), a much more soluble
gas than the O, it replaces. The resultant total gas
tension is correspondingly reduced. If the tissue O,
consumption, Z,,, o,, is independent of arterial po,, its
value is then given by that prevailing under steady-state
conditions, i.e. when dp,o,/dt = 0. Under this
condition, and in the absence of bubbles so that the
Zy,0, term vanishes, Equation 6 can be solved to yield
Zyer,o, as the product of the blood flow and the
arterial-venous O, concentration difference, c,, 0y

Zmet,Oz = Q ' (Ca,Oz - 611,02) = Q ’ Cav,Ozf (11)

where Z¢ 0, is now in units of ml O,/min. The right side
of Equation 11 is then rearranged to obtain the following
expression for the steady—state venous O, concentration:

CU,OZ = Ca,OZ - CaV,OZ ' (12)

The steady-state tissue O, tension that corresponds to
the end-capillary O, concentration, ¢,q,, given by
Equation 12 varies with arterial p,,,. Determination of
this tension requires solution of Equation 4 for Ca,0
the arterial O, concentration at given p,o,, then
numerical inversion of Equation 4 for the partial
pressure at the resultant ¢,o, — Cav0, difference.
Steady-state tissue O, tensions as functions of arterial
Po, for various tissue O, extractions are given in Fig.
10.1.6. Clearly, the resultant O, tensions are low at
low p, 0, and high Z,,,, o,

On this basis, and presuming that tissues involved in
DCS have appreciable metabolic rates, inspired O, has

been considered to manifest in tissue O, partial pressures
that contribute minimally or not at all to DCS risk. In
treatments that assume a small effect, a constant but low
tissue O, tension is often assumed. CO, is also often
assumed to be a constant contributor to the overall gas
tension in all but pulmonary tissues. Together with water
vapor, the constant po, and pco, then constitute a ‘fixed’
subset of Xp;, which we will hereafter refer to as Zpy,.

OXYGEN WINDOW

As a result of the metabolism of O,, tissues are in-
herently undersaturated with gas prior to decompression,
thus allowing some decompression without causing any
tissue gas supersaturation. This opening, known as the
‘oxygen window,” is illustrated in Fig. 10.1.7 as it varies
with tissue metabolic rate and inspired O, fraction.
The magnitude of the O, window is seen to decrease
with decreasing ambient pressure at values of the latter
below which hemoglobin in venous blood is fully O,
saturated. The O, window thus depends in a complicated
fashion on the inspired O, partial pressure and tissue
metabolic rate.

The above effects of O, metabolism pertain to tissues
at steady-state, which they are not after an atmospheric
decompression. Oxygen can still contribute appreciably
to the total dissolved gas tension before it reaches its
steady-state tissue tension after completion of a
decompression. As illustrated in Fig. 10.1.8, metabolism
simply accelerates the approach to steady-state,
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Fig. 10.1.6 Tissue 0, tension under steady-state conditions as functions of arterial po, for tissue O, extraction (metabolic)
rates ranging from 1 to 5 ml 0,/100 ml blood. For comparison, the O, extraction for cerebral gray matter is approximately 8 ml
0,/100 ml blood using the mean cerebral 0, consumption of 4 ml 0,/100 g tissue given in the Biological Handbook, and gray
matter blood flow of 0.5 ml blood/m! tissue/min given by Albano & Columba (1976).
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Fig. 10.1.7 Total tissue gas tensions at steady-state as functions of ambient pressure (atm) at various tissue 0, extraction
rates breathing: (a) air; (b) a 50% O,-inert gas mix, and (c) 100% O,. The oxygen window at a given P,,, is the difference
between P, (the diagonal line in each panel) and the indicated total gas tension.
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Fig. 10.1.8 Hypothetical py, in a 50 min time constant tissue as a function of time at 101 kPa (1.0 ATA) after an instantaneous
decompression from steady-state breathing of 100% O, at 202 kPa (2.0 ATA). (a): 100% O, breathing continued after surfacing;
(b): air breathing after decompression. Traces from top to bottom in each panel are for increasing tissue metabolic rates causing
tissue O, extraction rates of 1, 2, 3, 4, and 5 m|/100 ml blood/min, respectively. Tissue 0, solubility was assumed equal to plasma

0, solubility.

shortening the transient tissue O, oversaturations that
follow decompression.

The oxygen window is often exploited in modern
decompression practice by increasing the O, partial
pressure in inspired gas before and during decom-
pression. For example, 100% O, is commonly breathed
prior to decompressions from sea level saturation to
altitude in order to widen the O, window, reduce the
gas supersaturations incurred during the decom-
pressions, and thereby reduce the risk of DCS while at
altitude. Factors that increase Q and ¢, increase the

rate of gas exchange during such O, prebreathes and
reduce the times required to reduce given risk levels of
DCS. Exercise is one such factor that has been
successfully exploited to shorten O, prebreathe
protocols for extravehicular activity (EVA) from the
Shuttle and Space Station. Increases in the width of
the O, window with ambient pressure also motivate
breathing gas mixtures with high Po, before diving
decompressions, but this practice is limited by the
increased attendant risks of pulmonary and CNS O,
toxicity (Ch. 10.2).
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DIFFUSION-LIMITED GAS EXCHANGE

It is readily envisioned that DCS involves poorly
perfused tissues where the intercapillary distances are
significant with respect to the diffusion of gas through
the tissue. In such tissues, diffusion might limit the rate
of blood-tissue gas exchange. The above treatments
can approximate the overall impact of such diffusion
limitation by relaxing the p, , = p,,, assumption invoked
to obtain Equation 7. However, more rigorous alternative
approaches to the solution of Equation 5, in which the
well-stirred assumption of uniform gas tension in the
tissue is relaxed, have been undertaken by many
workers to explicitly consider the impact of diffusion
limitation on gas exchange. One approach in which
blood was assumed to equilibrate with tissue across a
planar interface yielded the well-known ‘square root
time’ relationship for the time required for a tissue to
absorb or eliminate a given amount of inert gas
(Hempleman 1969). Wienke (1989) provides a detailed
review of this and other treatments of diffusion-limited
gas exchange, and of blood-tissue gas exchange in general.

Diffusion-limited gas exchange has also been ap-
proximated using a serial perfusion model. The Kidd-
Stubbs model (Kidd & Stubbs 1969), on which the
DCIEM Diving Tables (DCIEM Diving Manual Part 2
1995) are based, is an arrangement of four compartments
in series each having the same time constant. In the
context of the m-parallel compartment generalization
in Fig. 10.1.4, this model considers only a single com-
partment that is further divided into four subcompart-
ments. While the subcompartment in contact with the
blood supply receives gas first, the kinetics of gas
uptake and elimination in the other subcompartments
are interdependent in a complex fashion that
approximates the gas diffusion process (Hennessey
1973). Model success in application to a wide range of
dive conditions is consistent with the notion that gas
diffusion may be an important factor in the etiology of
DCS (Hills 1977). Regardless of whether gas exchange
in tissues involved in DCS is limited by perfusion or
diffusion, practical mathematical treatments of the
two cases are nearly identical. In one case, a series of
exponentials associated with different tissues is involved,
while in the other, a series of exponentials associated
with a single tissue is involved.

As indicated in Fig. 10.1.1, one or more bubbles may
form and grow in a gas-supersaturated tissue to relieve
gas supersaturation. This event is thought to trigger a

host of secondary events (via biophysical and/or bio-
chemical processes) that in turn can result in DCS. As
also illustrated, however, the gas supersaturation may
be relieved by ‘physiologic’ elimination via the circulatory
and respiratory avenues. Which route the excess gas
takes is largely determined by how bubbles evolve in
the tissue. The following sections delineate the factors
that govern bubble evolution.

CRITICAL RADIUS

The liquid state of tissue predestines an inherent
instability to any mass of undissolved gas in the tissue.
Mechanical equilibrium between a bubble and its
surroundings is governed by the LaPlace equation:
Py = SP,, + SPy s = Poy + 20 + 13
b= 2, bfix = Lamp + 7 ) (13)
where the subscript ‘b’ refers to the bubble, y is the
surface tension of the bubble liquid—gas interface, R is
the bubble radius, and & is any additional mechanical
deformation pressure opposing bubble expansion. In
the case of a flat liquid—gas interface, as shown in Fig.
10.1.2, the radius of curvature is infinite and § is the
external pressure. Most importantly, the bubble gas
pressures must equal the dissolved gas tensions under
the equilibrium presumed by Equation 13. Consequently,
Equation 13 reveals that the liquid must be gas
supersaturated for all R > 0: Xp,, + Zpps, — P = P

= % + 8. Note that this level of gas supersaturation

must increase as the bubble radius decreases

Under the assumption that water vapor, CO,, and
O, are ‘fixed’ ‘components of tissue gas tension, Zp, g,
and in constant equilibrium with the gas phase (i.e.
Zp, i = ZPy ), the dependence of bubble pressure on
bubble size is primarily dependent on the inert gas
pressure as illustrated in Fig. 10.1.9. The inert gas
pressure within the bubble (determined by Equation
13) exceeds the ambient pressure, in this example,
when the bubble radius is less than 7 um for P, =
101 kPa (1.0 ATA) and less than 4 pm for P, = 1013
kPa (10.0 ATA). Thus, a condition of gas supersaturation
must exist for the existence of a bubble at sizes less
than these radii. Also, at these ambient pressures, the
inert gas pressure within the bubble asymptotically
approaches (i.e. for infinitely large bubble radii or
essentially flat interfaces) 0.19 and 0.37 atm below the
ambient pressure, or 81 and 963 kPa (0.81 and 9.63
ATA), respectively, due to the presence of the fixed
components. Bubble growth can only occur with a net
transfer of gas into the bubble. Gas will transfer into
the bubble if the gas tension outside the bubble exceeds
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Fig. 10.1.9  Difference between the inert gas and ambient pressures for a bubble in equilibrium in tissue based on a balance of
forces (Equation 13). Surface tension is 60 ergs/cm and the deformation pressure is ignored.

the gas partial pressure inside the bubble, i.e. if Zpg >
ZP,;,. The asymptotic inert gas tensions of 81 and 963
kPa (0.81 and 9.63 ATA), in the above example, thus
represent the minimum inert gas tension requirements
for bubble growth. Increased curvature of the bubble
surface (i.e. decreasing R) elevates the gas tension
requirements for bubble growth.

The minimum requirements, however, exceed the
normal saturation levels of N, tissue tension. At surface
(100 kPa, 1.0 ATA) for example, the saturated N,
tissue tension is 75 kPa (0.75 ATA). Since this value is
less than the minimum required for bubble growth [81
kPa (0.81 ATA)], growth cannot occur until the ambient
pressure is reduced by at least the difference between
these two values or 6 kPa (0.06 ATA). At higher ambient
pressures, the difference between the saturated N,
tissue tension and the minimum required for bubble
growth increases [e.g. 177 kPa (1.77 ATAat P, = 1 MPa
(10 ATA)].

The minimum conditions for bubble growth lead
naturally to the concept of the critical radius, R,. The
critical radius is a property of the liquid phase (Ward et
al 1970). Its value is obtained by direct substitution of
dissolved gas tensions for bubble partial pressures in
Equation 13, then solving for R while ignoring & to yield:

2y 2y
| Jp—; R 14
Zpl,gf Pumb Pss ( )

Fig. 10.1.10 illustrates how R, (right axis) varies during
a standard air dive (DCIEM Diving Manual 1995) in a

tissue compartment with a nitrogen time constant of
60 min. According to Equation 14, R, is negative when
the total gas tension is less than the ambient pressure;
i.e, when Xp, , + 2p, 4, < P, An actual bubble under
these conditions, however, has a positive radius and,
according to Equation 13, an internal pressure greater
than P,,;, and therefore the bubble must dissolve. In
the example shown in Fig. 10.1.10, bubble growth can
only occur after decompression is initiated, and only if
the bubble radius exceeds R, when its value is positive.
Comparison of Equations 13 and 14 under this growth
condition reveals that the total gas tension must exceed
the total gas pressure within the bubble. The lowest
positive value of R, (~ 2 um) occurs immediately after
arrival at surface (at 38 min), when the gas super-
saturation is maximal. R, then increases (as N, tension
decreases) to an infinitely large value at 187 min, when it
transforms to an infinitely negative value. Thereafter,
no bubble growth is possible as R, increases to
asymptotically approach the predive value of ~21.6 um.
The transition of R, from negative to positive values that
occurs at the start of decompression is caused by the
reversal in the gas tension-ambient pressure relationship.

The stability of a gas-supersaturated liquid is
illuminated by considering the free energy of bubble
formation. This free energy is given in the vicinity of

the critical radius by (Ward et al 1970):

% 2
w,, = W_R (15)
3
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Fig. 10.1.10 Tissue N, tension (in msw absolute) and critical radius in a 60 min time constant compartment during a standard
air decompression dive to 32 msw (104 fsw)/22 min. Surface tension is 60 ergs/cm? and the deformation pressure is ignored.

Plots of the free energy of bubble formation as a
function of bubble radius, R, for two different gas
supersaturations in water are illustrated in Fig. 10.1.11.
In each case, the maximum free energy change is
associated with formation of a bubble of size equal to
the critical radius. By definition, the condition at R =
R, is an equilibrium condition, but because any
perturbation of R from the critical radius occurs with a
decrease in free energy, the equilibrium is unstable
(Tucker & Ward 1975a). With a decrease in R from R,,
the bubble dissolves with a decrease in free energy.
With an increase in R from R,, the bubble grows,
unabated in a liquid of infinite extent. The unstable
equilibrium at R = R, is called ‘metastable.’ A liquid
will sustain the gas-supersaturated condition metastably
until a fluctuation sufficient to generate a bubble of
size greater than R, occurs. Only then will such a bubble
grow rather than collapse back into solution.

The metastable state at R = R, in Fig. 10.1.11
applies to a liquid of effectively infinite extent. If the
region surrounding the bubble is sufficiently small so
that the dissolved gas tension varies with bubble size
(i-e. the absorption or release of gas by the bubble
decreases or increases p), a second but stable state of
equilibrium emerges at R greater than the illustrated R,
(Ward et al 1982b). In this case, a bubble of radius
larger than R, will converge towards the larger R of the
stable state. The identification of this equilibrium state

has helped explain the persistence of large populations
of microbubbles in systems where each bubble is
effectively constrained to exchange gas within a finite
volume of fluid. The long term survival of such bubbles
is still dependent on a condition of gas supersaturation,
although the degree required is diminished when
compared to an open volume system.

It should now be clear that bubbles in tissues, which
we have seen are gas undersaturated throughout most of
their existence, tend inexorably to dissolve, leaving tissue
devoid of separated gas phase. Consequently, this suggests
that bubble formation in tissue requires the de novo or
spontaneous formation of surfaces of separation between
liquid and gas. In principle, this initial event can be
contemporaneous with the occurrence of gas super-
saturation (when R, is sufficiently positive) or can occur
some time before decompression. In the latter case, some
mechanism must stabilize the undissolved gas against
dissolution, and thereby account for its persistence and
availability to expand when gas supersaturation occurs.

BUBBLE FORMATION

Spontaneous or de novo bubble nucleation can occur
homogeneously in the bulk of a liquid, where the
material surrounding the event is spatially isotropic, or
heterogeneously, proximate to a liquid-liquid or
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Helmholtz free energy of bubbles in water with gas supersturations of 750 and 250 atm. An arrow indicates the

critical radius in each case. The critical radius and corresponding free energy change decrease with increasing gas

supersaturation, P,.

liquid-solid surface, where the material surrounding
the event is spatially anisotropic.

Homogeneous Nucleation

The probability of homogeneous nucleation depends
on the free energy of formation of a critical-sized bubble
(Ward et al 1970):

P=Z- exp(_Wm/kT)f (16)

where Z is the Zeldovich factor that embodies the
influence of kinetic and inertial constraints, and W,,, is
given by Equation 15. As illustrated in Fig. 10.1.11, W,,,,
increases with R, and constitutes an energy barrier to
the attainment of phase equilibrium in a gas-
supersaturated liquid. The probability of homogeneous
nucleation rapidly diminishes as R, increases and becomes
negligible at gas supersaturations typically encountered
in diving or aerospace operations (Gerth & Hemmingsen
1976, Hemmingsen 1975).

The dependence of R, on surface tension (Equation
14) and the appearance of R, in the expression for W,
in Equation 15 makes the probability of homogeneous
nucleation at any given gas supersaturation extremely
sensitive to the magnitude of the surface tension. In
principle, homogeneous nucleation could occur at
arbitrarily small gas supersaturations with sufficiently
low values of the surface tension. It might be thought,
therefore, that surface tensions in physiologic fluids may
be sufficiently low by action of surfactants to account
for homogeneous nucleation at the low gas super-
saturations known to elicit DCS occurrence in man
(Weathersby et al 1982). However, surface tension in
the conventional sense is a macroscopic equilibrium
property of a planar gas-liquid interface, which is actually

a zone of thickness of molecular dimensions through
which there is a continuous transition of properties
characteristic of one phase to those of the other. During
a spontaneous nucleation event, the gas—liquid interface
is not at equilibrium and is ill defined. Once identifiable,
it is of very small radius. On the basis of studies of the
effects of surfactants on bubble nucleation in water gas
supersaturated with argon by decompression from
elevated pressures, Hemmingsen (1978) concluded that
the adsorption of surfactants of molecular weight greater
than about 330 dalton fails to occur at the gas-liquid
interfaces of nascent bubbles fast enough to affect the
spontaneous nucleation event.

It is important to differentiate bubbles that are
primarily vaporous from those that are not. The former -
are bubbles that evolve when the ambient pressure is
less than the vapor pressure of the liquid, such as occurs
during boiling. Gas molecules in these bubbles essentially
evaporate from the bubble interface. This process is
limited only by heat transfer to the interface, and is
hence relatively rapid with a high Zeldovich factor in
Equation 16. On the other hand, bubbles that cause DCS
form in liquids at hydrostatic pressures that are usually
far above the vapor pressure of the surrounding liquid.
Water vapor constitutes a smaller fraction of the contents
of such bubbles as the ambient pressure—vapor pressure
difference increases, so such bubbles must nucleate
primarily from chance aggregation of (Foster et al 1998)
gas molecules that diffuse some distance through tissue
or blood, then across the bubble gas-liquid interface.
Consequently, the nucleation and subsequent evolution
of such bubbles is limited by the concentration and
diffusivity of the dissolved gas, and is relatively slow
with a low Zeldovich factor (Blander 1979, Finkelstein
& Tamir 1985, Gerth 1979, Gerth & Hemmingsen
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1976). Through the remainder of this chapter, decom-
pression bubbles will be understood to be gaseous as
opposed to vaporous in nature and the deformation
pressure will be ignored unless stated otherwise (see
Nims 1951 for a detailed examination of §).

Heterogeneous Nucleation

Gas-supersaturation thresholds for homogeneous
nucleation in bulk liquid are conditioned only by the
nature of molecular interactions between the dissolved
gas and liquid. In contrast, thresholds for heterogeneous
nucleation are affected additionally by conditions unique
to solid-liquid or liquid-liquid interfaces. The hetero-
geneity of tissue compels consideration of this type of
nucleation in vivo.

Heterogeneous bubble nucleation at interfaces be-
tween aqueous and organic liquids should require lower
gas supersaturations than homogeneous nucleation in
either of the bulk liquids (Apfel 1971). Hills (1967)
reported results of experiments in which bubbles were
observed to form at the horizontal interface between
water and paraffin oil when decompressed to sub-
atmospheric pressures. However, these results could
not be repeated when, in similar experiments (Evans &
Walder 1969, Gerth 1979), the liquids and interfaces
were first exposed to high hydrostatic pressure to
extinguish any pre-existing gas nuclei (cf below).

Heterogeneous nucleation at any solid surface that
is not perfectly wetted by the liquid is thermodynamically
favored over homogeneous nucleation, although more
severe kinetic constraints at such a surface conspire to
mitigate the overall facilitative effect. Yount & Kunkle
(1975) considered that a perfectly hydrophobic sphere
might theoretically provide the ideal nucleus because a
concentric shell of liquid vapor would always surround
it. They concluded, however, that because the lower limit
of the shell thickness must be the order of molecular
dimensions, such spheres should not be effective in
reducing gas supersaturations required for spontaneous
bubble nucleation in liquids.

Empirical studies of heterogeneous nucleation at solid
surfaces are difficult because solid surfaces at which
nucleation should theoretically occur most favorably are
also those most able to trap pre-existing nuclei. Gerth
& Hemmingsen (1980) studied bubble nucleation at
the surfaces of solids that had been crystallized in situ
by cooling concentrated aqueous solutions before
decompression, but after they had been N,- or Ar-
saturated at elevated pressures, thereby obviating the
involvement of pre-existing nuclei. Prevailing gas super-
saturations after decompression were corrected for the
effects of cooling and crystallization. Bubbles were

observed to nucleate at the surfaces of some of the
organic crystals studied at gas supersaturations less
than 10 atm, motivating the conclusion that hetero-
geneous nucleation at certain solid-liquid interfaces
may account for the origin of bubbles observed at
relatively low apparent gas supersaturations in vivo.

Pre-Existing Gas Nuclei

If a bubble already exists when liquid or tissue becomes
gas supersaturated, that bubble can grow once its
radius exceeds the critical radius of the liquid. Because
such growth occurs from a non-zero initial radius, it
circumvents that portion of the energy barrier associated
with de novo formation from zero radius to the initial
radius, and allows macroscopic bubbles to appear at gas
supersaturations that are potentially far less than those
required for de novo nucleation. Such persistent bodies
of undissolved gas are called ‘pre-existing’ gas nuclei. A
large body of evidence indicates that many tissues
contain a nearly ever-present population of such nuclei
(Vann 1989). This evidence must be reconciled with
the fact that tissues under normobaric conditions have
negative critical radii (see Fig. 10.1.10 at ¢t = 0).
Mechanisms must therefore exist to stabilize gas nuclei
against dissolution under normobaric and hyperbaric
conditions to explain the persistence of such nuclei.

Various stabilization mechanisms for bubbles in
unsaturated tissue/blood have been proposed based on
the presumption that surface active materials adsorb to
the gas-liquid interface and allow the interface to
support a negative pressure, thereby preventing bubble
dissolution (Fox & Herzfeld 1954, Van Liew & Burkard
1995, Van Liew & Raychaudhuri 1997, Yount 1979a).
The various mechanisms differ in their assumptions
about the gas permeability of the adsorbed layer and in
details of how mechanical-chemical properties of this
layer vary with surface area or nucleus size. Described
below are two gas nuclei stabilization mechanisms, one
involving adsorption of surface active molecules and
the other involving geometrical factors.

Varying Permeability Model

Yount (1997, 1979a, 1982) introduced the varying
permeability model (VPM) where bubble nuclei are
assumed to be stabilized against extinction by skins of
adsorbed amphiphilic molecules, and have an integral
distribution of sizes given by:

N =N, exp(—%), (17)

where N is the number of nuclei of radius greater than
or equal to R,,;,, N, is the constant overall number of
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nuclei, and B is a slope factor. The smallest nuclei that
can be recruited from the distribution at supersaturation
P has a radius given by:

Rmin = ZY/PSS = RC' (18)

Substitution of Equation 18 into Equation 17 gives the
number of bubbles nucleated (or recruited) at P

N =N, sip (— PSSZY 5 ) (19)
The distribution of nuclear sizes is assumed to be
affected by pressure, under the constraints that:

1 no nuclei are extinguished by any overpressures; and
2 the original ordering of nuclear sizes is always
preserved.

Under these constraints, the number of nuclei, N(R,,;,),
of radii greater than or equal to 7,,, after exposure to a
maximum overpressure,

Pcmsh = MAX [ amb (Zpt zpﬁx)]l (20)

must equal the number of nuclei, N(R,;,), of radii greater
than or equal to R%;, in the distribution of nuclei
present before the exposure. Applying Equation 17:

N =N, exp (—Rgm> = N, exp (— Réj" >,

1)

where [° is the slope factor for the initial nuclear size
distribution. If the adsorbed skins on the nuclei are
assumed to remain always permeable to dissolved gases,
the gas supersaturation required to nucleate the N bubbles
in Equation 21 then depends on P, (Yount 1979a):

Y(Yc ) Y

P ’Yc e + Pcmsh <_E>J (22)

where y. (> 7) is the ‘crumbling compression’ that
counters the tendency for surface tension to extinguish
small bubbles (cf Fig. 10.1.12). The slope factor B for
the distribution at a given pressure is then obtained
from Equations 18, 21, and 22:

2v.p°
’Y) + Pcru:h Rmm '

min

P= B(RW)= 201. -

(23)

The effect of P, on all nuclei in the initial
distribution is given in terms of a specific portion of the
distribution; i.e. only those nuclei with radius R,
The nucleus of largest size in the distribution governs
the inception of bubble formation. This nucleus has a
radius, R,,,, given by Equation 17 with N = 1 and f
from Equation 23 using the maximum overpressure
achieved in the profile up to the time of interest:

Liquid

2(y-T)
R

Pouo= Pamo

Fig. 10.1.12 By virtue of a spreading compression, T,
exerted by an adsorbed film of surface-active agents at the
gas-liquid interface, the effective surface tension, (y - '), is
reduced, enhancing bubble stability. For small changes in
bubble radius, T varies with interfacial area and assumes a
maximum value called the ‘crumbling compression, ., when
the bubble area is reduced to the point where surfactant
molecules begin to be ‘squeezed out' of the interface.

Ria = Bln (N,). (24)

It follows from Equation 23 and the definition of Pc,ush
that under initial conditions where B = B°, R, =
R .. corresponds to an overpressure, P°,,,, given by:

2y
Pewsh = Re (25)
which defines a minimum overpressure that must be
attained before the distribution can be affected by
pressure. Increasing compartmental overpressures in
excess of P2, decrease B and shift the population of
nuclei towards smaller sizes.

Gas supersaturations of magnitude smaller than re-
quired to recruit a nucleus of radius R, are sustained
metastably; i.e. without bubble formation. Larger gas
supersaturations are accompanied by bubble nucleation
and growth from increasing numbers of nuclei
recruited according to Equation 19. Exposure to P,
> P° .. consequently increases the threshold gas
supersaturation for bubble inception and reduces the
number of nuclei recruited to become macroscopic
bubbles at supersaturations larger than this threshold.
This behavior is illustrated in Fig. 10.1.13.

The ability of adsorbent molecules to be ‘squeezed
out’ of the layer with sufficient compression as the
nucleus diminishes in size is a central feature of the
VPM. This behavior is in accord with that observed in
other physiologic liquid-gas systems (Otis et al 1994)
and allows gas nuclei to be crushed to smaller stable
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Fig. 10.1.13 Graphical representations of the size
distribution of pre-existing bubble nuclei in a compartment
(a) and the corresponding number of bubbles recruited to
grow as the compartment supersaturation, P increases and
effects of nucleus recruitment and growth on P are
neglected (b). Note that bubble growth depletes the
prevailing supersaturation, so that growth of increasing
numbers of recruited nuclei increasingly limits the
supersaturation attained during decompression. Increasing
values of N in the illustrated distribution consequently
become ever more difficult to realize.

sizes without extincting them. Van Liew & Raychaudhuri
(1997), on the other hand, developed a model of gas
nuclei stabilized by absorbed layers that are unable to
change content with compression. Such nuclei cannot
be crushed to stable smaller sizes, but collapse to
extinction when compressed to less than a limiting
minimum size.

Crevice Model

Another stabilization mechanism involves the entrapment
of gas nuclei within hydrophobic crevices on the surfaces
of solid or semi-solid materials in contact with the
liquid (Harvey 1951). As illustrated in Fig. 10.1.14,
the gas-liquid interface in such crevices has a negative
radius of curvature (surface concave towards the liquid
phase) so that the LaPlace surface tension acts
increasingly against the liquid with increased penetration,

thus stabilizing gas nuclei in undersaturated gas-liquid
solutions. In fact, vaporous nuclei form spontaneously
under such conditions within a crevice if the receding
contact angle is sufficiently large, i.e., o> 90° + 0
(Harvey et al 1944).

Other plausible crevice geometries, such as the
elliptical crevice illustrated in (b) of Fig. 10.1.14, allow
for an inversion of the gas surface and with further
penetration of the nucleus into the crevice, the opposing
LaPlace pressure against the liquid increases markedly
(i.e. 29/R — — o) (Tikuisis 1986). Hence, a gas phase
contained within such a crevice can be supported
indefinitely under conditions of undersaturation or
negative critical radii under the less restrictive condition
that the receding angle > 90°. This mechanism
successfully explained the observations of decompression
bubbles in crustaceans that underwent various pressure-
decompression profiles (Daniels et al 1984).

Hydrodynamic and Mechanical Facilitation

Nucleation by any of the mechanisms described above
can be facilitated at relatively low apparent gas super-
saturations by hydrodynamic or mechanical effects
that decrease the hydrostatic pressure and increase the
prevailing gas supersaturation in small, localized
regions of tissue. These effects may even be sufficient
to produce transient negative pressures or tensions that
cause formation of bubble nuclei in macroscopically
gas-undersaturated tissue. The nuclei may coalesce
into larger nuclei (Yount 1983) that are recruited to
grow at the then-prevailing gas supersaturation, or
become stabilized by one of the mechanisms described
above to persist until recruited to grow with later
occurrence of a suitable gas supersaturation. For example,
Hennessy (1989) has proposed that arterial micro-
bubbles, nucleated primarily in circulatory turbulence
at the tips of the cusps of the pulmonary valve, are the
primary cause of the common forms of DCS, although
other mechanical effects (e.g. ultrasound, tribonucleation,
radiation) must also be considered.

Doppler shifts of reflected incident ultrasound at
relatively low power is routinely used to detect moving
bubbles in the circulation (Nishi 1993). Ultrasonic
imaging is also used in many laboratories to visualize

.both moving and stationary bubbles in tissue. However,

acoustic radiation of sufficient power can also produce
sufficient transient tensions in the liquids of tissue to
cause spontaneous nucleation of bubbles, while rectified
diffusion (Fyrillas & Szeri 1994) can promote growth
of nascent bubble nuclei to critical size and facilitate
bubble nucleation (Crum & Hansen 1982, Crum &
Mao 1996, Crum et al 1987, Dalecki et al 1997).
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Fig. 10.1.14  Gas nucleus stabilized in (a) a conical crevice and (b) an elliptical crevice on the surface of a hydrophobic solid in
a gas-undersaturated liquid. The dotted line in (a) indicates the configuration of the interface at the point where it will begin to
recede from the apex of the crevice in a sufficiently gas-supersaturated liquid. 20 is the apex angle of the crevice. o, is the
advancing angle of contact between the gas-liquid interface and the crevice wall at which the interface advances along the
unwetted crevice wall. 0 is the receding angle of contact between the gas-liquid interface and the crevice wall at which the
interface recedes along the previously wetted crevice wall. The interface remains stationary for all contact angles, o, that satisfy:
O > 0> Oig. In (b), h and a are the crevice height and width, respectively, ¢ is the receding contact angle, and  is angle
between the central (vertical) axis and the tangent to the gas-liquid interface.

By virtue of viscous adhesion between liquid and solid,
liquid between separating or moving solid surfaces is
under transient tensile stress that reduces its hydrostatic
pressure. A classic example of such a condition in vitro
occurs in the liquid region behind the moving point of
contact between a liquid-immersed sphere and a solid
surface upon which the sphere is made to roll (Ikels
1970). The increased critical radius of the affected liquid
then promotes bubble nucleation, potentially aided by
accompanying transient changes in vicinal properties of
the solid-liquid interfaces involved. This process,
called tribonucleation (Hayward 1967), plausibly
accounts for observations of in vivo bubble formation
that accompanies joint flexion and motion in otherwise
bubble-free gas-supersaturated invertebrates (Evans &
Walder 1969, McDonough & Hemmingsen 1984a,b),
and for the well-known increase in DCS susceptibility
in man associated with performance of exercise after

decompression (Kumar & Powell 1994, Van der Aue et *

al 1949).

Tribonucleation can also generate vapor bubbles that
acquire sufficient amounts of inert gas to delay their
collapse back into solution when the opposing crushing
pressure returns. The nuclei may then become
stabilized by coalescing into larger more stable bubbles;
a process facilitated by any local turbulence, by adsorbing
surface active material, or by associating with solids in
the liquid. Thus, normal day-to-day ambulation and

exercise is thought to produce populations of nuclei that
persist as the product of a dynamic equilibrium between
nuclei production and dissolution (Vann et al 1989).
Vann and coworkers (Vann, 1989; Vann & Thalmann
1993; Vann et al 1989) provide extensive reviews of
possible sources of vaporous cavitation leading to
decompression bubbles.

High-energy ionizing particles, such as neutrons in
cosmic radiation or alpha particles from radioactive
decay of U238 incorporated in the matrix of bone
(Walder & Evans, 1974), deposit energy as they travel
through tissue, producing a train of thermal spikes that
can rupture with the formation of vapor-filled micro-
cavities. The coalescence of a train of microcavities
formed along a segment of the particle path length
longer than the final diameter of the resulting bubble
may be involved (Sette 1967, Sette & Wanderlingh
1967).

BUBBLE GROWTH

Once a bubble has nucleated; i.e. attained a size equal
to or greater than the critical radius; its contents and
size will change according to the prevailing difference
between the dissolved gas tension and the bubble gas
pressure at the gas-liquid interface. Of course, water
vapor is assumed to be always in equilibrium between

bubble and tissue. The metabolic gases, O, and CO,,
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are also often included with water vapor in this
equilibrium assumption, so that P, = Zpj, at the
gas-liquid interface. Adopting this assumption except
where otherwise noted, we first summarize the quan-
titative expressions for the changes in bubble contents
and size that are obtained when only a single inert gas
is involved.

Single Inert Gas Dynamics

If the inert gas is assumed to be always in equilibrium
between the bubble and a well-perfused tissue, the gas
tension in the tissue equals its partial pressure in the
bubble, and both are coupled to the ambient pressure
by the LaPlace equation (Equation 13). Thus, if surface
tension and mechanical effects are neglected, then
Pig = Phyg = Puwy — Zpj. The rate of change of bubble
volume is then obtained from the expression for mass
balance between the bubble, tissue, and blood, which is
given for a perfusion-limited system by Equation 10
with addition and appropriate elaboration of the -Z,
term (Equation 6):

dpt,g — mu/g “t+ (PZ,g _pt,g)
di T

) (ﬁv) o ) (26)

where kTP, ,V, is the number of moles of gas g at
partial pressure P, in a bubble of volume V}. Under
the equilibrium conditions stipulated above, Equation
26 is solved to obtain the following expression for the
rate of change of bubble volume at constant ambient

pressure and p, , (Vann 1982):

dV A pa
<—d—t_b> = Olplood gQ <P[§ - 1)- (27)

Equation 27 is readily shown to imply that the bubble
volume must decrease monotonically during any isobaric
stage after decompression.

When the attainment of equilibrium between bubble
and tissue is limited by diffusion, the flux of a given gas
across the gas-liquid interface is governed by the Fick-
Fourier diffusion equation:

%(Pb,gvb) — LTAD - 3—; - (28)
where A is the surface area of the gas-liquid interface
and R, is the radius of the bubble where spherical
symmetry is assumed. Again, solution of this equation
for the rate of change of bubble volume is simplest
when effects of surface tension, mechanical deformation,
and changes in bubble surface area with bubble size are

I Qtim Dt,i,m

Fig. 10.1.15 Schematic of the three-region model,
consisting of a gas bubble covered by an unstirred and
unperfused boundary layer of constant and uniform thickness
h within a well-stirred tissue mass.

neglected. Under these conditions, Equation 28
implies that the flux and consequent rate of change of
bubble volume at constant P, are proportional to the
gas supersaturation. More Comprehensive treatments
relax the assumptions leading to this simple deduction.

Models that consider the gas bubble to be covered
by an unstirred and unperfused boundary layer of
constant and uniform thickness s within a well-stirred
tissue mass are referred as three-region models (Fig.
10.1.15). Assuming spherical symmetry with the center
of the bubble at R = 0, the diffusion equation for the
dc/0R factor in Equation 26 is:

d _p| % , 20
= —D[BRZ + RBR}' (29)

Under the quasistatic assumption, dc/0t is neglected
and, with boundary conditions ¢(R;,t) = ¢; at the bubble
surface and ¢(R,,t) = ¢, at the outer surface of the
boundary layer, the solution of Equation 29 at the
bubble surface is:

ac
R

e (% - —1%) (30)

For large R;, Equation 30 reduces to:
i ~a)- (%) 61

oR
and divergence of the gas tension gradient in the vicinity
of the bubble vanishes. Substitution of Equation 31
into Equation 28 yields (Tikuisis et al 1983, 1994):
dap amb
Doy, (pg—Pp)/h—(R/3)\ dt )
d_R - 1,8 g bg ) (32)

dt Py — ZPg, + 4y/3R

Note that with no gas flux across the bubble boundary
(i.e. pg = Py,), Equation 32 reduces to the expression

= (CO —
R=R;

=[g,
R=R;
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for Boyle’s law effects on bubble size. When the
influence of tissue elastic deformation is considered, an
additional term, 89R%/3, appears in the denominator,
where ¢ is the tissue modulus of elasticity (Gernhardt
1991). While the rate of bubble dissolution increases
as R = 0, unconstrained bubble growth asymptotically
approaches a finite value as R — o, provided the inert
gas tension is unaffected by the growth of the bubble.

Equation 31 is inappropriate for small bubbles due
to the neglect of the divergence of the gas tension
gradient. This deficiency is remedied through the
substitution of Equation 30 instead of Equation 31 into
Equation 28, which ultimately yields:

dPamb
d_R _ Doy, (prg— Py (1/R + 1/h) - (R/3)4< - )
di Py — EPp, + 47/3R -

amb —

(33)

The additional 1/R term in the numerator was shown
to have a significant impact on the maximum bubble
volume attained after a given decompression (Srinivasan
et al 1999). For bubble evolution in small finite volumes,
additional analytic provisions must be made to vary the
gas contents of the diffusion layer in accord with Henry’s
law (Srinivasan et al 2000).

Tikuisis et al (1983) solved the three-region problem
with a variable bubble boundary thickness that
disappears as R — 0 and without the quasistationary
approximation (i.e. where changes in gas concentration
over time are ignored) used above. However, the more
rigorous solution is rather cumbersome for modeling
purposes. Tikuisis et al also relaxed the usual assumption
of local equilibrium between gas and liquid at the
gas-liquid interface, and used statistical rate theory as
developed by Ward (1977) and applied to gas bubbles
(Ward et al 1982a) to account for non-equilibrium
effects on the transinterfacial gas flux. The flux of gas
g across the bubble boundary is then given by:

]:K4<£fﬁ_ Pb,g>, (34)
£ bg pt,g
where K is the rate at which gas molecules contact
available sites for absorption at the interface. The
resultant non-equilibrium expression for bubble evolution
in the three-region model at constant pressure is:

AR _ KT -J

dt - Pop—% Py + 43R Lo

Van Liew & Hlastala, (1969) considered the region
immediately surrounding the bubble to be uniformly
perfused by adding the perfusion term from Equation
5 to Equation 29. They then converted concentrations
to partial pressures, and infinitely expanded the region

by solving the resultant expression under boundary
conditions p = P, at 7 = r; and p = p, as r — e, while
neglecting effects of surface tension and changing
hydrostatic pressure. In a more recent treatment of
this two-region model, so named because it consists only
of the bubble and the surrounding tissue, Srinivasan et
al (1999) corrected these latter omissions and used the
outer boundary condition p = p, as 7 — . The final
expression for dR/dr is identical to the three-region
model of Equation 33, except & in the second parenthesis
on the left is replaced by+/Dt . The resultant dR/dt
expressions in these versions of the two- and three-
region models therefore differ only in their
parameterizations.

Ward et al (1986) applied statistical rate theory to
the two-region problem and derived the following
expression for tissues at constant pressure:

dR _ D, (g~ Py (/R + 1/AlDr)
dr P, — ZPs, + 4y/3R

amb —

, (36)

which is similar to the two-region analog of Equation
33, except for the replacement of T by mt in the y/Dt
term.

Hlastala & Van Liew (1975), and Meisel et al (1981)
relaxed the quasistatic assumption to obtain complete
solutions to the two-region problem under the boundary
condition p = p, as R — «. However, these solutions
require p, (or p,) to be independent of both R and ¢,
rendering them of limited utility in practical physiologic
decompression problems.

Mass Balance in Finite Volumes

Each of the above models of bubble dynamics gives the
rate of bubble evolution as a function of the tissue
tension, p, ;. In perfusion-limited systems, values of the
latter for solution of the dR/dt functions are obtained
from Equation 26. Note that if the tissue volume is
infinite, as in the above two-region models, the second
term on the right side of Equation 26 vanishes and the
bubble fails to affect the value of p,,. Therefore, two-
region models of bubble evolution are essentially single-
bubble models that cannot be used to consider
interactions between multiple bubbles. In contrast, as
a bubble grows or dissolves in the finite tissue volumes
of the three-region models, it exchanges gas with its
surroundings, affecting the dissolved gas concentration
and tension. These more realistic models reflect the
fact that a growing bubble must deplete its surroundings
of dissolved gas and relieve the local gas super-
saturation. In the tissue-bubble equilibrium model that
yields Equation 27 for the rate of bubble resolution, for
example, the tissue gas tension is reduced immediately
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to a value close to the ambient pressure (P, — Zpj,)
when bubble formation occurs. This, in turn reduces
the tissue-blood concentration gradient (Baz & Abdel-
Khalik 1986, Kislyakov & Kopyltsov 1988), slows gas
elimination from the tissue, and impacts the dynamics
of other bubbles at sufficiently close proximity in the
tissue (Gault et al 1995, Srinivasan et al 1999, 2000,
Tikuisis & Nishi 1994, Tikuisis et al 1994, Van Liew &
Burkard 1993) as illustrated in Fig. 10.1.16.

As the bubble number density increases, tissue gas
tensions become clamped to the corresponding pressures
of the gases in the bubble, which in a single gas system,
is a function of ambient hydrostatic pressure only. Gas
elimination from the finite tissue then follows slower
time-linear kinetics until the bubbles are completely
resolved. This slowing of bubble resolution and gas
elimination from the tissue with increasing bubble
number density is evident in (b) of Fig. 10.1.16. This
behavior is also obtained with a single bubble if surface
tension effects are neglected and the bubble is assumed
always in equilibrium with the tissue, and is a central
feature of the Exponential-Linear (EL) model to be
described later.

The above treatments of the mass-balance problem
in three-region models incorporate considerable simpli-
fication of the diffusion process, effectively collapsing all
diffusion limitation into a factitious boundary layer or
region around the bubble while leaving the remainder
of the modeled tissue volume well-stirred (Srinivasan
et al 2000). It is through bubble effects on the gas
tensions in this well-stirred region that bubble-bubble
interactions then occur. In a more rigorous treatment
of the two-bubble problem, Jiang et al (1996) solved
the diffusion equation for the overlapping diffusion
regions of the two bubbles. These authors found that
the lifetimes of the paired bubbles in close proximity
are longer than when the bubbles are infinitely
separated, but the difference quickly reduces with
increasing separation; e.g. bubble lifetimes are less
than 4% longer when more than 10 bubble diameters
apart.

Multigas Dynamics

The composition of the inspired inert gas is often
changed in a pressure profile, requiring consideration
of the simultaneous exchange of multiple inert gases
between bubble, tissue, and blood. The above expressions
for bubble evolution and tissue tension are readily
elaborated to accommodate such problems by simply
assuming that the fluxes of the m gases involved are
independent of each other. In the two- and three-region
bubble dynamics models, for example, the resultant
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Fig. 10.1.16 Effect of tissue volume in the three-region
model on bubble growth (a) and inert gas tension p, in the
well-stirred region (b) of a 360 min half-time tissue during a
30 min 100% oxygen prebreathe at sea level followed by a

5 min ascent to an indefinitely long exposure at 7620 m
(25000 ft) altitude. (From Srinivasan et al 1999)

dR/dt expressions resemble Equation 33, except that a
sum of terms, one for each of the m gases, replaces the
single term associated with gas g in the numerator of
each expression (Srinivasan et al 1999). A more
rigorous approach is to consider transfer of gas along a
near-equilibrium path by applying the minimum rate of
entropy production at the bubble boundary (Tucker &
Ward 1975b). Again, an equation resembling Equation
35 is obtained, but the value of the summed gas
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m
pressure, z Py ,, in the the expression for J is adjusted.
¢
Notably, accommodation of multiple inert gases under

the assumption of equilibrium between bubble and
tissue can be handled in at least two ways. In both, the
sum of the tissue tensions is coupled to the ambient
hydrostatic pressure through the sum of the bubble

pressures, Zpl o Z P, , and the LaPlace equation

(Equation 13) Term-by—term equivalence of these sums
can then be presumed to obtain an analog of Equation
27 that consists of a sum of m terms. Parker et al
(1998), however, relaxed this latter presumption and,
still neglecting surface tension and mechanical effects,
computed the individual p,, for the solution of
Equation 13 by rearranging the expression for the total
tissue content of each gas:

V,
Mg = Oy Prg + —p}fTb (37)
to obtain:
L g
b = o TV RT (38)

where the first term on the right side of Equation 37 is
the amount of gas g in solution and the second term is
the amount of undissolved gas g in one or more
bubbles. Substitution of Equation 38 into Equation 13
(with ¥ = 0 and & = 0) and rearrangement yields a
homogeneous polynomial of order m with positive real
root equal to V,/kT. This root (and V}) is determined
by standard methods, but because it is a function of n,
and p,,, it must be iterated over successive small
intervals of time. This required resort to numerical
methods contrasts with the simple analytic solution for
V), that is obtained in the single gas problem by the
simple integration of Equation 27.

Bubble-Tissue Interactions

Once a gas bubble has formed, it begins to interact
with its immediate surroundings. It is well known that
bubbles initiate a variety of biochemical responses in
addition to any physical trauma that their presence
might cause. Several investigators have reported on the
biochemical interaction between bubbles and blood
(Ackles 1973, Ward et al 1987), endothelial damage,
and microcirculatory impairment (Baz & Abdel-Khalik
1986). However, none of these findings have been
sufficiently quantified for incorporation into DCS
models, and consideration of their roles in the etiology
of DCS is sorely lacking in even the most recent
quantitative models of DCS.

The primary goal of decompression theory is to prevent
or control the incidence of DCS, keeping any incidence
within limits of acceptable severity. Two approaches
have been taken to achieve this goal: traditional deter-
ministic and more recent probabilistic approaches. In
deterministic models, a decompression is declared
‘safe’ if certain well-defined criteria are not violated
during ascent, or ‘unsafe’ if any one of these ascent
criteria are violated. In probabilistic approaches, DCS
is recognized to be a random event that occurs with a
probability that varies as a function of the conditions
before, during, and after decompression. A decom-
pression profile cannot be declared either safe or unsafe,
but can only be stated to have an associated probability
of DCS occurrence that the user must consider accept-
able or not. An important distinction between the two
approaches is that DCS outcome is explicitly modeled
only in the probabilistic approach.

DETERMINISTIC DCS MODELS

The earliest models for controlling decompression,
reviewed by Behnke (1975), Hills (1977),
Hempleman (1993), sought to minimize the incidence
of DCS by considering its occurrence as a function of
the prevailing gas supersaturation per se. Boycott et al
(1908) made the seminal observation that DCS in air-
breathing goats was avoided when decompressions
were limited to one-half of the saturation depth. On
the basis of this observation and the assumption that
inspired O, can be neglected, it was postulated that
decompressions from air dives are safe as long as they
are conducted to keep tissue nitrogen tensions from
exceeding 1.58 [= 2 - (1 - fo,), where fo, is the
fraction of O, in air] times the ambient pressure.
Nitrogen tensions for control in this approach were
computed using Equation 10 applied to each of a
collection of parallel-perfused compartments with
different inert gas exchange rates. Initially, five
compartments with half-times ranging from 5 to 75
min were used. The concept of stage decompression
was then introduced in order to maximize the gradient
between tissue and blood periodically throughout the
decompression. An important feature of this ‘Haldane’
method of decompression is that only a single tissue,
that having the highest dissolved gas tension, controls
decompression at any given time.

Decompression schedules are calculated by
transforming the tissue ratio (TR; Equation 2) into a
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maximum permissible tissue tension (MPTT or M-
value) at any given stop depth. Decompression is
effected by ascent to the shallowest stop before that at
which a computed tissue gas tension exceeds the
corresponding M-value. Time is then spent at that stop
until all tissue gas tensions decay to values less than or
equal to the M-values for the next stop; i.e. until the
highest p, ; — M; difference among the different tissues
is zero; at which time the diver is decompressed to the
next stop. The process is repeated at this and successive
stops until the diver has surfaced, as illustrated in Fig.
10.1.17. Note that a discontinuity occurs in the
maximum overpressure line when control of the
decompression advances to a compartment with longer
half-time. Such discontinuities are obviated in a
modification of the Haldane method described by Egi
& Gurmen (2000), which simplifies calculation of no-
stop limits and decompression stop times as long as M-
values can be expressed as a single continuous function
of compartmental half-time and depth. Typically, low
half-time tissues tend to control the deeper initial stops
in a given decompression and the overall decompressions
in dives of relatively short duration. High half-time
tissues tend to dominate the latter shallower stops in a
given decompression and the overall decompressions of
longer dives.

Subsequent modifications to the Haldane method
lead to specific safe ascent ratios for each tissue (Hawkins
et al 1935, Yarbrough & Behnke 1939), additional tissues
with longer half-times (Buhlmann 1984, Dwyer 1956,
Van der Aue et al 1951), and systematic changes in the
ratios with stop depth. Surfacing ratios were obtained
from an ever-growing body of no-stop decompression
data. Specification of how these ratios or their
corresponding M-values should change with depth for
calculation of decompression schedules became more
challenging because data for such dives tended to be
far less plentiful. For development of the US Navy
Standard Air Decompression Tables (Des Granges
1956), Dwyer, (1956) used a complicated tenth power
relationship to project surfacing M-values to M-values
at the various stops. Workman, (1965) simplified this
approach by expressing M-values for each modeled
compartment in simple linear form:

M;=My; +a;"d, (39)

where My; and a; are tissue-specific surfacing tension
and depth-dependence parameters, respectively, and d
is the depth of the next decompression stop. Table
10.1.1 gives Workman’s M parameters for various tissue
half-times. For example, the critical gas tensions in the
20 min half-time tissue for safe ascent to a depth of 10
msw are 36.8 (21.8 + 1.5 x 10) and 33.0 (20.0 + 1.3

Table 10.1.1 M, (in msw) and a values (see Equation 39)

for nitrogen and helium.

5 a8 g 261 15
0 e7 1 554 14
s 255 15 00 1
- 7 d | 15
B0 184 13 170 12
10 158 13 g4 17
0 155 1o 164 14
200 158 1] 1.1 11
240 152 11 48T 10

x 10) msw for N, and He, respectively. Note that tissues
are assumed to tolerate higher gas supersaturations
with N as the inert gas than with He as the inert gas.
Assuming that the 5 min half-time compartment in
Table 10.1.1 represents an aqueous tissue, then the
perfusion rate can be approximated as 0.14 ml blood/
ml tissue/min (Equation 8). This can be compared to
values of 0.5 and 0.1 ml blood/ml tissue/min for blood
flow to cerebral gray and white matter, respectively
(Albano & Columba 1976). However, straightforward
substitution of non-aqueous solubility values of N, and
He for higher half-time compartments leads to
conflicting values of Q, thereby exposing an
inconsistency in Table 10.1.1 with respect to physical
and physiologic constraints. While this illustrates the
highly empirical nature of the M-value system,
Hennessey & Hempleman (1977) showed how the
linear pressure-dependence of the M; in Equation 39
follows from presumption that gas supersaturation is
fully relieved by bubble formation in tissue and that
DCS first occurs when the total volume of bubbles in
the tissue exceeds a certain critical value. Shortly
thereafter, Yount (1979a, 1981) pointed out that
substitution of (M - d) for P, and (M — P,) for P,,,, in
Equation 22 yields an equation of form identical to
Equation 39, implying that Equation 39 specifies
isopleths of constant bubble number at the threshold
gas supersaturations for DCS in a given tissue.
Decompression schedules computed using M,
values based on empirically established no-stop limits
and the projection of these values to depth prescribed
by Equation 39 were eventually found to be too short
for longer deeper dives as they incurred unacceptably
high incidences of DCS (Hempleman 1993, Workman
& Bornmann 1975). This shortcoming could not be
corrected without also shortening the no-stop limits,
which were perceived to be acceptably short. Suitable
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lllustration of M-value usage in the Haldane method to compute a staged decompression for an air dive to 40

msw (130 fsw) for 40 min. (a) shows the time courses of the ambient pressure and computed dissolved N, tensions in each of
Haldane's five compartments with indicated half-times throughout the dive. (b) shows the time courses of the ambient pressure
and the maximum prevailing p; - M difference, where M is the M-value for the next decompression stop. Note that _
decompression to each stop occurs only after this difference has decayed to zero. The M-value at each stop depth was obtained
from the Haldane tissue ratio of 1.58 for air diving; M = 1.58 X depth. As per convention, the 40 min bottom time includes

descent time from surface.

lengthening of decompressions could be attained either
by changing the system for specifying M-values or by
ascribing different kinetics of tissue-blood gas exchange.

Yount & Hoffman (1986) adopted the first approach
by noting that the critical volume, V,, and critical number
hypotheses are equivalent if bubbles, once nucleated,
quickly attain the same size, V. They then postulated
that a certain number of bubbles, n,, could be tolerated
without adverse effect, so that the critical volume V,
consists of the (n — n,) bubbles in excess of this
tolerable number. The bubble numbers n and n, were
assumed to be functions of compartmental gas super-
saturations as prescribed by the varying permeability
model of bubble nucleation described earlier. The rate
at which excess undissolved gas volume, V,, accumulates

to form the critical volume in tissue is thus given by the
rate of change of the excess bubble number x bubble
volume product;

% - dl(n-ng) - Vs
dt dt '

which was simplified by fixing (n — ny) under the
assumption that P is constant throughout the
decompression, unaffected by bubble formation, and
equal to its value on arrival at the first decompression
stop at depth d. Bubble surface tension, changes in
bubble surface area with bubble size, mechanical
effects, and Boyle’s law effects from further
decompression were also neglected so that the volume
growth rate of the nucleated bubbles could be assumed

(40)
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proportional to P; i.e. dV,/dt = P,/y. Finally, after
arrival at surface at time ¢, P, was assumed to decay
in the usual semiexponential fashion with the
appropriate compartmental time constant, T. Under
these conditons Equation 40 is integrated over the
domain of positive P to yield:

Ve=(n-ng) - Py (ta + O/x- (41)

Decompression is therefore considered safe with
minimal total decompression time, t;, when conducted
to allow V, to equal V. Substitution of M — d for P,
and V., for V, into Equation 41 yields, after rearrange-
ment, the expression for the revised safe ascent
criterion:

xVe

RCEIOED) Y

The corresponding M-value at the first stop, P, + d, is
decremented at successive subsequent stops by the
stop depth increment. Resultant M-values, when
evaluated for each of the compartments in the parallel-
perfusion model, are used in the usual Haldane fashion
to compute staged decompression schedules. However,
because the initial M and corresponding acceptable P
are a function of t; the schedule for a given
decompression is calculated by an iterative process,
beginning by completing the schedule using an initial
estimate of P. The t; from this schedule is then used
in Equation 42 to evaluate a new P, complete a new
schedule, and find a new t; The process is repeated
until the acceptable P, and t, in successive iterations
differ by acceptably small amounts. With further sub-
stitution of expressions for n and n, from the varying
permeability model, and provisions for time-dependent
recovery of the nucleus radial distribution from the
effects of crushing (Yount & Hoffman 1986), the new
M-values become complicated functions of maximum
depth and time at depth, and thus represent a substantial
departure from earlier approaches based on empirically
established no-stop limits. Their use generally results
in deeper first stops than prescribed by earlier methods.
Weinke (1990, 1992) extended this method to repetitive
diving and noted that, in order to remain within the
critical volume constraint, the permissible gas super-
saturation M — d must be reduced for decompressions
in successive repetitive dives.

Gernhardt (1991) developed a different implemen-
tation of the critical released volume hypothesis
(Miller et al 1973), in which he used a large R three-
region model of diffusion-limited gas bubble dynamics
to track bubble growth from an ever-present nucleus of
fixed size in each of 10 parallel-perfused compartments

in a Haldanian gas exchange model. Decompression was
controlled to keep a bubble growth index, defined as
the ratio of the prevailing bubble volume to the initial
volume, less than a prespecified limiting value.
Compartmental volumes were assumed sufficiently
large compared to the bubble gas contents to warrant
neglect of the d(P,,V;)/dt term in the coupled tissue
tension Equation 26.

In all of the above approaches, compartmental gas
uptake and elimination were assumed to be kinetically
symmetric; namely, compartmental inert gas tensions
were computed with the same time constants during
compression and decompression phases of a dive profile.
This ignored the certain effects of bubble formation via
the Z, term in Equation 6, as well as other possible
effects of bubble formation on the tissue perfusion rate.
These effects act together to reduce gas elimination rates
after bubble formation during and after decompression
compared to gas uptake rates during descent and bottom
phases of each dive. In consideration of these effects,
the other approach to remedy of the unacceptably short
decompressions for longer and deeper dives prescribed
by the earlier methods entailed introduction of kinetic
asymmetry between gas uptake and elimination, with
retention of surfacing M-values based on empirically
established no-stop limits and the projection of these
values to depth prescribed by Equation 39.

In the early development of a US Navy Real-Time
Algorithm for decompression, Thalmann (1983) adopted
the simplest way to implement the desired kinetic
asymmetry by postulating different time constants (or
half-times) for gas uptake and elimination within each
compartment. However, specification of appropriate
time constants for such asymmetrical (ASYM) models
was completely empirical.- Thalmann gave the asymmetry
a biophysical basis in later work with development of
the EL gas exchange model (Thalmann 1981, 1983),
which explicitly considered the influence of bubble
formation on gas exchange.

In the EL model, the tissue inert gas burden, p,,
replaces the tissue inert gas tension as the controlled
quantity during decompression. The expression for the
inert gas burden is obtained by rearranging Equation
26:

dp'g _ dp (#) d(P, V)
dr “dr a,,V, dt
_ [ma,gt - (I;L,g —PZ,g)] ) (43)

Note that p’,, consists of both dissolved inert gas and
inert gas in bubbles, with the latter gas treated as if it
were still in solution. In the absence of bubbles, modeled
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blood-tissue gas exchange follows the semiexponential
function of time given by Equation 10, which is the
solution of Equation 43 when ¥, = 0. Once a bubble
forms, it is assumed to be always in equilibrium with
its surroundings, and effects of gas-liquid surface tension
and any tissue deformation pressures are ignored. We
then have the same system assumed in the derivation
of Equation 27, so that in an isobaric stage, P,,,;, — 2P,
is constant and dp, ,/dt = 0. If the inspired po, remains
constant (m,, = 0), p,, is also constant and equal to
1’y Hence, all components on the right of Equation
43 are constant, dp’,/dt is a negative constant,
determined wholly by the d(P,, ,V},)/dt term, and overall
gas washout from the tissue is time linear. The slowing
of gas elimination under these conditions is illustrated
by comparing the p, , vs time curves for the highest and
lowest bubble number densities in (b) of Fig. 10.1.16.
Once the bubble has dissolved, the rate of gas elimi-
nation resumes the exponential behavior prescribed by
Equation 10.

EL kinetics were incorporated into the Exponential-
Linear MK 15/16 Real Time Algorithm with the VVALIS
MPTT Table (EL MK 15/16 RTA VVALI1S) to develop
the constant 70 kPa (0.7 ATA) PO,-in-N, decompression
tables for the USN MK 15/16 Underwater Breathing
Apparatus (UBA) dived with air as the diluent. gas
(Thalmann 1986). A combination of ASYM and EL
kinetics was used to model blood-tissue gas exchange
for development of the constant 70 kPa (0.7 ATA)
PO,-in-He decompression tables for the same UBA
dived with heliox as the diluent gas(Thalmann 1985).

While conceptually simple and convenient to apply,
deterministic models lack a formalism for evaluating
and predicting the times after decompression at which
DCS is most likely to occur, and they suffer seriously
from seeking only to declare a decompression either
‘safe’ or ‘unsafe.’ They cannot distinguish between
different levels of safety, particularly as decompressions
satisfy or violate the safe ascent criteria within different
margins. This causes a somewhat subtler problem in
analysis of available data — loss of information. For
example, to declare an upper limit of 5% risk of DGS
with 95% binomial confidence, 72 dive trials must be
conducted with no incidence of DCS (Diem 1962). If,
however, one incident occurs during the trials, then an
additional 37 trials are required without any further
incidence of DCS to defend the same 5% risk declaration.
Clearly, the number of dive trials required to empirically
ensure that a given profile actually incurs a low risk of
DCS can quickly become untenable (see Homer &
Weathersby 1985 for a more complete discussion).
Weathersby et al (1984) introduced a probabilistic
approach that overcomes this difficulty by allowing risk

assessment based on any number of dissimilar dives. In
fact, the greater the number of dives and their diversity,
the more certain and generally applicable are the
resultant predictions.

PROBABILISTIC DCS MODELS

In probabilistic approaches to DCS prevention, DCS is
considered to be an all-or-nothing event that either
occurs during a given decompression profile or does
not. The probability of an observation at any time
when an individual is under study is unity, consisting of
the sum of the probabilities of the two mutually exclusive
outcomes; that DCS has occurred P(DCS) or not
occurred P(NoDCS):

P(DCS) + P(NoDCS) = 1. (44)

The mathematical form that an expression for P(DCS)
must take is governed by the seemingly random nature
of DCS occurrence. If, for example, a large number of
individuals from a homogeneous population is exposed
to a given pressure proﬁle and the time to occurrence
of DCS is determined for each individual, the number
of occurrences of each DCS onset time divided by the
total number of individuals in the sample might be
plotted to obtain a DCS probability density distribution
as shown in Fig. 10.1.18. In this figure, decompression
begins at zero time on the abscissa and ends at the
indicated time. The overall probability of DCS from
decompression start to any time t; on the abscissa is
given by the area under the probability density
distribution between r = 0 and t = #; (subscripts 1 and
2 are usually reserved for conditional probabilities, hence
the designation of t3):

P(DCS) = f f(r)ds. (45)
=0

DCS is most simply observed to either occur or not
occur by some arbitrary time t; that may be common
to all individuals but is always sufficiently high so that
any probability of DCS after t; is negligible. In our
example, the probability of DCS under these conditions
is the same for all individuals and the observed out-
come is a binary categorical response (‘DCS’ or
‘NoDCS’). With a large number of samples from the
same population, this outcome is reasonably assumed
to be distributed according to a binomial distribution.
The observed information can then be modeled using a
binary response assay in one of two forms. In the
simplest of these, the DCS probability is expressed as
a function of a single-valued dose variable that is
computed from properties of the pressure and respired
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gas profile. This approach does not require integration
of a DCS probability density function, which affords it
a simplicity that motivated its use as the basis of the
earliest probabilistic models of DCS occurrence (Gerth
et al 1992, Vann et al 1987, Weathersby et al 1984). In
the other form of binary response assay, the DCS
probability density function is explicitly defined and
integrated over the O-f; interval to obtain the DCS
probability for the exposure. This approach was used as
the basis for the next generation of probabilistic models
of diving DCS occurrence (Weathersby et al 1985).

If the time at which DCS occurrence or non-
occurrence is assessed does not meet the above criteria;
i.e. is not the same for all individuals and is often low
enough to miss late-occurring incidences of DCS, then
both the modeled DCS probabilities and the observed
outcomes become dependent on the times of the
assessments. Under these conditions in our illustration,
the modeled DCS probabilities and observed outcomes
will no longer be the same for all individuals but will
depend on time. This time dependence is taken into
account by considering the outcome to be the time to
DCS occurrence for those individuals that are observed
to develop DCS, or the time to the end of the study
for those individuals that remain DCS-free. This outcome
is a continuous random variable, which, in our example,
has the skewed distribution illustrated in Fig. 10.1.18,
and which can be modeled using failure time, or ‘survival,’
analysis (Collett 1994, Kalbfleisch & Prentice 1980).
Most recent probabilistic DCS models (Conkin et al
1996, Gerth & Vann 1995, 1997, Parker et al 1998,
Thalmann et al 1997) use this type of analysis, which
allows both the overall probability of DCS as well as
the time of most probable occurrence of DCS in a profile
to be estimated (Weathersby et al 1992a).

The need to specify the probability density function
is a central feature both of incidence-only binary response
assays and any type of survival analysis. In practice, a

Probability density [f(t)]

more readily conceptualized hazard or risk function,
h(z), is defined, which is itself only a transform of the
probability density function:

v
: (46)
1- { f(r)de

h(t) =

The hazard function gives the instantaneous probability
of DCS at time ¢ in those individuals that have not
developed DCS up to time ¢t and hence remain at risk
for DCS at that time. The probability of DCS occurrence
between ¢t = 0 and ¢ is then given by:

P(DCS,) = 1 - P(NoDCS)
=1—exp (—‘!h(u)du) (47)

Any actual implementation of Equation 47 contains
parameters, B = (B), B, ..., By), that govern its
quantitative behavior. These parameters may set
location and shape properties of the hazard function
for a reference population characterized by zero values
for all explanatory variables, scale the influences of
explanatory variables in the hazard function, or be
required ‘mechanistic’ constants in that function. Values
of these parameters required to yield model per-
formance in best possible conformance with selected
calibration data are found by maximizing a likelihood
function, L(B), of the parameters (Collett 1994,
Kalbfleisch & Prentice 1980). This function is defined
as the probability of the observed overall outcome of
one or more exposures, given the hazard function and
values for the q parameters in . Assuming statistical
independence of all possible outcomes, the likelihood,
I; (B), of an individual exposure, i, is the product of the
probabilities of the possible outcomes, each conditioned
by actual experience through the influence of an outcome
variable, {;.

e—|
Decompression

Time (8

Fig. 10.1.18 Hypothetical density distribution of DCS probability after start of decompression. The initial rapid rise reflects the
high frequency of DCS soon after the start of decompression relative to the number of occurrences later on.
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L(B) = P,(DCS)% - P{NoDCS)" %), (48)

where {; = 0if DCS did not occur in the exposure and
g, = 1if DCS did occur. P,(NoDCS) is the probability
that the entire exposure is completed DCS-free. The
likelihood of a trial of N independent exposures is then
given as the product of the likelihoods of the individual
exposures, i.e.:

L(p) = ljzi(s). (49)

Parameter values are systematically adjusted to
maximize Equation 49 about a data set of pressure
exposures and their outcomes using iterative non-linear
parameter estimation techniques (Marquardt 1963).
The results are the ‘best fit’ values of the parameters
for use in model applications and the maximum likelihood
achieved by the model on the data. The latter serves as
a quantitative index of model goodness-of-fit. A central
and singularly most important feature of this approach
is that a model is made to provide estimates of DCS
risks and times of DCS occurrence that are in closest
possible agreement with observed DCS incidences and
times of occurrence in actual experience.

Specification of the DCS Hazard Function

Any distributional model is applicable only to popu-
lations for which the explanatory variables and factors
(also called covariates) in the model are known and in
which no other confounding factors are active to
influence the modeled outcome. In other words, a
model is applicable to a problem only when all relevant
heterogeneity in the target population is accommodated
in the covariates. In the context of DCS modeling,
such heterogeneity can include exposures to multiple
ambient pressures, performance of different exercises
at various intensities, and breathing of different gas
mixes during different periods in any given profile.
Probabilistic models of DCS occurrence for practical
use must therefore remain applicable to profiles of
practically arbitrary complexity, which imposes certain
limitations on the form for the hazard function.
Well-characterized parametric statistical distributions
that incorporate the influences of covariates are readily
available. For example, log-logistic models for altitude
DCS have been developed that use time-independent
covariates (Conkin et al 1996, Kannan & Raychaudhuri
1997, Kannan et al 1998). These time-independent
covariates are defined with decompression profiles of a
particular form in mind; i.e. with reference to one or
more specific properties of the decompression profile; so
that the resultant models are applicable only to

decompression profiles of that form. For example,
expressing DCS risk as a function of the tissue ratio in
Equation 2 (Conkin et al 1996, Van Liew et al 1994)
requires specification of the point in a profile at which
the ratio is to be evaluated. Consideration that DCS risk
may be governed by TR values at additional points in the
profile, such as might naturally be expected in repetitive
decompressions, requires addition of more covariates to
the risk function, along with corresponding parameters to
scale the contributions of these covariates to the risk. In
general, the number of covariates and parameters in such
models must increase with the complexity of the profiles
to which they are applicable. In order to limit model
complexity and keep the number of estimated
parameters low enough to be warranted by available data,
such models are limited in their ability to estimate DCS
risk for complex profiles that are of usual practical
interest; e.g. those that include staged or repetitive
decompressions, multiple breathing gas switches, and
different exercising periods.

The problem of model applicability to profiles of
arbitrary complexity is solved by using time-dependent
covariates. A model based on such covariates can
respond to a covariate process (Kalbfleisch & Prentice
1980) that is external to the individual at risk and
hence to the model. Because the path of the covariate
process through time; e.g. the matrix of pressure,
inspired gas composition, and exercise that describes
the time course of exposure in a decompression
problem is not fixed in the model, the model does not
need to increase in complexity as the complexity of the
covariate process increases. Another advantage of these
models is that intermediate probabilities based on
incomplete covariate vectors are readily calculated, so
that the models can be used in real-time applications.
‘Mechanistic’ forms for the hazard function that are
defined wholly in terms of explicitly-modeled physio-
logic process(es) have proven best able to accommo-
date the complexity of covariate processes encountered
in practical decompression problems, while behaving in
accordance with observed DCS incidences and times
of DCS occurrence in large bodies of laboratory
decompression data.

The challenge in hazard function design is illustrated
by considering observed incidences of DCS in collections
of diving and altitude exposures. The observed
cumulative incidence of DCS in a large and diverse
dive data set (Weathersby et al 1992b) was normalized
by the total number of 921 man-dives to obtain the
failure distribution, F(%), as shown in Fig. 10.1.19a.
The derivative of F(z) yields the probability density
function, f(z), which defines the instantaneous risk of
occurrence of DCS (Equation 46). A single-exponential
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Fig. 10.1.19 The measured and fitted failure distribution of DCS incidence for (a) dives and (b) altitude excursions (see text for
details). Also shown [x 100 for (a)] are the probability density function [A{t)] and the instantaneous risk of occurrence of DCS
[h(t]]. Times are (a) since last reaching surface and (b) ataltitude.

decay equation provides a reasonable fit of the
observed distribution, as shown.

In contrast to the dive data shown in Fig. 10.1.19a,
the observed distribution of DCS occurrence times after
decompressions to altitude (US Air Force, courtesy of
Dr A Pilmanis and the Armstrong Laboratory at Brooks
AFB, TX) is distinctly sigmoidal in shape (Fig.
10.1.19b). In this case, the instantaneous risk of DCS

peaks at about 2:6 h after the excursion to altitude
begins, and an appropriate fit of the data is the Hill
function (Vann & Thalmann 1993). These examples
illustrate a fundamentally important difference in the
incidence of DCS between diving and altitude exposures.
Prediction models of DCS must either account for these
differences or be tailored for the type of decompression
involved. A major goal of DCS modeling research is to
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develop a general model that accommodates both types
of behavior. Fortunately, hazard functions of complexity
limited only by available computational power can be
specified in attempts to meet this goal.

CURRENT PROBABILISTIC MODELS OF DCS
OCCURRENCE

Development of current probabilistic models of DCS
has proceeded by elaboration of the original Haldanian
view of the body as a collection of parallel-perfused,
well-stirred compartments in which blood-tissue gas
exchange is perfusion-limited. However, the reality of
how DCS risk accumulates in these compartments to
contribute to overall risk of DCS is fundamentally
different. As pointed out earlier, only one compartment
in the collection of compartments controls decom-
pression at any one time in the Haldanian deterministic
approach. In the probabilistic implementations, however,
DCS is assumed able to occur independently in any of
the modeled compartments at any one time. Compart-
mental outcomes are thus statistically independent,
and the overall survivor function is the product of the
individual compartmental survivor functions, P(S;),
that are each given in terms of the compartmental
instantaneous risk, h;(1):

m m T
P(S7) = EP(SJ = g exp{—éfhidt}

= exp{—gf ihidt}, (50)

=l

where m is the number of model compartments. The
overall instantaneous DCS risk is therefore the sum of
the compartmental hazards:

Mo=§mm. (51)

As a result of this definition, all modeled compartments
can contribute to DCS risk simultaneously, so that no
single compartment is necessarily in control of decom-
pression. Also, as will become clear, decompression is
governed by future DCS risk, not by risk that has
accumulated at one’s current point in time.

USN LE1 Probabilistic Model

An appropriate form for h(t) of dives represented by
those depicted in Fig. 10.1.19a is the level of gas
supersaturation since this value peaks upon surfacing,
as demonstrated in Figs 10.1.5 and 10.1.17. For data
involving only a single inert gas, this type of behavior is
exhibited by the EL gas exchange model that formed

the basis for the deterministic EL MK 15/16 RTA
discussed earlier. Accordingly, the EL gas exchange
model was chosen as the basis for the USN Linear-
Exponential (LE1) probabilistic DCS model (Parker et
al 1992, Thalmann et al 1997). In this model, overall
instantaneous DCS risk is defined as the weighted sum
of prevailing compartmental gas-supersaturation/
ambient hydrostatic pressure ratios, where the gas
supersaturation is defined in terms of the inert gas
burden rather than the inert gas tension:

h(t) = Z Gi{pt,i =k pﬁx = (Pumb + Thrz)}/Pumb; (52)
i=l

where G and Thr are the gain and threshold parameters,
respectively. The LE1 probabilistic model is ‘mechanistic’
in the sense that its hazard function incorporates time-
dependent covariates and is completely specified in
terms of a hypothetical biophysical process (although
that process is never forwarded as the real cause of
DCS). This algorithm remains one of the best available
for estimating DCS probability and time of DCS
occurrence in air and N,—-O, diving (Ball et al 1995).
Parker et al (1998) elaborated the LE1 probabilistic
model to accommodate multiple inert gases in order to
consider the potential influence of inspired O, to
compartmental gas supersaturations and DCS incidence.
The resultant multiple-gas LE model (LEM) in-
corporated kinetics following Equation 38, in which
gas elimination from the tissue in the presence of one
or more bubbles is no longer time-linear. A portion of
the tissue O, tension in excess of a compartmental
threshold value was then treated as inert gas by
including its kinetics in the sum of the two inert gas

2
tensions, Y, p,, after removal from Zps. Overall

g
instantaneous DCS risk was defined as in the single-gas
LEl model, but in terms of the sum of prevailing
compartmental gas burdens in excess of compartmental
threshold values, Thr;, relative to the ambient hydro-
static pressure, P,

n

h) = 2

i=1 P

amb

g a

G, {Z " 4 X — Pams + Thri)}
g

(53)

A major limitation of the LEl and LEM prob-
abilistic models is that they only allow theoretical DCS
risk to decrease monotonically after decompression
(Gerth & Vann 1997), and are therefore intrinsically
inapplicable to altitude DCS problems. A general model
able to estimate DCS risk after both hypobaric and
hyperbaric decompressions must accommodate both
risk increases and decreases after decompression.
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Bubble Volume Models

The statistical formalism of the probabilistic approach
has also afforded opportunities to test various im-
plementations of the critical released gas volume
hypothesis (Miller et al 1973). All of these implemen-
tations have been mechanistic, with hazard functions
defined wholly as functions of gas bubble volumes that
vary in one or more parallel-perfused Haldanian gas
exchange compartments in response to changes in the
pressure and respired gas through an exposure profile.
The first of these models incorporated the equilibrium
bubble model underlying Equation 27. However, being
based on the same assumptions as the deterministic EL
MK 15/16 RTA and probabilistic LE1 and LEM
models, modeled DCS risk could only decrease after
decompression. Models in which bubble evolution is
limited by gas diffusion through a barrier between
bubble and tissue provided improved correlations of
selected diving and altitude exposure data (Gerth et al
1992, Vann 1987, Vann et al 1987), but volume-
dependent changes in bubble surface area and curvature
were neglected, while changes in ambient pressure and
respired gas were assumed to be instantaneous, in order
to allow use of simple analytic equations for bubble
dynamics (cf Equation 28).

More recent models relax the above assumptions and
track bubble evolution using computation-intensive
numerical solutions to bubble dynamics in one of the
simple two- or three-region systems described earlier
(Ball et al 1995, Gerth & Vann 1996, 1997, Tikuisis &
Nishi 1994, Tikuisis et al 1994). A similar approach has
also been used to model Doppler-recorded bubble
incidence (Gault et al 1995).

In the bubble volume model [BVM(3)] model
developed by Gerth & Vann (1996, 1997), the
instantaneous DCS risk is defined as the weighted sum
of the prevailing compartmental bubble volumes:

he) = X Gi[‘@,i(ﬂ‘%,i} Vi 8)-Vi; 2 0
= (54)

where for the i* compartment G; is a gain or pro-
portionality constant, V}, ,(t) is the bubble volume at time
t and V?,; is the initial or ‘nucleonic’ bubble volume
assumed characteristic of an ever-present pre-exisiting
nucleus in the compartment. This model differs sub-
stantially in structure from the LE1 probabilistic model,
but is statistically indistinguishable from the latter in
its ability to correlate DCS incidences and times of
occurrence in a data set of 3322 air and N,~O, man-
dives (Gerth & Vann 1996, 1997).

Gerth & Vann (1995) developed a single compart-
ment bubble volume model that incorporates the varying

permeability model of bubble nucleation (Yount 1979b)
for application to altitude DCS data. Bubble dynamics
were modeled using a three-region model with appropriate
consideration of mass balance and Boyle's law effects
as the bubbles nucleate during decompression. Once
nucleated, all bubbles are assumed to be of the same
size in order to avoid the requirement to solve the
bubble dynamics equations for a population of bubbles
of distributed size (Gurman 1999). The instantaneous
DCS risk is given as a function of the prevailing bubble
volume x bubble number density product:

Mo = NG %Et) -V4) (55)

PROBABILISTIC DECOMPRESSION

Methods for computing decompressions using a pro-
babilistic model differ substantially from the Haldane
method. The process first requires specification of an
acceptable DCS risk. This can be a daunting requirement
if attempted explicitly (Vann 1991, Vann & Thalmann
1993), but is more readily achieved by reference to
well-established and accepted diving practices. For
example, model-estimated DCS probabilities for the
no-stop limits of the US Navy Standard Air Tables are
given in Table 10.1.2. Results are shown from two
models; BVM(3) based on Equation 55 and USN93D
based on Equation 53; calibrated about the same data
set of 3322 air and N,—O, man-dives. The probabilities
estimated by the two models for each dive are similar
and vary with dive depth. Shallow dives to their no-
stop limits incur higher estimated DCS risks than deep
dives to their no-stop limits. The mean DCS probability
for all the dives according to either model slightly exceeds
2.0%, implying that DCS risks of this magnitude are
commonly, but implicitly, accepted.

Decompression from a dive that exceeds no-stop
limits can be undertaken an infinite number of ways to
achieve, but not exceed, a given acceptable DCS risk.
However, subject to a few rules about stop depths, time
increments and ascent rates, an optimum decompression
schedule can be computed that minimizes total
decompression time (TDT) and specifies a near-unique
allocation of that time among the different stops, while
incurring but not exceeding a user-specified acceptable
DCS risk. Survanshi et al (1996) developed an iterative
search algorithm for such computations based on the
observation that decompression from a dive with a
given total stop time (TST = TDT-travel time) incurs
an overall P(DCS) that is minimal [= P(DCS),y,] for
only one or a few different allocations of the TST among
the allowed stops.
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Table 10.1.2  Estimated DCS probabilities [and 95%
confidence limits (CL)] for the no-stop limits in the USN
Standard Air Tables using the Bubble Volume Model and US
Navy 93D model. (Gerth & Thalmann 1999)
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For example, Fig. 10.1.20 shows the dependence of
P(DCS) i, on TST for decompression from a 30 min,
37 msw (120 fsw) air dive as estimated using the
BVM(3) model. The figure includes a horizontal line
showing a constant 2.3% acceptable DCS risk. The
intersection of the P(DCS),.../TST line with the
acceptable DCS risk line occurs at the shortest TST
that incurs a DCS probability equal to the acceptable
risk. The corresponding schedule is the ‘optimum’
decompression schedule for the dive. For the dive
illustrated, this optimum schedule has a TST of 27
min, with 10 min at 15 msw (50 fsw), 15 min at 12
msw (40 fsw), 1 min at 6 msw (20 fsw) and 1 min at
3 msw (10 fsw). Note that the dive can be a no- -stop
dive under either model if the acceptable risk is allowed
to exceed about 3.6%. Also large increases in TST are
required to effect relatively small decreases in DCS
risk due to the low slope of the P(DCS),,../TST line.

DCS risk accumulates during and after decom-
pression to attain the overall probability of DCS for
the exposure. Unlike the instantaneous DCS risk,
however, the cumulative probability can only remain
unchanged or increase over time. As a result, continued
or repetitive exposures ultimately force consideration
only of risk to be faced in the future, with neglect of
risk that has been survived in the past. The corresponding

5.0 4 120/30 Air

454 Acceptable 2.3% DCS risk
4.0 Optimum schedule/TST, BVM(3)
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40/15 30/21
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10/1 10/3

Fig. 10.1.20 Minimum DCS probability vs total stop time
for decompressions from a 30 min, 37 msw (120 fsw) air dive.
Under the BVM(3) model, the schedule with P(DCS),,;, that
intersects the acceptable DCS risk line has a TST of 27 min as
indicated by the arrow. This is the shortest or ‘optimum’
schedule for which the estimated DCS probability equals the
acceptable DCS risk.

cumulative DCS risk is the conditional probability of
DCS; i.e. the probability that DCS will occur in the
future, given that DCS has not occurred up to the
present time. Conditional probability is particularly
useful for adapting probabilistic models to real-time
applications (Survanshi et al 1996) and for planning

repetitive dives (Survanshi et al 1997). ’

MODEL SHORTCOMINGS AND FUTURE

DIRECTIONS

°

Present decompression theory, for practical purposes at
least, does not appear seriously deficient in its treatments
of gas exchange and bubble growth. However, DCS
models that incorporate even the most advanced of
these treatments remain incomplete. When used to
prescribe decompression procedures, they all purposely
allow some degree of bubble formation in order to reach
an acceptable balance between productive bottom time,
decompression obligation, risks of DCS, and other
hazards. But they invariably focus on the control of gas
supersaturation and bubble formation per se, and fail
to explicitly consider what happens when the ‘allowed’
bubbles set in motion any train of events that leads to
problems even after the bubbles have diminished or
resolved.
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Indeed, there is widespread evidence that the occurr-
ence of at least some forms of DCS is not entirely
consistent with purely physical processes. As an arguable
result, inability to predict or control DCS severity is
perhaps the most glaring deficiency of modern DCS
prevention algorithms. This is largely due to the
relatively mild nature of the DCS cases that are in the
data available for model calibration. Because purposeful
experimentation to severe outcomes is impossible with
humans, expansion of model capability to cover more
severe cases will require an improved understanding of
how changes in bubble location, size, and profusion
translate into changes in DCS severity, and an ability to
quantitatively scale results from animal experiments to
humans.

These and other outstanding issues will be met by
settling present uncertainties about the bubble nucleation
mechanisms that govern the distribution and profusion
of bubbles in vivo, and by developing more complete
and quantitative understanding of the biochemical and
physiologic links between bubbles and DCS, and of the
influences of anthropometric factors, exercise (Kumar
& Powell 1994, Van der Aue et al 1949, Vann 1982,
Vann et al 1989), and thermal stréss (Leffler 2001).
Additionally, risks of O, toxicity presently limit more
aggressive exploitation of the O, window. An improved
understanding of O, toxicity leading to even small
increases in acceptable PO, exposures under different
conditions is anxiously awaited for translation into
more efficient decompression procedures.

Ultimately, the greatest challenge will be met when
all relevant factors are synthesized into a quantitative
model that is generally applicable to all types of hypo-
and hyperbaric decompressions.

VARIABLES:

a model parameter

c gas concentration

d depth

D diffusion coefficient

/() probability density function
F(t) failure distribution

G model parameter

h bubble boundary layer thickness
h(1) hazard or risk function

J gas flux

k Boltzmann gas constant

K rate of gas absorption

LL likelihood function

rate of change of arterial gas tension
Workman’s M-value

bubble population

moles of gas

gas tension

pressure (subscripted); probability
(unsubscripted)

arterial (venous) gas tension

3

"U*UOQS Zz

=)
2
&

ambient gas pressure

gas supersaturation

Q blood perfusion rate

R bubble radius

R, critical radius

S survivor function

t time

T temperature

Thr model parameter

TR tissue ratio

volume

free energy of formation of critical-size
bubble

gas consumption rate; Zeldovich factor

gas solubility

Yount shape factor; model parameter

gas transfer coefficient

deformation pressure; outcome variable

S

time constant

interfacial spreading coefficient
proportionality factor

surface tension

Yount crumbling pressure

RRIRNR 4R ®RN

SUBSCRIPTS:

b bubble

g gas

i inert gas component

fix metabolic gases and water vapor
0 initial state (also superscripted)
t tissue
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