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INTRODUCTION

Overview
Although the manifestations of DCI are statistically distributed, tables and meters employ deterministic models to

stage reverse dive profiles RPs, with models broadly categorized as Haldane (dissolved phase) or as bubble (combination
of dissolved and free phases). A summary of models and their underpinnings, correlations with data, and contrasts for
the 100/60 and 60/100 RPs applying variable surface intervals are given. Suggestions for experiments are tendered, and
in related vein, extreme statistics on RPs gathered at Nuclear Emergency Strategy Team (NEST) exercises on various
gas mixtures are sketched.

We first discuss DCI risk and coupled statistics, return to broad base description of gas transfer models used in
decompression applications, apply these models to the RPs, contrast staging regimens, denote differences, suggest
testing, and then summarize experience with NEST RPs on mixed gases.

Decompression Algorithms
Diving models address the coupled issues of gas uptake and elimination, bubbles, and pressure changes in differ-

ent computational frameworks. Application of a computational model to staging divers is called a diving algorithm.
Consider the computational models and staging regimens for six popular algorithms, namely, the perfusion limited, dif-
fusion limited, thermodynamic, varying permeablity, reduced gradient bubble, and tissue bubble diffusion algorithms
The first two are Haldane models (workhorse algorithms in most tables and meters), while the remaining four are bubble
models in the generic sense (coming online in tables and meters, often driven by tech diving). The first two track just
dissolved gas transfer, using critical tissue tensionsas limit points, while the latter four treat both dissolved and free
phase transfer, using f ree phase volumesas limit points.

Though the systematics of gas exchange, nucleation, bubble growth or collapse, and decompression are so com-
plicated that theories only reflect pieces of the DCI puzzle, the risk and statistics of decompressing divers are fairly
straightforward. And the folding of DCI risk and statistics over data and model assumptions is perhaps the most satisfy-
ing means to safety and model closure. Some Workshop papers and presentations center on probabilistic decompression,
risk, and parameter fitting, using variants of the models discussed.

PROBABILITIES AND STATISTICS

Decompression Risk
Computational algorithms, tables, and manned testing are requisite across a spectrum of activities. And the potential

of electronic devices to process tables of information or detailed equations underwater is near maturity, with virtually
any algorithm or model amenable to digital implementation. Pressures for even more sophisticated algorithms are
expected to grow.

Still computational models enjoy varying degrees of success or failure. More complex models address a greater
number of issues, but are harder to codify in decompression tables. Simpler models are easier to codify, but are less
comprehensive. Some models are based on first principles, but many are not. Application of models can be subjective
in the absence of definitive data, the acquisition of which is tedious, sometimes controversial, and often ambiguous.
If deterministic models are abandoned, statistical analysis can address the variability of outcome inherent to random
occurrences, but only in manner indifferent to specification of controlling mechanisms. The so called dose-reponse
characteristics of statistical analysis are very attractive in the formulation of risk tables. Applied to decompression
sickness incidence, tables of comparative risk offer a means of weighing contributing factors and exposure alternatives.
At the basis of statistical and probabilistic analyses of decompression sickness is the binomial distribution. The binomial
distribution is the fundamental frequency distribution governing random events:
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1. Binomial Distribution

Decompression sickness is a hit, or no hit, situation. Statistics are binary, as in coin tossing. Probabilities
of occurrence are determined from the binomial distribution, which measures the numbers of possibilities of
occurrence and nonoccurrence in any number of events, given the incidence rate. Specifically, the probability,
P, in a random sample of size, N, for n occurrences of decompression sickness and m nonoccurrences, takes the
form,

P�n� �
N!

n! m!
pnqm � (1)

with,

n�m� N � (2)

p the underlying incidence rate (average number of cases of decompression sickness), and q,

q� 1� p � (3)

the underlying nonincidence. The discrete probability distributions, P, are the individual terms of the binomial
expansion of �p�q�N,

�p�q�N �
N

∑
n�0

P�n� � 1 � (4)

In risk analysis, p and q are also the failure and success rates, gleaned, for instance, from random or strategic
sampling of arbitrary lot sizes. Obviously, the larger the sample size, the better are the estimates of p or q. Once
p or q is determined, the binomial statistics and probabilities are also fixed. The statistical mean, M, and variance,
s, are given by,

M �
N

∑
n�1

nP�n� � pN � (5)

s�
N

∑
n�1

�n�M�2 P�n� � pqN � (6)

the usual measures of a statistical distribution. The square root of the variance is the standard deviation. The
cumulative probability for more than n cases of decompression sickness, P��n�, is written,

P��n� �
N

∑
j�n�1

P� j� � 1�
n

∑
j�0

P� j� � (7)

and the probability of less than n cases, P��n�, is similarly,

P��n� �
n�1

∑
j�0

P� j� � 1�
N

∑
j�n

P� j� � (8)

The probability of nonoccurrence in any set of N trials is simply,

P�0� � qN � (9)

while the probability of total occurrence in the same number, N, of trials is given by,

P�N� � pN � (10)
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The binomial distribution is a special case of the multinomial distribution describing processes in which several
results having fixed probabilities, pl , ql , for l � 1� L, are possible. Separate probabilities are given by the
individual terms in the general multinomial expansion,

�p1 �q1 � ���� pL�qL�
N �

N

∑
n1�����nL�1�0

P�n1� ����nL�1� � 1 � (11)

as in the binomial case. The normal distribution is a special case of the binomial distribution when N is very large
and variables are not necessarily confined to integer values. The Poisson distribution is another special case of
the binomial distribution when the number of events, N, is also large, but the incidence, p, is small.

2. Normal Distribution

The normal distribution is an analytic approximation to the binomial distribution when N is very large, and n, the
observed value (success or failure rate), is not confined to integer values, but ranges continuously,

�∞� n� ∞ � (12)

Normal distributions thus apply to continuous observables, while binomial and Poisson distributions apply to
discontinuous observables. Statistical theories of errors are ordinarily based on normal distributions.

For the same mean, M � pN, and variance, s� pqN, the normal distribution, P, written as a continuously varying
function of n,

P�n� �
1

�2πs�1�2
exp�� �n�M�2�2s� � (13)

is a good approximation to the binomial distribution in the range,

1
N�1

� p�
N

N�1
� (14)

and within three standard deviations of the mean,

pN�3 �pqN�1�2 � n� pN�3 �pqN�1�2 � (15)

The distribution is normalized to one over the real infinite interval,
Z ∞

�∞
Pdn� 1 � (16)

The probability that a normally distributed variable, n, is less than or equal to b is,

P��b� �
Z b

�∞
Pdn � (17)

while the corresponding probability that n is greater than or equal to b is,

P��b� �
Z ∞

b
Pdn � (18)

The normal distribution is extremely important in statistical theories of random variables. By the central limit
theorem, the distribution of sample means of identically distributed random variables is approximately normal,
regardless of the actual distribution of the individual variables.

3. Poisson Distribution

The Poisson distribution is a special case of the binomial distribution when N becomes large, and p is small,
and certainly describes all discrete random processes whose probability of occurrence is small and constant. The
Poisson distribution applies substantially to all observations made concerning the incidence of decompression
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sickness in diving, that is, p�� 1 as the desired norm. The reduction of the binomial distribution to the Poisson
distribution follows from limiting forms of terms in the binomial expansion, that is, P�n�.

In the limit as N becomes large, and p is much smaller than one, we have,

N!
�N�n�!

� Nn � (19)

qm � �1� p�N�n � exp��pN� � (20)

and therefore the binomial probability reduces to,

P�n� �
Nnpn

n!
exp��pN� �

Mn

n!
exp��M� � (21)

which is the discrete Poisson distribution. The mean, M, is given as before,

M � pN (22)

and the variance, s, has the same value,

s� pN � (23)

because q is approximately one. The cumulative probabilities, P��n� and P��n�, are the same as those defined in
the binomial case, a summation over discrete variable, n. It is appropriate to employ the Poisson approximation
when p� 0�10, and N� 10 in trials. Certainly, from a numerical point of view, the Poisson distribution is easier
to use than than binomial distribution. Computation of factorials is a lesser task, and bookkeeping is minimal for
the Poisson case.

In addition to the incidence of decompression sickness, the Poisson distribution describes the statistical fluctua-
tions in such random processes as the number of cavalry soldiers kicked and killed by horses, the disintegration
of atomic nuclei, the emission of light quanta by excited atoms, and the appearance of cosmic ray bursts. It also
applies to most rare diseases.

PROBABILISTIC DECOMPRESSION

Binomial Probabilities
Table 1 lists corresponding binomial decompression probabilities, P�n�, for 1% and 10% underlying incidence (99%

and 90% nonincidence), yielding 0, 1, and 2 or more cases of decompression sickness. The underlying incidence, p, is
the (fractional) average of hits.

As the number of trials increases, the probability of 0 or 1 occurrences drops, while the probability of 2 or more
occurences increases. In the case of 5 dives, the probability might be as low as 5%, while in the case of 50 dives, the
probability could be 39%, both for p � 0�01. Clearly, odds even percentages would require testing beyond 50 cases
for an underlying incidence near 1%. Only by increasing the number of trials for fixed incidences can the probabilities
be increased. Turning that around, a rejection procedure for 1 or more cases of decompression sickness at the 10%
probability level requires many more than 50 dives. If we are willing to lower the confidence of the acceptance, or
rejection, procedure, of course, the number of requisite trials drops. Table 1 also shows that the test practice of accepting
an exposure schedule following 10 trials without incidence of decompression sickness is suspect, merely because the
relative probability of nonincidence is high, near 35%.

Questions as to how safe are decompression schedules have almost never been answered satisfactorily. As seen,
large numbers of binary events are required to reliably estimate the underlying incidence. One case of decompression
sickness in 30 trials could result from an underlying incidence, p, bounded by .02 and .16 roughly. Tens more of trials
are necessary to shrink those bounds.
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Table 1. Probabilities Of Decompression Sickness For Underlying Incidences

P�n� P�n�
N (dives) n (hits) p� �01 p� �10

q� �99 q� �90
5 0 .95 .59

1 .04 .33
2 or more .01 .08

10 0 .90 .35
1 .09 .39

2 or more .01 .26
20 0 .82 .12

1 .16 .27
2 or more .02 .61

50 0 .61 .01
1 .31 .03

2 or more .08 .96

Biological processes are highly variable in outcome. Formal correlations with outcome statistics are then generally
requisite to validate models against data. Often, this correlation is difficult to firmly establish (couple of percent) with
fewer than 1,000 trial observations, while ten percent correlations can be obtained with 30 trials, assuming binomial
distributed probabilities. For decompression analysis, this works as a disadvantage, because often the trial space of dives
is small. Not discounting the possibly small trial space, a probabilistic approach to the occurrence of decompression
sickness is useful and necessary. One very successful approach, developed and tuned by Weathersby, and others for
decompression sickness in diving, called maximum likelihood, applies theory or models to diving data and adjusts the
parameters until theoretical prediction and experimental data are in as close agreement as possible.

Validation procedures require decisions about uncertainty. When a given decompression procedure is repeated with
different subjects, or the same subjects on different occasions, the outcome is not constant. The uncertainty about the
occurrence of decompression sickness can be quantified with statistical statements, though, suggesting limits to the
validation procedure. For instance, after analyzing decompression incidence statistics for a set of procedures, a table
designer may report that the procedure will offer an incidence rate below 5%, with 90% confidence in the statement.
Alternatively, the table designer can compute the probability of rejecting a procedure using any number of dive trials,
with the rejection criteria any arbitrary number of incidences. As the number of trials increases, the probability of
rejecting a procedure increases for fixed incidence criteria. In this way, relatively simple statistical procedures can
provide vital information as to the number of trials necessary to validate a procedure with any level of acceptable risk,
or the maximum risk associated with any number of incidences and trials.

One constraint usually facing the statistical table designer is a paucity of data, that is, number of trials of a procedure.
Data on hundreds of repetitions of a dive profile are virtually nonexistent, excepting bounce diving perhaps. As seen,
some 30-50 trials are requisite to ascertain procedure safety at the 10% level. But 30-50 trials is probably asking
too much, is too expensive, or generally prohibitive. In that case, the designer may try to employ global statistical
measures linked to models in a more complex trial space, rather than a single profile trial space. Integrals of risk
parameters, such as bubble number, supersaturation, separated phase, etc., over exposures in time, can be defined as
probability measures for incidence of decompression sickness, and the maximum likelihood method then used to extract
appropriate constants:

1. Maximum Likelihood

We can never measure any physical variable exactly, that is, without error. Progressively more elaborate experi-
mental or theoretical efforts only reduce the possible error in the determination. In extracting parameter estimates
from data sets, it is necessary to also try to minimize the error (or data scatter) in the extraction process. A number
of techniques are available to the analyst, including the well known maximum likelihood approach.

The measure of any random occurrence, p, can be a complicated function of many parameters, x� �xk�k� 1�K�,
with the only constraint,

0� p�x�� 1 � (24)
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for appropriate values of the set, x. The measure of nonoccurence, q, is then by conservation of probability,

q�x� � 1� p�x� � (25)

over the same range,

0� q�x�� 1 � (26)

Multivalued functions, p�x�, are often constructed, with specific form dictated by theory or observation over many
trials or tests. In decompression applications, the parameters, x, may well be the bubble-nucleation rate, number
of venous gas emboli, degree of supersaturation, amount of pressure reduction, volume of separated gas, ascent
rate, or combinations thereof. Parameters may also be integrated in time in any sequence of events, as a global
measure, though such measures are more difficult to analyze over arbitrary trial numbers.

The likelihood of any outcome, Φ, of N trials is the product of individual measures of the form,

Φ�n� � pnqm � pn�1� p�m � (27)

given n cases of decompression sickness and m cases without decompression sickness, and,

n�m� N � (28)

The natural logarithm of the likelihood, Ψ, is easier to use in applications, and takes the form,

Ψ� ln Φ� n ln p�m ln �1� p� � (29)

and is maximized when,

∂Ψ
∂p

� 0 � (30)

In terms of the above, we then must have,

n
p
�

m
1� p

� 0 � (31)

trivially requiring,

p�
n

n�m
�

n
N

� (32)

1� p� q�
m

n�m
�

m
N

� (33)

Thus, the likelihood function is maximized when p is the actual incidence rate, and q is the actual nonincidence
rate. The multivalued probability functions, p�x�, generalize in the maximization process according to,

∂Ψ
∂p

�
K

∑
k�1

∂Ψ
∂xk

∂xk

∂p
� 0 � (34)

satisfied when,

∂Ψ
∂xk

� 0 f or k� 1� K � (35)

In application, such constraints are most easily solved on computers, with analytical or numerical methods.

In dealing with a large number of decompression procedures, spanning significant range in depth, time, and
environmental factors, an integrated approach to maximum likelihood and risk is necessary. Integral measures,
p�x� t� and q�x� t�, can be defined over assumed decompression risk, ζ�x� t�,

p�x� t� � 1�exp

�
�

Z t

0
ζ�x� t ��dt�

�
� (36)
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q�x� t� � exp

�
�

Z t

0
ζ�x� t ��dt�

�
� (37)

with t � any convenient time scale, and ζ any assumed risk, such as bubble number, saturation, venous emboli
count, etc. as mentioned. Employing p�x� t� and q�x� t� in the likelihood function, and then maximizing ac-
cording to the data, permits maximum likelihood estimation of ζ�x� t�. Such an approach can be employed in
decompression table fabrication, yielding good statistical estimates on incidence rates as a function of exposure
factors.

2. Saturation Bends Probability

Many factors contribute to bends susceptibility. Age, obesity, temperature, physical condition, alcohol, and
cigarettes are a few. Whatever the contributing factors, the distribution of bends depths for saturation exposures
has been characterized in terms of the saturation tension, Q, and ambient pressure, P, by Hills. This characteriza-
tion is not only of academic interest, but is also useful in assigning formal risk to decompression formats.

The distribution of saturation bends depths, χ, fits a Weibull function. This is true for all breathing mixtures,
nitrox, heliox, trimix, etc. If cumulative fraction of air bends cases up to G is χ, the survivor fraction, 1� χ,
satifies,

ln �1�χ� ��
�

G�14�3
25�1

�4�73

(38)

for cumulative bends probability, χ, the usual integral over bends risk, ζ, as a function of gradient, G,

χ �

Z G

0
ζ�G��dG� (39)

with saturation bends gradient, G, measured in f sw,

G� Q�P (40)

As the gradient grows, the survivor function approaches zero exponentially. The smallest bends gradient is 14.3
f sw, which can be contrasted with the average value of 26.5 f sw. The root mean square gradient is 27.5 f sw. At
27 f sw, the survivor fraction is 0.96, while 67% of survivors fall in the range, 26�5�7�6 f sw, with 7.6 f sw the
standard deviation. For gas mixtures other than air, the general form is given by,

ln �1�χ� ��ε
�
�Pf �20�5�
�Pi�33�0�

�
1
fi

�δ
(41)

where fi is the total volume fraction of inert breathing gases, for G� Pf �Pi, and with ε, δ constants.

The efficiency of the Weibull distribution in providing a good fit to the saturation data is not surprising. The
Weibull distribution enjoys success in reliability studies involving multiplicities of fault factors. It obviously
extends to any set of hyperbaric or hypobaric exposure data, using any of the many parameter risk variables
described above.

3. Table And Profile Risks

A global statistical approach to table fabrication consists of following a risk measure, or factor p, throughout
and after sets of exposures, tallying the incidence of DCI, and then applying maximum likelihood to the risk
integral in time, extracting any set of risk constants optimally over all dives in the maximization procedure. In
analyzing air and helium data, Weathersby assigned risk as the difference between tissue tension and ambient
pressure divided by ambient pressure. One tissue was assumed, with time constant ultimately fixed by the data in
ensuing maximum likelihood analysis. The measure of nonincidence, q, was taken to be the exponential of risk
integrated over all exposure time,

q�κ�τ� � exp

�
�

Z ∞

0
ζ�κ�τ� t ��dt�

�
� (42)
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ζ�κ�τ� t �� � κ
p�t ��� pa

pa
� (43)

with κ a constant determined in the likelihood maximization, pa ambient pressure, and p�t �� the instantaneous
Haldane tension for tissue with halftime, τ, also determined in the maximization process, corresponding to arbi-
trary tissue compartments for the exposure data. Other more complex likelihood functions can also employed, for
instance, the separated phase volume according to the varying permeability and reduced gradient bubble models,

ζ�κ�ξ�τ� t �� � κΛ�t ��G�t �� � (44)

Λ�t �� �

�
1�

r�t ��
ξ

�
� (45)

with Λ the permissible bubble excess, r the bubble radius, G the bubble diffusion gradient (dissolved-free gas),
and κ and ξ constants determined in the fit maximization of the data. Another risk possibility is the tissue ratio,

ζ�κ�τ� t �� � κ
p�t ��
pa

� (46)

a measure of interest in altitude diving applications.

Hundreds of air dives were analyzed using this procedure, permitting construction of decompression schedules
with 95% and 99% confidence (5% and 1% bends probability). These tables were published by US Navy in-
vestigators, and Table 2 tabulates the corresponding nonstop time limits (p� 0�05�0�01), and also includes the
standard US Navy (Workman) limits for comparison. Later re-evaluations of the standard set of nonstop time
limits estimate a probability rate of 1.25% for the limits. In actual usage, the incidence rates are below 0.001%,
because users do not dive to the limits generally.

Table 2. Nonstop Time Limits For 1% And 5% DCI Probability

depth nonstop limit nonstop limit nonstop limit
d � f sw� tn �min� tn �min� tn �min�

p� �05 p� �01 US Navy
30 240 170
40 170 100 200
50 120 70 100
60 80 40 60
70 80 25 50
80 60 15 40
90 50 10 30

100 50 8 25
110 40 5 20
120 40 5 15
130 30 5 10

For the past 10-15 years, a probabilistic approach to assessing risk in diving has been in vogue. Sometimes this
can be confusing, or misleading, since definitions or terms, as presented, are often mixed. Also confusing are risk
estimates varying by factors of 10 to 1,000, and distributions serving as basis for analysis, also varying in size by
the same factors. So, before continuing with a risk analysis of recreational profiles, a few comments are germane.

Any set of statistical data can be analyzed directly, or sampled in smaller chunks. The smaller sets (samples)
may or may not reflect the parent distribution, but if the analyst does his work correctly, samples reflecting the
parent distribution can be extracted for study. In the case of dive profiles, risk probabilities extracted from sample
profiles try to reflect the incidence rate, p, of the parent distribution (N profiles, and p underlying DCI rate). The
incidence rate, p, is the most important metric, followed by the shape of the distribution in total as measured by
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the variance, s. For smaller sample of profile size, K � N, we have mean incidences, Q, for sample incidence
rate, r ,

Q� rK (47)

and variance, v,

v� r�1� r�K (48)

By the central limit theorem, the distribution of sample means, Q, is normally distributed about parent (actual)
mean, M, with variance, v � s�K. Actually, the distribution of sample means, Q, is normally distributed no
matter what the distribution of samples. This important fact is the basis for error estimation with establishment
of confidence intervals, χ, for r , with estimates denoted, r�,

r� � r�χ
h s

K

i1�2
(49)

0 � χ � 1 (50)

The sample binomial probability, B�k�, is analogously,

B�k� �
K!

k! j!
rk�1� r� j (51)

with k� j � K, for k the number of DCI hits, normalized,

K

∑
k�1

B�k� � 1 (52)

and with property, if K � ∞, then B�k�� 0, when, r �� 1.

For example, if 12 cases of DCI are reported in a parent set of 7,896 profiles, then,

N � 7896 (53)

p�
12

7896
� �0015 (54)

Smaller samples might be used to estimate risk, via sample incidence, r , with samples possibly chosen to reduce
computer processing time, overestimate p for conservancy sake, focus on a smaller subregion of profiles, or any
other reason. Thus, one might nest all 12 DCI incidence profiles in a smaller sample, K � 1�000, so that the
sample risk, r � 12�1�000 � 0�012, is larger than p. Usually though the analyst wishes to mirror the parent
distribution in the sample. If the parent is a set of benign, recreational, no decompression, no multiday dive
profiles, and the sample mirrors the parent, then both risks, p and r , are are reasonably true measures of actual
risk associated with recreational diving. If sample distributions chosen are not representative of the class of
diving performed, risk estimates are not trustworthy. For instance, if a high risk set of mixed gas decompression
profiles were the background against which recreational dive profiles were compared, all estimates would be
skewed and faulty (actually underestimated in relative risk, and overestimated in absolute risk). For this parent
set, N is large, p is small, with mean, M � pN � 0�0015� 7896 � 12, and the applicable binomial statistics
smoothly transition to Poisson representation, convenient for logarithmic and covariant numerical analysis (on a
computer). Additionally, any parent set may be a large sample of a megaset, so that p is itself an estimate of risk
in the megaset.

Turns out that our parent distribution above is just that, a subset of larger megaset, namely, the millions and
millions of recreational dives performed and logged over the past 30 years, or so. The above set of profiles
was collected in training and vacation diving scenarios. The set is recreational (no decompression, no multiday,
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light, benign) and representative, with all the distribution metrics as listed. For reference and perspective, sets of
recreational profiles collected by others (Gilliam, NAUI, PADI, YMCA, DAN) are similar in context, but larger
in size, N, and smaller in incidence rate, p. Data and studies reported by many sources quote, N � 1�000�000,
with, p� 0�00001 � 0�001%. Obviously our set has higher rate, p, though still nominally small, but the same
shape. So our estimates will be liberal (overestimate risk).

To perform risk analysis, a risk estimator need be employed. For diving, dissolved gas and phase estimators are
useful. Two, detailed earlier, are used here. First is the dissolved gas supersaturation ratio, historically coupled to
Haldane models, φ,

φ� κ
p�λpa

pa
(55)

and second, ψ, is the separated phase, invoked by phase models,

ψ � γ
�

1�
r
ξ

�
G (56)

For simplicity, the asymptotic exposure limit is used in the likelihood integrals for both risk functions,

1� r�κ�λ� � exp

�
�

Z ∞

0
φ�κ�λ� t�dt

�
(57)

1� r�γ�ξ� � exp

�
�

Z ∞

0
ψ�γ�ξ� t�dt

�
(58)

with hit�no hit, likelihood function, Ω, of form,

Ω �
K

∏
k�1

Ωk (59)

Ωk � rδk
k �1� rk�

1�δk (60)

where, δk � 0 if DCI does not occur in profile, k, or, δk � 1 if DCI does occur in profile, k. To estimate κ, λ, γ,
and ξ in maximum likelihood, a modified Levermore-Marquardt algorithm is employed (SNLSE, Common Los
Alamos Applied Mathematical Software Library), just a nonlinear least squares data fit to an arbitrary function
(minimization of variance over K datapoints here), with L1 error norm. Additionally, using a random number
generator for profiles across 1,000 parallel SMP (Origin 2000) processors at LANL, we construct 1,000 subsets,
with K � 2�000 and r � 0�006, for separate likelihood regression analysis, averaging κ, λ, γ, and ξ by weighting
the inverse variance.

For recreational diving, both estimators are roughly equivalent, because little dissolved gas has separated into
free phases (bubbles). Analysis shows this true for all cases examined, in that estimated risks for both overlap
at the 95% confidence level. The only case where dissolved gas and phase estimators differ (slightly here) is
within repetitive diving profiles. The dissolved gas estimator cues on gas buildup in the slow tissue compartments
(staircasing for repets within an hour or two), while the phase estimator cues on bubble gas diffusion in the
fast compartments (dropping rapidly over hour time spans). This holding true within all recreational diving
distributions, we proceed to the risk analysis.
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Nonstop limits (NDLs), denoted tn as before, from the US Navy, PADI, and NAUI Tables, and those employed by
the Oceanic decometer provide a set for comparison of relative DCI risk. Listed below in Table 3 are the NDLs
and corresponding risks, rn, for the profile, assuming ascent and descent rates of 60 f sw�min (no safety stops).
Haldane and RGBM estimates vary little for these cases, and only the phase estimates are included.

Table 3. Risk Estimates For Various NDLs.

USN PADI NAUI Oceanic
d � f sw� tn �min� tn �min� tn �min� tn �min�

35 310 (4.3%) 205 (2.0%) 181 (1.3%)
40 200 (3.1%) 140 (1.5%) 130 (1.4%) 137 (1.5%)
50 100 (2.1%) 80 (1.1%) 80 (1.1%) 80 (1.1%)
60 60 (1.7%) 55 (1.4%) 55 (1.4%) 57 (1.5%)
70 50 (2.0%) 40 (1.2%) 45 (1.3%) 40 (1.2%)
80 40 (2.1%) 30 (1.3%) 35 (1.5%) 30 (1.3%)
90 30 (2.1%) 25 (1.5%) 25 (1.5%) 24 (1.4%)

100 25 (2.1%) 20 (1.3%) 22 (1.4%) 19 (1.2%)
110 20 (2.2%) 13 (1.1%) 15 (1.2%) 16 (1.3%)
120 15 (2.0%) 13 (1.3%) 12 (1.2%) 13 (1.3%)
130 10 (1.7%) 10 (1.7%) 8 (1.3%) 10 (1.7%)

Risks are internally consistent across NDLs at each depth, and agree with the US Navy assessments in Table 2.
Greatest underlying and binomial risks occur in the USN shallow exposures. The PADI, NAUI, and Oceanic risks
are all less than 2% for this set, thus binomial risks for single DCI incidence are less than 0.02%. PADI and NAUI
have reported that field risks (p) across all exposures are less than 0.001%, so considering their enviable track
record of diving safety, our estimates are liberal. Oceanic risk estimates track as the PADI and NAUI risks, again,
very safely.

Next, the analysis is extended to profiles with varying ascent and descent rates, safety stops, and repetitive se-
quence. Table 4 lists nominal profiles (recreational) for various depths, exposure and travel times, and safety
stops at 5 msw. DCI estimates, r , are tabulated for both dissolved gas supersaturation ratio and bubble numebr
excess risk functions.

Table 4. Dissolved And Separated Phase Risk Estimates For Nominal Profiles.

profile descent rate ascent rate safety stop r r
�depth�min� �msw�min� �msw�min� �depth�min� RGBM ZHL

14 msw/38 min 18 9 5 msw/3 min .0034 .0062
19 msw/38 min 18 9 5 msw/3 min .0095 .0110
37 msw/17 min 18 9 5 msw/3 min .0165 .0151

18 msw/31 min 18 9 5 msw/3 min .0063 .0072
18 9 .0088 .0084
18 18 .0101 .0135
18 18 5 msw/3 min .0069 .0084

17 msw/32 min 18 9 5 msw/3 min
SI 176 min

13 msw/37 min 18 9 5 msw/3 min
SI 174 min

23 msw/17 min 18 18 5 msw/3 min .0127 .0232
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The ZHL (Buhlmann) NDLs and staging regimens are widespread across decompression meters presently, and
are good representation for Haldane risk analysis. The RGBM is newer and more modern (and more physically
correct), and is coming online in decometers and associated software. For recreational exposures, the RGBM
collapses to a Haldane dissolved gas algorithm. This is reflected in the risk estimates above, where estimates for
both models differ little.

Simple comments hold for the analyzed profile risks. The maximum relative risk is 0.0232 for the 3 dive repetitive
sequence according to the Haldane dissolved risk estimator. This translates to 0.2% binomial risk, which is
comparable to the maximum NDL risk for the PADI, NAUI, and Oceanic NDLs. Again, this type of dive profile
is common, practiced daily on liveaboards, and benign. According to Gilliam, the absolute incidence rate for this
type of diving is less than 0.02%. Again, our figures overestimate risk.

Effects of slower ascent rates and safety stops are noticeable at the 0.25% to 0.5% level in relative surfacing
risk. Safety stops at 5 m for 3 min lower relative risk an average of 0.3%, while reducing the ascent rate from 18
msw�min to 9 msw�min reduces relative risk an average of 0.35%.

Staging, NDLs, and other contraints imposed by decometer algorithms are entirely consistent with acceptable
and safe recreational diving protocols. The estimated absolute risk associated across all ZHL NDLs and diver
staging regimens analyzed herein is less than 0.232%, and is probably much less in actual practice. That is, we
use p� 0�006, and much evidence suggests p� 0�0001, some ten times safer.

Implicit in such formulations of risk tables are the assumptions that a decompression stress is more likely to
produce symptoms if it is sustained in time, and that large numbers of separate events may culminate in the same
probability after time integration. Though individual schedule segments may not be replicated enough to offer
total statistical validation, categories of predicted safety can always be grouped within subsets of corroborating
data. Since the method is general, any model parameter or meaningful index, properly normalized, can be applied
to decompression data, and the full power of statistical methods employed to quantify overall risk. While power-
ful, such statistical methods are neither deterministic nor mechanistic, and cannot predict on first principles. But
as a means to table fabrication with quoted risk, such approaches offer attractive pathways for analysis.

Model Validation
Validation procedures for schedules and tables can be quantified by a set of procedures based on statistical decom-

pression analysis:

1. select or construct a measure of decompression risk, or a probabilistic model;

2. evaluate as many dives as possible, especially dives similar in exposure time, depth, and environmental factors;

3. conduct limited testing if no data is available;

4. apply the model to the data using maximum likelihood;

5. construct appropriate schedules or tables using whatever incidence of decompression sickness is acceptable;

6. release and then collect profile statistics for final validation and tuning.

Questions of what risk is acceptable to the diver vary. Sport and research divers would probably opt for very small
risk (0.01% or less), while military and commercial divers might live with higher risk (1%), considering the nearness of
medical attention in general. Many factors influence these two populations, but fitness and acclimatization levels would
probably differ considerably across them. While such factors are difficult to fold into any table exercise or analysis, the
simple fact that human subjects in dive experiments exhibit higher incidences during testing phases certainly helps to
lower the actual incidence rate in the field, noted by Bennett and Lanphier.
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COMPUTATIONAL MODELS

Dissolved And Free Phase Models
Certainly there is considerable latitude in model assumptions, and many plausible variants on a theme. Many

models are correlated with diving exposure data, using maximum likelihood to fit parameters or other valid statistical
approaches, but not all. Most have been applied to profiles outside of tested ranges, when testing has been performed,
in an obvious extrapolation mode. Sometimes the extrapolations are valid, other times not. RPs represent just that sort
of extrapolation process for the bulk of these models, since RP testing has not been extensive. So, now consider the 6
models:

1. Perfusion Limited Model (PLM)

Exchange of inert gas, controlled by blood flow rates across regions of varying concentration, is driven by the
gas gradient, that is, the difference between the arterial blood tension, pa, and the instantaneous tissue tension, p.
This behavior is modeled in time, t, by classes of exponential response functions, bounded by pa and the initial
value of p, denoted pi . These multitissue functions satisfy a differential perfusion rate equation,

∂p
∂t

��λ�p� pa� (61)

and take the form, tracking both dissolved gas buildup and elimination symmetrically,

p� pa � �pi� pa� exp��λ t� (62)

λ �
�693

τ
(63)

with perfusion constant, λ, linked to tissue halftime, τ. Compartments with 1, 2.5, 5, 10, 20, 40, 80, 120, 180,
240, 360, 480, and 720 minute halftimes, τ, are employed, and are independent of pressure.

In a series of dives or multiple stages, pi and pa represent extremes for each stage, or more precisely, the initial
tension and the arterial tension at the beginning of the next stage. Stages are treated sequentially, with finishing
tensions at one step representing initial tensions for the next step, and so on. To maximize the rate of uptake or
elimination of dissolved gases the gradient, simply the difference between pi and pa, is maximized by pulling the
diver as close to the surface as possible. Exposures are limited by requiring that the tissue tensions never exceed
M, written,

M � M0 �∆M d (64)

at depth, d, for ∆M the change per unit depth. A set of M0 and ∆M are listed in Table 5. In absolute units, the
corresponding critical gradient, G, and critical ratio, R, are given by,

G�
M
�79
�P (65)

R�
M
P

(66)

with P ambient pressure.
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Table 5. Classical US Navy Surfacing Ratios And Critical Tensions

halftime critical ratio critical tension tension change
τ �min� R0 M0 � f sw� ∆M

5 3.15 104 2.27
10 2.67 88 2.01
20 2.18 72 1.67
40 1.76 58 1.34
80 1.58 52 1.26

120 1.55 51 1.19

At altitude, some critical tensions have been correlated with actual testing, in which case, the depth, d, is defined
in terms of the absolute pressure,

d � P�33 (67)

with absolute pressure, P, at altitude, z, given by ( f sw),

P� 33 exp��0�0381z� � 33 α�1 (68)

α � exp�0�0381z� (69)

and z in multiples of 1000 f eet. However, in those cases where the critical tensions have not been tested nor
extended to altitude, an exponentially decreasing extrapolation scheme, called similarity, has been employed.
Extrapolations of critical tensions, below P � 33 f sw, then fall off more rapidly then in the linear case. The
similarity extrapolation holds the ratio, R� M�P, constant at altitude. Denoting an equivalent sea level depth, δ,
at altitude, z, one has for an excursion to depth d,

M�d�
d�33α�1 �

M�δ�
δ�33

(70)

so that the equality is satisfied when,

δ� αd (71)

M�δ� � αM�d�� (72)

Considering the minimum surface tension pressure of bubbles, Gmin (near 10 f sw), as a limit point, the similarity
extrapolation should be limited to 10,000 f eet in elevation, and neither for decompression, nor heavy repetitive
diving.

As described previously, depth-time exposures are often limited by a law of the form,

dt1�2
n � H (73)

with tn the nonstop time limit, and 400�H � 500 f sw min1�2. One can obtain the corresponding tissue constant,
λ, controlling the exposure at depth d, for nonstop time tn, by differentiating the tissue equation with respect to
depth, d, and setting the result to zero. With pa � �79�d�33� at sea level, there results,

1�exp��λtn��1�2 λtn� � 0� (74)

Corresponding critical tensions, M, are then easily obtained using d, λ, and tn. In the above case, the transcen-
dental equation is satisfied when,

λtn � 1�25 (75)
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Time remaining before a stop, time at a stop, or surface interval before flying can all be obtained by inverting the
tissue equation. Denoting the appropriate critical tension at some desired stage, M, and the instantaneous tension
at that time, p, at stage, pa, the time remaining, tr , follows from,

tr �
1
λ

ln

�
p� pa

M� pa

�
(76)

for each compartment, λ. Obviously, the smallest tr controls the ascent.

The PLM forms the basis for most table and meter algorithms, and has been extensively tested for different
profiles and gas loadings. First tests on the modern approaches were performed by the US Navy.

2. Diffusion Limited Model (DLM)

Exchange of inert gas, controlled by diffusion across regions of varying concentration, is also driven by the local
gradient. As before, denoting the arterial blood tension, pa, and instantaneous tissue tension, p, the gas diffusion
equation takes the form in one dimensional planar geometry,

D
∂2 p
∂x2 �

∂p
∂t

(77)

with D a single diffusion coefficient appropriate to the media. Using standard techniques of separation of vari-
ables, with ω2 the separation constant (eigenvalue), the solution is written,

p� pa � �pi� pa�
∞

∑
n�1

Wn sin �ωnx� exp��ω2
nDt� (78)

assuming at the left tissue boundary, x � 0, we have p � pa, and with Wn a set of constants obtained from the
initial condition. First, requiring p� pa at the right tissue boundary, x� l , yields,

ωn �
nπ
l

(79)

for all n. Then, taking p� pi at t � 0, multiplying both sides of the diffusion solution by sin �ωmx�, integrating
over the tissue zone, l , and collecting terms gives,

W2n � 0 (80)

W2n�1 �
4

�2n�1�π
(81)

Averaging the solution over the tissue domain eliminates spatial dependence, that is sin �ωnx�, from the solution,
giving a bulk response,

p� pa � �pi� pa�
∞

∑
n�1

8
�2n�1�2 π2 exp��ω2

2n�1Dt�� (82)

The expansion resembles a weighted sum over e f f ectivetissue compartments with time constants, ω2
2n�1D,

determined by diffusivity and boundary conditions.

Diffusion models fit the time constant, K,

κ � π2Dl2 (83)

to exposure data, with a typical value employed by the Royal Navy given by,

κ � 0�007928 min�1� (84)
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The approach is aptly single tissue, with equivalent tissue halftime, τD,

τD �
�693

κ
� 87�5 min (85)

close to the US Navy 120 minutecompartment used to control saturation, decompression, and repetitive diving.
Corresponding critical tensions in the bulk model, take the form,

M �
709 P

P�404
(86)

falling somewhere between fixed gradient and multitissue values. At the surface, M � 53 f sw, while at 200 f sw,
M � 259 f sw. A critical gradient, G, satisfies,

G�
M
�79
�P�

P �493�P�
�P�404�

� (87)

The limiting features of bulk diffusion can be gleaned from an extension of the above slab model in the limit of
thick tissue region, that is, l � ∞. Replacing the summation over n with an integral as l � ∞, we find

p� pa � �pi� pa� ¯er f �l��4Dt�1�2� (88)

with ¯er f the average value of the error� f unctionover l , having the limiting form (Abramowitz and Stegun),

¯er f �l��4Dt�1�2� � 1� �4Dt�1�2lπ1�2 (89)

for short times, and

¯er f �l��4Dt�1�2� �
l

�4πDt�1�2
(90)

for long times.

Unlike the perfusion case, the diffusion solution, consisting of a sum of exponentials in time, cannot be formally
inverted to yield time remaining, time at a stop, nor time before flying. Such information can only be obtained by
solving the equation numerically, that is, with computer or hand calculator for given M, p, and pa.

If we wrap the above planar geometry around into a hollow cylinder of inner radius, a, and outer radius, b,
we generate Krogh geometry. The hollow cylindrical model retains all the features of the planar model, and
additionally includes curvature for small a and b, with l � b� a from before. Assigning the same boundary
conditions at a and b, namely, the tissue tension, p, equals the arterial tension, pa, writing the diffusion equation
in radial cylindrical coordinates,

D
∂2 p
∂r2 �

D
r

∂p
∂r

�
∂p
∂t

(91)

and solving yields,

p� pa � �pi� pa�
∞

∑
n�1

Xn U0�εnr� exp��ε2
nDt� (92)

with Xn a constant satisfying initial conditions, U0 the cylinder functions (Abramowitz and Stegun), and εn the
eigenvalues satisfying,

U0�εna� �
∂U0�εnb�2�

∂r
� 0 (93)

Averaging over the tissue region, a� r � b, finally gives,

p� pa � �pi� pa�
4

�b�2�2�a2

∞

∑
n�1

1
ε2

n

J2
1�εnb�2�

J2
0�εna��J2

1�εnb�2�
exp��ε2

nDt� (94)
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with J1 and J0 Bessel functions, order 1 and 0. Typical vascular parameters are bounded by,

0 � a� 4 microns (95)

10� b� 32 microns� (96)

The DLM was introduced and tested extensively by the Royal Navy, roughly on the same time scales as the US
Navy tested the PLM.

3. Thermodynamic Model (TM)

The thermodynamic model couples both the tissue diffusion and blood perfusion equations. Cylindrical sym-
metry is assumed in the model. From a boundary vascular zone of thickness, a, gas diffuses into the extended
extravascular region, bounded by b. The radial diffusion equation is given by,

D
∂2 p
∂r2 �

D
r

∂p
∂r

�
∂p
∂t

(97)

with the tissue tensions, p, equal to the venous tensions, pv, at the vascular interfaces, a and b. The solution to
the tissue diffusion equation is given previously,

p� pv � �pi� pv�
4

�b�2�2�a2

∞

∑
n�1

1
ε2

n

J2
1 �εnb�2�

J2
0 �εna��J2

1�εnb�2�
exp��ε2

nDt� (98)

with εn eigenvalue roots of the boundary conditions,

J0�εna� Y1�εnb�2��Y0�εna� J1�εnb�2� � 0 (99)

for J and Y Bessel and Neumann functions, order 1 and 0. Perfusion limiting is applied as a boundary condition
through the venous tension, pv, by enforcing a mass balance across both the vascular and cellular regions at a,

∂pv

∂t
��κ�pv� pa��

3
a

SpD

�
∂p
∂r

�
r�a

(100)

with Sp the ratio of cellular to blood gas solubilities, κ the perfusion constant, and pa the arterial tension. The
coupled set relate tension, gas flow, diffusion and perfusion, and solubility in a complex feedback loop.

The thermodynamic trigger point for decompression sickness is the volume fraction, χ, of separated gas, coupled
to mass balance. Denoting the separated gas partial pressure, PN2 , under worse case conditions of zero gas
elimination upon decompression, the separated gas fraction is estimated,

χ PN2 � Sc �p�PN2� (101)

with Sc the cellular gas solubility. The separated nitrogen partial pressure, PN2 is taken up by the inherent unsatu-
ration, and given by ( f sw),

PN2 � P�3�21 (102)

in the original Hills formulation, but other estimates have been employed. Mechanical fluid injection pain, de-
pending on the injection pressure, δ, can be related to the separated gas fraction, χ, through the tissue modulus,
K,

Kχ � δ (103)

so that a decompression criteria requires,

Kχ � δ (104)
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with δ in the range, for K � 3�7 � 104 dyne cm�2,

0�34� δ� 1�13 f sw� (105)

Identification of the separated phase volume as a critical indicator is a significant development in decompression
theory.

The TM has been applied to computational studies of air and helium deep saturation data, and was the first model
to suggest deep stops to control bubble growth.

4. Varying Permeability Model (VPM)

The critical radius, ri , at fixed pressure, P0, represents the cutoff for growth upon decompression to lesser pressure.
Nuclei larger than ri will all grow upon decompression. Additionally, following an initial compression, ∆P �
P�P0, a smaller class of micronuclei of critical radius, r , can be excited into growth with decompression. If r i is
the critical radius at P0, then, the smaller family, r , excited by decompression from P, obeys,

1
r
�

1
ri
�

∆P
158

(106)

with ∆P measured in f sw, and r in microns. Table 6 lists critical radii, r , excited by sea level compressions
�P0 � 33 f sw�, assuming ri � �8 microns. Entries also represent the equilibrium critical radius at pressure, P.

Table 6. Micronuclei Excitation Radii

pressure excitation radius pressure excitation radius
P � f sw� rs �µm� P � f sw� rs �µm�

13 .89 153 .49
33 .80 173 .46
53 .72 193 .44
73 .66 213 .41
93 .61 233 .39

113 .57 253 .37
133 .53 273 .36

The permissible gradient, G, is written for each compartment, τ, using the standard formalism,

G� G0 �∆Gd (107)

at depth d � P�33 f sw. A nonstop bounce exposure, followed by direct return to the surface, thus allows G0 for
that compartment. One set G0 and ∆G are tabulated in Table 7, with ∆G suggested by Buhlmann. The minimum
excitation, Gmin, initially probing r , and taking into account regeneration of nuclei over time scales τ r , is ( f sw),

Gmin �
2 γ �γc�γ�

γc r�t�
�

11�01
r�t�

(108)

with,

r�t� � r ��ri� r� �1�exp��λrt�� (109)

γ, γc film, surfactant surface tensions, that is, γ� 17�9 dyne�cm, γc � 257 dyne�cm, and λ r the inverse of the
regeneration time for stabilized gas micronuclei (many days). Prolonged exposure leads to saturation, and the
largest permissible gradient, Gsat, takes the form ( f sw), in all compartments,

Gsat �
58�6

r
�49�9 � �372 P�11�01� (110)

On the other hand, Gmin is the excitation threshold, the amount by which the surrounding tension must exceeed
internal bubble pressure to just support growth.
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Although the actual size distribution of gas nuclei in humans is unknown, experiments in vitro suggest that a
decaying exponential is reasonable,

n� N exp��βr� (111)

with β a constant, and N a convenient normalization factor across the distribution. For small values of the
argument, βr ,

exp��βr� � 1�βr (112)

as a nice simplification. For a stabilized distribution, n0, accommodated by the body at fixed pressure, P0, the
excess number of nuclei, Λ, excited by compression-decompression from new pressure, P, is,

Λ � n0�n� Nβri

�
1�

r
ri

�
� (113)

For large compressions-decompressions, Λ is large, while for small compressions-decompressions, Λ is small.
When Λ is folded over the gradient, G, in time, the product serves as a critical volume indicator and can be used
as a limit point in the following way.

The rate at which gas inflates in tissue depends upon both the excess bubble number, Λ, and the gradient, G. The
critical volume hypothesis requires that the integral of the product of the two must always remain less than some
limit point, α V, with α a proportionality constant,

Z ∞

0
ΛGdt� αV (114)

for V the limiting gas volume. Assuming that gradients are constant during decompression, td, while decaying
exponentially to zero afterwards, and taking the limiting condition of the equal sign, yields simply for a bounce
dive, with λ the tissue constant,

ΛG �td �λ�1� � αV� (115)

In terms of earlier parameters, one more constant, δ, closes the set, defined by,

δ�
γc α V
γ β ri N

� 7180 f sw min (116)

so that, �
1�

r
ri

�
G �td �λ�1� � δ

γ
γc

� 500�8 f sw min� (117)

The five parameters, γ, γc, δ, λr , ri , are five of the six fundamental constants in the varying permeability model.
The remaining parameter, λm, interpolating bounce and saturation exposures, represents the inverse time contant
modulating multidiving. Bubble growth experiments suggest that λ�1

m is in the neighborhood of an hour.

The depth at which a compartment controls an exposure, and the excitation radius as a function of halftime, τ, in
the range, 12� d� 220 f sw, satisfy,

r
ri

� �9� �43 exp��ζτ� (118)

with ζ � 0�0559 min�1. The regeneration constant, λ r , is on the order of inverse days, that is, λ r � 0�0495 days�1.
Characteristic halftimes, τr and τh, take the values τr � 14 daysand τh � 12�4 min. For large τ, r is close to ri ,
while for small τ, r is on the order of .5 r i . At sea level, ri � �8 micronsas discussed.

The VPM has been applied extensively to nitrox and heliox staging in ranges down to 250 f sw, with parameters
fitted to exposures in this range.
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5. Reduced Gradient Bubble Model (RGBM)

The phase (limit) integral for multiexposures is written,

J

∑
j�1

�
ΛG tdj �

Z t j

0
ΛGdt

�
� α V (119)

with the index j denoting each dive segment, up to a total of J, and t j the surface interval after the j th segment.
For the inequality to hold, that is, for the sum of all growth rate terms to total less than αV , obviously each term
must be less the α V. Assuming that tJ� ∞, gives,

J�1

∑
j�1

�
ΛG �tdj �λ�1�λ�1exp��λt j��

�
�ΛG �tdJ �λ�1�� α V� (120)

Defining Gj ,

ΛGj �tdj �λ�1� � ΛG �tdj �λ�1��ΛG λ�1exp��λt j�1� (121)

for j � 2 to J, and,

ΛG1 � ΛG (122)

for j � 1, it follows that

J

∑
j�1

Λ Gj �tdj �λ�1�� α V (123)

with the important property,

Gj �G� (124)

This implies we employ reduced gradients extracted from bounce gradients by writing,

Gj � ξ j G (125)

with ξ j a multidivingfraction requisitely satisfying,

0� ξ j � 1 (126)

so that, as needed,

ΛGj � ΛG� (127)

The fractions, ξ, applied to G always reduce them. As time and repetitive frequency increase, the body’s ability
to eliminate excess bubbles and nuclei decreases, so that we restrict the permissible bubble excess in time,

Λ�tcum
j�1� � Nβri

�
1�

r�tcum
j�1�

ri

�
� Λ exp��λrt

cum
j�1� (128)

tcum
j�1 �

j�1

∑
i�1

ti (129)

with tcum
j�1 cumulative dive time. A reduction factor, η reg

j , accounting for creation of new micronuclei is taken to
be the ratio of present excess over initial excess, written,

ηreg
j �

Λ�tcum
j�1�

Λ
� exp��λrt

cum
j�1� (130)
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For reverse profile diving, the gradient is restricted by the ratio (minimum value) of the bubble excess on the
present segment to the bubble excess at the deepest point over segments. The gradient reduction, ηexc

j , is then,

ηexc
j �

�Λ�max

�Λ� j
�

�rd�max

�rd� j
(131)

with rd the product of the appropriate excitation radius and depth. Because bubble elimination periods are short-
ened over repetitive dives, compared to intervals for bounce dives, the gradient reduction, η rep

j , is proportional to
the difference between maximum and actual surface bubble inflation rate, that is,

ηrep
j � 1�

�
1�

Gmin

G

�
exp��λmt j�1� (132)

with t j�1 consecutive surface interval time, λ�1
m on the order of an hour, and Gmin the smallest G0 in Table 7.

Finally, for multidiving, the gradient reduction factor, ξ, is defined bt the product of the three η,

ξ j � ηexc
j ηrep

j ηreg
j �

�Λ�max

�Λ� j

�
1�

�
1�

Gmin

G

�
exp��λmt j�1�

�
exp��λrt

cum
j�1� (133)

with t j�1 consecutive dive time, and tcum
j�1 cumulative dive time, as noted. Since bubble numbers increase with

depth, reduction in permissible gradient is commensurate. Multiday diving is mostly impacted by λ r , while
repetitive diving mostly by λm. Obviously, the critical tension, M, takes the form,

M � ξ�G0 �∆Gd��P� (134)

Table 7 tabulates a set of critical gradients, G0 and ∆G.

Table 7. Critical Phase Volume Gradients

halftime threshold depth surface gradient gradient change
τ �min� δ � f sw� G0 � f sw� ∆G

2 190 151.0 .518
5 135 95.0 .515

10 95 67.0 .511
20 65 49.0 .506
40 40 36.0 .468
80 30 27.0 .417

120 28 24.0 .379
240 16 23.0 .329
480 12 22.0 .312

The RGBM extends the VPM to multidiving and depths to roughly 500 f sw for nitrox, heliox, and trimix. Pa-
rameters are correlated with diving exposure date using maximum likelihood regression.

6. Tissue Bubble Diffusion Model (TBDM)

Bubbles shrink or grow according to a simple radial diffusion equation linking total gas tension, Π, ambient
pressure, P, and surface tension, γ, to bubble radius, r ,

∂r
∂t

�
DS
r

�
Π�P�

2γ
r

�
(135)

with D the gas diffusion coefficient, and S the gas solubility. Bubbles grow when the surrounding gas tension
exceeds the sum of ambient plus surface tension pressure, and vice versa. Higher gas solubilities and diffusivities
enhance the rate. Related bubble area, A, and volume, V, changes satisfy,

∂A
∂t

� 8πr
∂r
∂t

(136)
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∂V
∂t

� 4πr2 ∂r
∂t

(137)

Using Fick’s law, a corresponding molar current, J, of gas into, or out of, the bubble is easily computed assuming
an ideal gas,

J ��
DS
RTh

�
Π�P�

2γ
r

�
(138)

for R the ideal gas constant, T the temperature, and h an effective diffusion barrier thickness. And the molal flow
rate is just the molal current times the interface area, that is,

∂n
∂t

� JA (139)

for n the number of moles of gas. The change in pressure and volume of the bubble, due to gas diffusion, follows
simply from the ideal gas law,

∂�PV�2γr�1V�

∂t
� R

∂�nT�
∂t

(140)

for V the bubble volume.

Obviously, the above constitute a coupled set of differential equations, solvable for a wide range of boundary and
thermodynamic conditions connecting the state variables, namely, P, V, Π, r , n, and T .

In the TBDM, a bubble dose, based on the hypothetical volume of an expanding test bubble, is linked to de-
compression data for the exposure. Maximum likelihood regression is used to correlate bubble dose with DCI
risk.

COMPARATIVE REVERSE DIVE PROFILES

Nominal Reverse Profiles
Employing the above described algorithms, we consider model predictions for RPs, extract underlying features

and tendencies, and draw comparisons. The code, DECOMP, containing a number of model kernels, is employed for
calculations.

The RPs (100/60 and 60/100) are normalized to roughly the same NDLs so that the nonstop time limits at 100 f sw
and 60 f sware 15 minand 50 min, respectively. This normalization leans slightly toward the conservative side as far as
NDLs are concerned. Table 8 encapsulates the results for the PLM, DLM, TM, VPM, RGBM, and TBDM. Typically,
tracking bubble growth and dissolved gas buildup and elimination, phase models require slightly more decompression
times for the RPs. The PLM and DLM are comparable, the TM, VPM, and TBDM also track closely, and the RGBM is
most conservative. These profiles are relatively shallow, and the RP increment is small (∆d � 40 f sw). Generally,
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Table 8. Comparative RPs And Algorithmms

Algorithm Dive 1 Deco 1 Surface Interval Dive 2 Deco 2
PLM 100/15 none 30 60/30 10/2
DLM none 10/2
TM none 10/1

VPM none 10/2
RGBM none 10/4
TBDM none 10/3
PLM 60/30 none 100/15 10/2
DLM none 10/2
TM none 10/2

VPM none 10/3
RGBM none 10/5
TBDM none 10/3
PLM 100/15 none 60 60/30 10/1
DLM none 10/1
TM none 10/1

VPM none 10/2
RGBM none 10/4
TBDM none 10/2
PLM 60/30 none 100/15 10/1
DLM none 10/1
TM none 10/1

VPM none 10/3
RGBM none 10/6
TBDM none 10/2
PLM 100/15 none 120 60/30 none
DLM none none
TM none 10/1

VPM none 10/1
RGBM none 10/3
TBDM none 10/1
PLM 60/30 none 100/15 10/1
DLM none 10/1
TM none 10/1

VPM none 10/2
RGBM none 10/4
TBDM none 10/2
PLM 100/15 none 240 60/30 none
DLM none none
TM none none

VPM none none
RGBM none 10/1
TBDM none 10/1
PLM 60/30 none 100/15 none
DLM none none
TM none none

VPM none 10/1
RGBM none 10/2
TBDM none 10/1

bubble models affect deep and prolonged exposures the most, requiring deeper stops, but usually shorter overall de-
compression times. The effect is not seen here trendwise, but will reappear as the RP increments increase. Bubble and
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Haldane models overlap for short and shallow exposures, such as these RPs, and entries in Table 8 are no exception.
The observation has often been made that not much free gas phase has been excited during short and shallow exposures,
and then, bubble models should collapse to dissolved gas phase models in the limit.

Extreme Reverse Profiles
When exposures are deeper and RP increments are greater than 40 f sw, model differentiations between dissolved

gas and dual phase models appear in the staging regimens, as seen in Table 9, contrasting the PLM and RGBM only for
160/40 and 40/160 RPs. Clearly phase models (RGBM) require deeper staging but shorter times, as seen in Table 9 for
the same surface intervals in Table 8. The bottom times are 7 min and 100 min at 160 f swand 40 f sw respectively in
Table 9.

Table 9. Comparative PLM And RGBM (Deep) RPs

Algorithm Dive 1 Deco 1 Surface Interval Dive 2 Deco 2
PLM 160/7 10/3 30 40/100 none

RGBM 10/1 10/4
PLM 40/100 none 160/7 10/11

RGBM none 30/1,20/1,10/2
PLM 160/7 10/3 60 40/100 none

RGBM 10/1 10/3
PLM 40/100 none 160/7 10/3

RGBM none 20/1,10/2
PLM 160/7 10/3 120 40/100 none

RGBM 10/1 10/2
PLM 40/100 none 160/7 10/3

RGBM none 20/1,10/1
PLM 160/7 10/3 240 40/100 none

RGBM 10/1 10/1
PLM 40/100 none 160/7 10/3

RGBM none 20/1,10/1

NEST Reverse Profiles Data
The Nuclear Emergency Strategy Team (NEST) is involved in counterterrorism and countermeasures related to

nuclear and biological threats. Exercises and tests have yielded scattered data about RPs across a spectrum of breathing
gas mixtures (nitrox, heliox, trimix). Recent activities use trimix as bottom and ascent gas, with pure oxygen breathed
at 20 f sw. Mixtures range 13-17% helium, 53-61% nitrogen, and 16-36% oxygen. RP increments, ∆d, vary from 40 -
120 f sw, and surface intervals are nominally greater than 60 min. The RGBM is the staging algorithm.

Table 10 tabulates results of NEST field activities, with nominal surface intervals of an hour or more. Maximum
bottom depth is 250 f sw, and exposures are near trimix NDLs. Dives are grouped in RP categories of 40 f sw. The
NDLs computed from the RGBM for trimix in the range down to 250 f sware roughly:

100 f sw 8 - 10 min
150 f sw 5 - 7 min
200 f sw 4 - 6 min
250 f sw 2 - 3 min

similar in duration to Haldane trimix NDLs. The ascent profile is different under the RGBM, as compared to standard
Haldane staging. And this is well known. The incidence rate, p, in Table 10 is 6.7%, with highest count in the 40 - 120
f sw increment range. There are many variables here, such as staging depth, gas mixture, exposure time, and surface
interval not tabulated separately.
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Table 10. NEST RP Risk Table

Dives RP Increment � f sw� Probable Hits

36 0 - 40 0
18 40 -80 2
6 80 - 120 2

Practices for the deeper increments may border the yo-yo category, though no prior history of repetitive diving existed.
Exercises continue, and data will grow. Trends are apparent in the above Table 10, but further analysis is required.
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