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Abstract

We summarise the classical (gas diffusion) theory of decompression, which is an

interesting application of elementary differential equations. We show that the

derivation of recreational scuba diving tables from this theory is an ill-defined

problem in optimisation.
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1. Introduction

All scuba divers are trained to follow procedures that limit the time spent at depth,

in order to minimise the risk of decompression sickness. These procedures, encoded

either on waterproof tables or in the algorithm of a diving computer, are based on

a mathematical theory that is relatively simple in structure. Classical decompression

theory, first developed by J.S. Haldane [4, 6], describes the diffusion of nitrogen in the

diver’s body by a simple independent-compartment model, consisting of a small system

of ordinary differential equations governed by some simple constraints.

As millions of young people have now been certified as scuba divers [9, p. 32],
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educators may find it useful to give decompression theory as a motivating example in

calculus classes. We shall see that much of the analysis requires little more than careful

consideration of the solutions of relatively straightforward differential systems.

In addition to explaining classical decompression theory, we aim to show how the

design of optimal diving procedures is a rather ill-defined process which is worthy of

further study. A day of recreational diving often involves successive dives, to different

depths, separated by a rest period at the surface (known as the surface interval). The

design of recreational diving tables can be formulated as an optimisation problem.

Existing tables are often protected by commercial secrecy, and we are not aware of any

detailed discussion of table design in the open literature.

The remainder of the article is set out as follows. In §2 we consider some of the

basic theory behind the constraints that limit the duration of a dive. This sets the

parameters of the problem and enables the subsequent calculations to be considered

in the following sections. We investigate two relatively simple cases; in §3 we examine

the limits to the duration of a single no-decompression dive. This analysis is extended

in §4 to considering the optimal plan for two dives separated by a prescribed surface

interval. We close with a short discussion.

2. The basic theory

The definitive modern text on diving physiology and medicine is that by Bennett

& Elliott [5]; decompression theory is covered in a chapter by Tikvisis & Gerth [10]

which should be consulted for technical references. Accessible, popular introductions

to diving physiology are given by Bookspan [3], Martin [8] and Lippmann [7]. What

follows is a simplified summary.

Scuba equipment is designed to deliver the breathing air to the diver at a pressure

equal to that of the ambient water. The classical explanation for decompression

sickness [2] is that, at this increased pressure, nitrogen in the breathing air diffuses

into the diver’s body. When the diver returns to the surface, the ambient pressure is
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reduced and the body now contains an excess of nitrogen. Nitrogen can diffuse from

the body tissues back into the lungs where it is exhaled. However if the quantity of

dissolved nitrogen in a tissue exceeds a certain critical value, nitrogen will come out

of solution and form bubbles of nitrogen gas, either in the blood or in other tissues.

The presence of these bubbles leads to decompression sickness and other ills. For a

popular demonstration, take two bottles of carbonated soft drink: opening the first

bottle rapidly leads to the formation of large bubbles, while opening the second bottle

slowly does not.

2.1. The diffusion of nitrogen

The ambient water pressure p increases linearly with depth so at a distance d beneath

the surface it is p = p0 +λd atmospheres, where p0 is the pressure at the water surface.

Typically p0 = 1 atmosphere at sea level and λ is approximately 0.1 atmospheres

per metre in sea water; in other words at a depth of 10 metres the water pressure

is roughly twice the sea-level surface pressure p0 and increases by one atmosphere

for every further 10 metres descended. Since air is composed of approximately 21%

oxygen and 79% nitrogen, the nitrogen component of the diver’s breathing air exerts

a partial pressure of 0.79p atmospheres according to Dalton’s Law. More generally we

may consider dives in lakes at higher altitudes (that is a reduced surface pressure p0)

or using a breathing gas which has a different fraction µ of nitrogen. Naturally the

partial pressure of nitrogen in the breathing gas is then simply µp.

Nitrogen diffuses from the breathing gas in the lung air space into the diver’s blood,

and then in turn, into other bodily tissues. The diffusion from air into blood occurs

so quickly that it can be treated as a virtually instantaneous process and the blood

then effectively also carries a nitrogen partial pressure of µp atmospheres. This diffuses

slowly into other bodily tissues and in the classical theory it is assumed there are a

finite number of these, say m, each connected independently to the blood. If we label

these tissues i with i = 1, . . . , m, and suppose that the nitrogen saturation (or tension)

in tissue i is xi atmospheres, then diffusion is assumed to satisfy Fick’s law. This asserts
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that the rate of diffusion of nitrogen from the blood into the tissue is proportional to

the difference in their respective nitrogen concentrations. Mathematically, this means

that the time derivative of nitrogen tension is simply

ẋi = −ki(xi − µp) (1)

where the value of the diffusion constant ki depends on the characteristics of tissue i.

Thus the complete state of the body can be summarised in the form of a vector x =

(x1, . . . , xm) of tissue nitrogen tensions governed by independent diffusion equations.

The constants ki in equation (1) are usually quoted in the literature in terms of

‘half-times’ τi defined to be the time elapsed for an initial saturation xi = xi(0) to

be reduced by a factor two when the surrounding ambient pressure p = 0. It is easy

to show that τi = ln(2)/ki; for human tissues these half-times typically lie in the

range from about 10 minutes to as long as 6 hours. The original model formulated

by Haldane [4, 6] consisted of five tissues (or compartments) with halftimes between

5 and 75 minutes; a more up-to-date example with eight compartments is the DSAT

model with parameters as listed in Table 1.

compartment i 1 2 3 4 5 6 7 8
halftime τi (minutes) 5 10 20 30 40 60 80 120

saturation M0,i (atm) 3.035 2.533 2.049 1.830 1.707 1.576 1.507 1.438

Table 1: Typical halftime and surfacing M -values for the eight compartments used in the
DSAT model.

Classical decompression theory is founded on the assumption that each tissue i can

tolerate a maximum nitrogen tension of Mi(p) before nitrogen bubbles begin to form.

This critical tension, commonly referred to as the M -value, is a function of the ambient

pressure p and increases with p. In the original Haldane model [4] it was assumed that,

for a diver breathing compressed air, the critical nitrogen tension is simply twice the

partial pressure of nitrogen in the breathing air at ambient pressure; this then implies

that Mi(p) = 1.58p for all compartments i. In more sophisticated models, the critical

nitrogen tension is taken to be a linear function of p with coefficients that depend on
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the properties of the particular tissue under investigation. In this case

Mi(p) = M0,i + (p − 1)M ′

i (2)

where M0,i is the maximum nitrogen saturation that can be tolerated at a pressure

of one atmosphere; this is often known as the “surfacing M-value” when the water

surface is at sea level. Table 1 includes representative surfacing M -values extracted

from Bookspan [3, pp. 16, 23].

2.2. Dive planning constraints

Before descending it is normal practice for the diving party to agree on the duration

and purpose of the impending dive. This ‘dive plan’ specifies the intended depth d(t)

as a function of time t during a dive and generally is one of two basic kinds. The

first, a no-decompression dive, is one which, in theory, can be aborted at any time

without requiring special decompression procedures. For this to be possible, it has

to be ensured that the nitrogen saturation in each of the diver’s tissue compartments

never exceeds the maximum nitrogen saturation that can be tolerated at sea level: this

demands that

xi(t) ≤ Mi(p0) for all t. (3)

In contrast, on a decompression dive, the diver may not be able to ascend immediately

to the surface at any time: obligatory decompression stops are required during the

ascent. This more complicated type of dive plan satisfies only the minimal requirement

for avoiding decompression sickness that the nitrogen saturation in each tissue is less

than the maximum saturation appropriate to the present depth. This then imposes

the weaker requirement that

xi(t) ≤ Mi(p(t)) = Mi(p0 + λµd(t)) for all t (4)
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and, as we have already remarked that Mi(p) is frequently taken to be a linear function

of p, the constraint (4) becomes linear in depth so

xi(t) ≤ (M0,i + (p0 − 1)M ′

i) + λµM ′

id(t) for all t. (5)

It is worth noting that the Haldane model was developed and used for planning

staged decompression dives in military and commercial circumstances, rather than

no-decompression dives which are more common for recreational purposes.

3. No-decompression limits

3.1. Theory

A simple optimization problem is to determine the “no-decompression limit” for

a given depth D. Put simply, this is the maximum permissible duration T of a no-

decompression dive to a constant depth D, starting and ending at the surface. To a first

approximation it may be assumed that ascent and descent occurs quickly, so that the

dive profile can be idealised as a simple square form, d(t) = D if 0 < t < T and d(t) = 0

otherwise. For the purposes of the analysis it is assumed that the diver is fresh, that is,

they have not had recent exposure to changes in pressure; their initial state x(0) is in

equilibrium with air at sea level. Then xi(0) = 0.79 atmospheres for all compartments

i although for planning multiple dives during a day the no-decompression limit for a

diver is critically dependent on their particular recent diving history.

Thus we seek to maximise T subject to the constraints

xi(t) ≤ Mi(p0) for all t

where

ẋi = −ki(xi − µp(t))

with initial condition xi(0) = 0.79 unless otherwise stated. Writing P = p0 + λD for
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the ambient pressure at depth D, and Q = µP = µp0 + µλD for the nitrogen partial

pressure at this depth, we have

ẋi = −kixi + kiQ.

This first order DE has solution

xi = Q + Aie
−kit

where the constant Ai is determined by the initial value xi(0) yielding

xi(t) = Q + (xi(0) − Q)e−kit. (6)

Since xi(t) is monotonically increasing, the maximum permitted nitrogen tension Mi(p0)

is reached at time

Ti = −
1

ki

ln

[

Q − Mi(p0)

Q − xi(0)

]

(7)

provided Q ≥ Mi(p0); otherwise this limit is never reached.

Thus, let ndl(D,x) be the no-decompression time limit for a square dive to depth

D for a diver with initial state vector x. Then we have shown that

ndl(D,x) = −min
i

1

ki

ln

[

Q − Mi(p0)

Q − xi(0)

]

(8)

where the minimum is taken over those i such that Mi(p0) ≤ Q, where Q = µp0+µλD.

In particular, for a dive at sea level (p0 = 1) on air (µ = 0.79) by a fresh diver

(xi(0) = 0.79) we have Mi(p0) = M0,i, Q = µ(1 + λD) and Q − xi(0) = µλD in (8).

We define the ‘controlling tissue’ for a no-decompression dive to be the tissue index

i which achieves the minimum in (8).
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3.2. Calculations

The no-decompression limits depend crucially on the behaviour of the surfacing M -

values. In the Haldane model, M0,i = 1.58 for all i, so that for a fresh diver, the

expression

ln

[

Q − Mi(p0)

Q − xi(0)

]

is equal for all i. Hence the minimum in (8) is achieved by taking ki as large as possible,

and the no-decompression limit for a fresh diver (at sea level using compressed air) is

always dictated by the compartment with the shortest halftime. The resulting no-

decompression limits are shown in Table 2.

Depth (m) NDL (minutes) Controlling
Haldane DSAT tissue i

10 ∞ 275.5 7
12 12.9 152.8 6
14 9.0 102.0 5
16 7.1 74.6 5
18 5.8 56.9 4
20 5.0 46.0 3
22 4.4 37.2 3
24 3.9 31.5 3
26 3.5 27.2 2
28 3.2 22.4 2
30 2.9 19.2 2

Table 2: Comparison of theoretical no-decompression limits (NDL) under the Haldane
and DSAT models and calculated using (8). The rightmost column identifies the tissue
compartment i in the DSAT model which fixes the NDL. The calculations assume that the
diver is fresh, breathes compressed air, and the surface is at sea-level.

For the DSAT model (given in Table 1), the surfacing M -values decrease with i,

and range from M0,1 = 3.03 > 1.58 for the fastest compartment to M0,8 = 1.43 < 1.58

for the slowest. These lead to no-decompression limits (NDLs) which are much longer

than the Haldane predictions and, perhaps surprisingly, it is not always the fastest

compartment which fixes the upper limit on the duration of the dive. The sample

results in Table 2 suggest that at relatively shallow depths the slow compartments de-

termine the length of the dive and the expected importance of the faster compartments



Decompression 9

only becomes apparent for deeper excursions.

It is easy to show that the NDL is a decreasing function of depth and much of its

attraction lies in the conservative assumptions applied for its calculation. We have

mentioned already that when finding the NDL the diver is supposed to reach his

maximum depth D immediately, and stay at that depth for the entire duration of the

dive. In practice of course the diver cannot descend and ascend instantaneously but

it can be shown that the set of all no-decompression dives is ‘monotone’ in the sense

that if d1(t) is a no-decompression dive and d2(t) ≤ d1(t) for all t, then d2(t) is also

a no-decompression dive. Hence any dive with a maximum depth of D and maximum

duration t ≤ ndl(D) is guaranteed to be a no-decompression one and the diver can

proceed safe in the knowledge that decompression will not be required.

It may be of interest to determine how the predicted NDL is affected should the

descent and/or ascent be specified. Divers frequently change from one depth to another

at a steady speed and it turns out that the governing equation for xi(t) can still be

solved explicitly if the depth is taken to be a linear function of time. Further elaboration

can be introduced by assuming that the diver is not fresh and has dived previously on

the same day and we consider this now.

4. Optimal planning for two no-decompression dives

4.1. Double dives

Recreational divers normally plan two dives for the day separated by a period at

the surface. Suppose the first dive has a square profile to a depth d1 metres for time

t1 minutes, followed by a surface interval of s minutes, and then a second dive which is

also a square profile to depth d2 for time t2 minutes. This simple profile is illustrated

in Figure 1.

In all that follows we shall assume that the depths d1, d2 and the surface interval

s are all fixed, and the task is to optimise (some function of) the dive durations t1, t2

subject to the no-decompression constraint.
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depth

times

t1

t2

Figure 1: A typical double dive plan profile

Let us assume that the diver begins fresh; then by equation (6), on surfacing from

the first dive, the diver has tissue states

xi(t1) = µp0 + µλd1(1 − e−kit1) .

While back on the surface, tissues desaturate according to

ẋi = −kixi + kiµp0

so that at the end of the surface interval of s minutes and immediately before the

second dive,

xi(t1 + s) = xi(t1)e
−kis + µp0(1 − e−kis)

= [µp0 + µλd1(1 − e−kit1)]e−kis + µp0(1 − e−kis)

= µp0 + µλd1(1 − e−kit1)e−kis. (9)

During the second dive, tissues again take in nitrogen, according to

ẋi + kixi = kiµ(p0 + λd2)
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with general solution

xi = Cie
−kit + µ(p0 + λd2)

so that on surfacing again

xi(t1 + s + t2) = xi(t1 + s)e−kit2 + µ(p0 + λd2)(1 − e−kit2)

= [µp0 + µλd1(1 − e−kit1)e−kis]e−kit2 + µ(p0 + λd2)(1 − e−kit2)

= µp0 + µλd1(1 − e−kit1)e−ki(s+t2) + µλd2(1 − e−kit2) .

Thus the final tissue saturation is

xi(t1 + t2 + s) = µp0 + µλd1(1 − e−kit1)e−ki(s+t2) + µλd2(1 − e−kit2). (10)

If we define

Q0 = µp0, Q1 = µλd1 and Q2 = µλd2

then these results can be rewritten as

xi(t1) = Q0 + Q1 − Q1e
−kit1

xi(t1 + t2 + s) = Q0 + Q2 + (Q1e
−kis − Q2)e

−kit2 − Q1e
−ki(t1+t2+s).

To satisfy the no-decompression requirement (3) for all 0 ≤ t ≤ t1 + t2 +s, it suffices

(by monotonicity) to simply apply this constraint at the ends of each of the two dives,

i.e. to demand that

xi(t1) ≤ M0,i and xi(t1 + t2 + s) ≤ M0,i.

The first inequality just forces t1 ≤ ndl(d1), the no-decompression limit for the depth

d1. For a fixed t1 ≤ ndl(d1), the second constraint is then satisfied in the interval

t2 ∈ [0, T2] where T2 = g(t1) = ndl(d2,x(t1 + s)) is the no-decompression limit for a
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diver with initial state (9). Hence the set of solutions (t1, t2) that together satisfy our

two constraints is the subgraph

S = {(t1, t2) : 0 ≤ t2 ≤ g(t1), 0 ≤ t1 ≤ T1}

where T1 = ndl(d1). The boundary is piecewise differentiable, with knots occurring

where the controlling tissue changes (i.e. where the minimum in (8) with x = x(t1 + s)

is achieved by two different tissues i).

Figure 2 shows an example solution set for the choices of d1 = 40 metres, d2 =

12 metres and s = 15 minutes. As might have been expected, the boundary is

approximately linear with a negative slope steeper than unity (left panel). Closer

inspection (right panel) reveals that the boundary is convex and slightly nonlinear.
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Figure 2: Example of solution set for double dive. Left: Maximum permissible duration of
the second dive, t2, as a function of the duration of the first dive t1. Right: Deviation of
the boundary from a straight line. Here the parameters are d1 = 40 metres, d2 = 12 metres,
s = 15 minutes and the times are computed using the DSAT model.
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4.2. The optimal double dive

We now consider how one might attempt to design the most desirable double dive.

Of course before much progress can be made some appropriate objective function must

be defined that measures the attractiveness of any particular dive plan. In the absence

of any other function, an obvious start point would be to consider the total time t1 + t2

spent underwater. In that case the problem reduces to maximising T = t1 + t2 subject

to

Q0 + Q1 − Q1e
−kit1 ≤ M0,i (11)

Q0 + Q2 + (Q1e
−kis − Q2)e

−kit2 − Q1e
−ki(t1+t2+s) ≤ M0,i (12)

for all i. However it can easily be shown that the solution is trivial: if d1 > d2 then

the solution is just t1 = 0 and t2 = ndl(d2). This result is intuitively obvious when

it is realised that the deeper a diver goes so the build-up in nitrogen concentration

progressively increases. Thus to spend the maximum total time the diver simply elects

to go to the shallower depth for as long as the no-decompression limits allow, and does

not dive the deeper depth at all.

This result implies that maximising the total dive time is not a sensible measure

of a good dive plan. Most divers will attest that deep dives are in some sense more

exhilarating and fulfilling than shallow ones; so as a refined objective function, let us

look to the integral of depth over time

Φ = t1d1 + t2d2

subject to the constraints (11) and (12).

To calculate the maximum value of the objective function Φ we use the technique

of Lagrange multipliers. We therefore introduce constants A1, . . . , Am and B1, . . . , Bm
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and define

Y = d1t1 + d2t2 +

m
∑

i=1

Aiai(t1) +

m
∑

i=1

Bibi(t1, t2) (13)

where

ai(t1) = M0,i − Q0 − Q1 + Q1e
−kit1

bi(t1, t2) = M0,i − Q0 − Q1e
−kis(1 − e−kit1)e−kit2 − Q2(1 − e−kit2).

are the constraint functions corresponding to (11) and (12) respectively.

The optimal solution may occur either at

(a) a boundary point of the time domain, or at

(b) a generic stationary point of Y , or at

(c) a point where two of the constraint functions are equal to zero.

Case (a) We must consider the boundary solutions occurring when either t1 = 0 or

t2 = 0 corresponding to only a single dive. The possible boundary points are then

(a1) (t1, t2) = (0,ndl(d2)) and

(a2) (t1, t2) = (ndl(d1), 0)

but case (a2) can be shown to be suboptimal as follows. For a fixed value of t1, the

value of d1t1 + d2t2 is clearly greatest when t2 is maximised subject to the constraints.

This is to say that t2 should equal ndl(d2,x(t1 + s)) with x(t1 + s) given by (9). If

t1 = ndl(d1) then, for any nonzero surface interval s, the tissue saturations x(t1+s) at

the start of the second dive are clearly sub-critical, so that ndl(d2,x(t1 + s)) > 0, and

sub-case (a2) is not optimal, and can be safely excluded from further consideration.
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Case (b) Stationary points of Y are found by considering the partial derivatives

∂Y

∂t1
= d1 − Q1

∑

i

Aikie
−kit1 − Q1

∑

i

Bikie
−ki(s+t1+t2)

= d1 − Q1

∑

i

Aikie
−kit1 −

∑

i

BikiQ1,ie
−ki(t1+t2) (14)

∂Y

∂t2
= d2 +

∑

i

Biki

[

Q1e
−ki(s+t2)(1 − e−kit1) − Q2e

−kit2

]

= d2 +
∑

i

Bikie
−kit2

[

Q1i(1 − e−kit1) − Q2

]

(15)

where we have written Q1,i = Q1e
−kis since the surface interval duration s is taken to

be fixed.

Generic stationary points of (13) are determined by solving

∂Y

∂t1
=

∂Y

∂t2
= 0

subject to the additional requirement that one of the constraint functions has value

zero (while the other constraint functions are all positive). There are essentially two

sub-cases:

(b1) ai(t1) = 0 for some i whereupon the corresponding Lagrange multiplier Ai is

nonzero while all other constraint functions are positive and their Lagrange

multipliers zero.

(b2) bi(t1, t2) = 0 for some i. Now Bi is nonzero with all the other constraint functions

positive with corresponding Lagrange multipliers zero.

Sub-case (b1) implies that t1 is equal to the no-decompression limit ndl(d1) and that

t2 is strictly less than the resulting no-decompression limit ndl(d2,x(t1 + s)) for the

second dive. However, this combination is suboptimal and can be excluded by the

same argument used to dismiss (a2).

Thus we need only consider sub-case (b2) which implies that t1 < ndl(d1) and

t2 = ndl(d2,x(t1 + s)). All the Lagrange multipliers Ai can safely be set to zero and
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a solution sought in which the partial derivatives (14) and (15) are zero together with

∂Y

∂BI

= 0

Bi = 0 for i 6= I

if they exist within the constraint set. Effectively I is the controlling tissue: the final

tissue saturation in tissue I is then equal to the surfacing limit M0,I .

There are m possible candidates for the identity of the controlling tissue I. Putting

∂Y/∂t1 = 0 gives

0 = d1 +
∑

i

Bi[−kiQ1e
−ki(s+t1+t2)]

= d1 − Q1kIBIe
−kI(s+t1+t2)

implying

kIBIQ1 = d1e
kI (s+t1+t2). (16)

Moreover ∂Y/∂t2 = 0 forces

0 = d2 +
∑

i

Bi[kiQ1,i(1 − e−kit1)e−kit2 − kiQ2e
−kit2 ]

= d2 + BI [kIQ1,I(1 − e−kIt1)e−kIt2 − kIQ2e
−kIt2 ]

= d2 + kIBI [Q1,I(1 − e−kIt1)e−kIt2 − Q2e
−kIt2 ]

and then substituting (16) gives

0 = d2 + d1e
kI (t1+t2)

[

1 − e−kIt1 −
Q2

Q1,I

]

e−kI t2

= d2 + d1e
kI t1

[

1 − e−kIt1 −
Q2

Q1,I

]

= d2 − d1 + d1
Q1,I − Q2

Q1,I

ekIt1
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so that

ekI t1 =
Q1,I(d1 − d2)

d1(Q1,I − Q2)
. (17)

For ∂Y/∂BI = 0 then

M0,I − Q0 − Q1,I(1 − e−kIt1)e−kI t2 − Q2(1 − e−kIt2) = 0

yielding

ekIt2 =
Q1,I(1 − e−kIt1) − Q2

M0,I − Q0 − Q2
.

The numerator on the right hand side of the last expression is, using (17),

Q1,I − Q2 − Q1,Ie
−kIt1 = Q1,I − Q2 − Q1,I

d1(Q1,I − Q2)

Q1,I(d1 − d2)

= (Q1,I − Q2)

[

1 −
d1

d1 − d2

]

= −
(Q1,I − Q2)d2

(d1 − d2)

so that

ekI t2 = −
(Q1,I − Q2)d2

(d1 − d2)

1

M0,I − Q0 − Q2
. (18)

Equations (17) and (18) together determine at most m candidates for optimal solutions

(t1, t2) at generic stationary points.

Case (c) If two constraint functions are to be simultaneously zero then one of three

possibilities occur: either

(c1) ai(t1) = aj(t1) = 0 for some i 6= j; or

(c2) bi(t1, t2) = bj(t1, t2) = 0 for some i 6= j; or

(c3) ai(t1) = 0 for some i and bj(t1, t2) = 0 for some j,

while all other constraint functions are assumed to take nonzero values. The equal-

ity ai(t1) = 0 implies that t1 = ndl(d1); similarly bj(t1, t2) = 0 leads to t2 =

ndl(d2,x(t1 + s)). Of the three possibilities the first (c1) can be excluded because
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it implies t2 < ndl(d2,x(t1 + s)). Thus we only need to examine the other two; we

remark that (c3) requires that t1 = ndl(d1) and t2 = ndl(d2,x(t1 + s)) which is the

double dive conducted to the no-decompression limits on each occasion.

Subcase (c2) is equivalent to identifying those cases when the no-decompression

limit for the second dive is controlled by two tissues; that is, when the minimum in (8)

is attained by two tissues i and j, for initial state (9). First consider the single tissue

i. Observe that bi(t1, t2) = 0 if and only if

Q1,i(1 − e−kit1)α + Q2(1 − α) = Ei

where α = e−kit2 and Ei = M0,i − Q0. A solution with α ∈ (0, 1) occurs whenever

either

Q1,i(1 − e−kit1) < Ei < Q2

or

Q1,i(1 − e−kit1) > Ei > Q2.

If the set

Di = {t1 > 0 : bi(t1, t2) = 0 for some t2 > 0}

then solutions with α ∈ (0, 1) are feasible for all t1 > 0 if Q1,i ≤ Ei ≤ Q2. In contrast,

if Q1,i ≤ Ei and Ei > Q2 then no solutions occur whatever the value of t1. Lastly,

Di = (0, ci) if Q1,i > Ei and Ei ≤ Q2; and Di = (ci,∞) if Q1,i > Ei > Q2, where

ci = −
1

ki

log

[

1 −
Ei

Q1i

]

.

We remark that for any t1 ∈ Di the solution of bi(t1, t2) = 0 in t2 exists and equals

fi(t1) =
1

ki

log
M0i − Q0 − Q2

Q1i(1 − e−kit2) − Q2
.
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Thus, for two tissues i and j, a solution of

bi(t1, t2) = bj(t1, t2) = 0

exists precisely when the function gij(t1) = fi(t1) − fj(t1) has a root t∗1 in the inter-

section Di ∩ Dj . If this happens then putting t∗2 = fi(t
∗

1) = fj(t
∗

1) yields the required

solution (t∗1, t
∗

2).

The implication is that to compute subcase (c2) we examine each pair of tissues

i and j in turn. It has to be determined whether the intersection Iij = Di ∩ Dj is

nonempty; if this is so we have to find whether a root of gij exists in Iij . In this

eventuality the solution (t∗1, t
∗

2) has to be computed and checks made to ensure that

the solution satisfies the remaining constraints, ak(t∗1) ≥ 0 for all k and bk(t∗1, t
∗

2) ≥ 0

for all k 6= i, j.

4.3. A numerical example

We illustrate the calculation for the optimum double dive taking the parameters

used in constructing Figure 2, i.e. successive dives to d1 = 40 and d2 = 12 metres

separated by a surface interval of s = 15 minutes. We again use the DSAT model

parameters summarised in Table 1.

Candidates for the optimum double dive were calculated following the procedure

described above. The possibilities are listed in Table 3 which reveals that the best

plan is achieved by (b2), the stationary point, with t1 = 7.33 minutes and t2 = 130.4

minutes. For comparison if the first dive is conducted up to its no-decompression limit

of t1 = 8.94 minutes (case (c3)), the second dive is then restricted to t2 = 125 minutes.

We remark that for case (c2) there is actually a crossing between tissues 5 and 8 at

(t1, t2) = (3.19, 188.97) but this is an infeasible solution since this value of t2 exceeds

the NDL for the second dive.

Figure 3 shows the maximum value of Φ = d1t1 +d2t2 taken over the possible range

of t2 for each fixed t1. The optimum clearly occurs at the stationary point of this graph,
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case t1 t2 t1d1 + t2d2

(a1) 0 152.8 1833.2
(b2) 7.32 130.4 1858.2
(c3) 8.94 125.0 1856.7

Table 3: Candidates for the optimum double dive using the parameters of Figure 2.

where t1 ≈ 7.32 minutes. We noted earlier that, to a first approximation, the graph of

t2 against t1 in Figure 2 is virtually linear with a slope of approximately −3.1. Since

d2/d1 = 40/1.2 = 3.33, the graph of d1t1 +d2t2 against t1 is also essentially linear with

an almost negligible slope. Figures that gives rise to the stationary point in Figure 3.
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Figure 3: Maximised value of d1t1 +d2t2 (maximised over t2 for fixed t1) plotted against the
duration of first dive t1. Same parameters as used in Figure 2.

Continuing with the same example, Figure 4 shows the effect of varying the surface

interval s. For small values of s (less than about 3 minutes) the optimum is achieved

when t1 = 0; informally this arises because the nitrogen build-up is great during the

first (deep) dive and the recovery period on the surface very short. Then the reduction

in the second dive duration due to the after-effects of the first is so severe that the

optimal double dive would forego the first dive altogether. When s is large, that is

greater than about 20 minutes, the optimum is achieved when the first dive is extended
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to its full NDL t1 = ndl(d1). For intermediate values of s the optimum typically occurs

at a stationary point.
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Figure 4: Family of curves analogous to previous Figure but allowing for various surface
intervals s.

5. Discussion

In this article we have shown how elementary decompression theory can be developed

using simple differential equation models. It is seen how optimal dive plans can be

deduced, although this issue is not as simple as might have been envisaged at the

outset for the reason that the profile of the dive pattern is sensitively dependent on

the definition of a good dive. In principle what we have developed is sufficient to

formulate a complete set of no-decompression tables for both single and combination

dives. Software for performing the calculations in the paper is available [1].

We have deliberately steered clear of discussing decompression dives. There is no

technical reason why such dives cannot be handled using exactly the same technology

as used here subject to the complication that stops at specified depths would need
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to be incorporated into the model. Of course there comes a point where the intrinsic

attractiveness of analytic formulae is overtaken by the sheer number of free parameters

and a numerical solution is then more efficient. Nevertheless, we would argue that

the modelling described here is easily extended in many directions and thus ideal for

further investigation. Of particular interest might be an examination of the effect on

the NDL of imposing specified descent and ascent time-histories and the construction

of the best dive plan comprising of more than two individual dives. The modelling

of decompression is a topic that contains a richness of possibilities although there is

nothing quite as exciting as putting the theory into practice on a sunny day.
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1. Introduction
Are you a scuba diver? Can you use the diving tables? Do you know the

mathematical basis for the diving tables? Could you construct your owndiving
tables? The purpose of this module is to describe the physiological basis for
the diving tables and the mathematics used for the calculations.

2. A Brief History of Diving
Diving is an ancient pastime. Diving for proÞtÑthe collectinn of sponges,

shells, and pearlsÑand diving for food have been with us for some time, and
probably so has diving for pleasure. Divers were used for military purposes
by the Greeks and are still of strategic importance today.
Ancient diving was essentially free (or breath-hold) diving, although Alex-

ander the Great was reported to have used a primitive diving bell around
330 B.C. A diving bell is essentially a weighted inverted receptacle that retains
its air (or other gases) as it is lowered into the water, giving a source of oxygen
at depth to which the diver may return as needed or even be connected by a
ßexible tube. The air in the bell deteriorates in quality as the dive progresses,
and various methods have been devised to replenish it.
In 1691, Sir Edmund Halley (of comet fame) built and patented what may

have been the Þrst practical diving bell, with a volume of approximately 60
cubic feet. The air was replenished from barrels, and the fouled air was vented
out bymeans of a valve. (A 6-foot-high cylinder of diameter 3 1

2 ft has volume'
56 ft3.)Nearly100yearspassedbeforea successful forcingpumpwasdeveloped
to enable a supply of fresh air to be pumped to the bell from the surface. This
technique later developed into personal diving suits supplied from the surface
and then to self-contained underwater breathing aparatus (SCUBA).
As dives became deeper and longer, it became apparent that there were

various physiological risks involved. One such risk is decompression sickness,
or the Òbends,Ó which was associated with a rapid return to the surface after a
long or deep dive.
In addition to diving, the nineteenth century saw the introduction of Òcais-

sons,Ó large chambers equipped with an air lock and kept under high pres-
sure, which enabled tunnellers and bridge builders to work underground or
underwater without the chamber ßooding. It soon became clear that special
procedures were needed so that the workers, who may have been working in
a high-pressure environment for several hours, did not suffer injuries or even
death when they returned to normal atmospheric pressure. The need for a
careful decompression sequence became obvious. In 1854, physicians B. Pol
and T.J.J. Wattelle stated in a report, ÒThe danger does not lie in entering a shaft
containing compressed air; nor in remaining there a longer or shorter time;
decompression alone is dangerousÓ [Hills 1977].

1
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The decompression routines of this time were usually linear (i.e., a reduc-
tion in pressure at a Þxed constant rate in atmospheres per minute) and were
generally devised by experience that involved much pain and some deaths
on the part of the experimental subjects. Of the approximately 600 men who
worked on the St. Louis bridge, 119 suffered serious neurological decompres-
sion sickness, and 14 died. The name Òthe bendsÓ apparently originated from
the gait of these bridgeworkers, caused by pains in their joints. This resembled
the ÒGrecian bendÓ of fashionable ladies of the time, who walked voluntarily
in this manner.
In the early twentieth century, military needs led various navies to become

interested in decompression sickness, and more careful research was begun.
Themost inßuential of this researchwas performedby the physiologist J.S.Hal-
dane for the Royal Navy in 1906. HaldaneÕs diving tables (1908) were remark-
ably effective in almost eliminating decompression sickness as a diving hazard
and were used for some time. As more experience was gained, it became clear
that HaldaneÕs tables were somewhat conservative for short dives, so adjust-
ments weremade. Then, as longer deeper diveswere undertaken, it was found
that the tables were not conservative enough for such dives, and more reÞne-
ments were made. Many further reÞnements have taken place in more recent
times, but the tables are still essentially based on adaptations of HaldaneÕs
original ideas.
In the following sections, we examine these basic ideas and themathematics

behind them. To construct adequate universal tables is arithmetically intensive,
but we will use the ideas in simpliÞed form to construct our own tables.

The tables that we construct are not to be used in any dive!
Use the tables that your scuba instructors give you.

3. HaldaneÕs Model
WhenHaldanebeganhis experiments, it hadbeenestablished that themajor

cause of decompression sicknesswas the release of bubbles of nitrogen, an inert
gas in the air, into various tissues and into the arterial bloodstream. While a
diver is underwater, she is breathing air under high pressure and, as a result,
more nitrogen is forced into her blood. When she ascends, the air that she is
breathing returns to a lower pressure, and the nitrogen dissolved in her blood
forms bubbles. (Because oxygen in the air that is dissolved in the blood is
metabolized, it does not cause a problem.) The effect can be seen when the
lid of a pop bottle is unscrewed. The gas in the ßuid is under pressure that is
suddenly reduced when the lid is unscrewed, and bubbles rapidly form.
Initially it was thought that there would be a critical drop in pressure

above which sickness would occur; but HaldaneÕs experiments, which were
performed on goats, led to a different conclusion. (Haldane had found that the
sensitivity of goats to decompression sickness was acceptably close to that of

2
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humans.) He found that no matter what the original pressure is, decompres-
sion sickness does not occur if the pressure is reduced by less than some Þxed
fraction. That is, there is a valueM for which a pressure P1 can be reduced to
P2 = MP1 without the occurrence of Òthe bends.Ó Haldane suggested a value
M just slightly less than 1/2. We will use 1/2.15 ≈ .465 in our calculations.

The subjects of these experiments were exposed to the higher pressure for
long periods, so the dissolved gaseswere brought to saturation levels. In dives,
this might not be the case. In addition, for long dives at an absolute pressure
of more than twice atmospheric pressure, the subject could not be brought to
atmospheric pressure without one or several intermediate stops. (An absolute
pressure of two atmospheres occurs at a depth of about 10 m ≈ 33 ft of water.)
Todetermine an appropriate set of stops, amodel of howgases are dissolved

in and released from body tissues is needed. First, it is known that the pressure
of inert gas in the pulmonary circuit is almost instantaneously equalized with
that in the lungs, which is the ambient external pressure. Thus, blood entering
the arterial system has gas pressure equal to the ambient pressure. A model
must now be made of the distribution of the gas to the various tissues in the
body.
The simple model that we use in this Module is based on the following

assumptions:

• The blood ßows through a tissue at a constant volume rate ν ml/sec.
• If the gas pressure in the blood and tissue is p, then the concentration of the
gas in the blood is s1p g/ml and in the tissue is s2p g/ml, where s1, s2 are
constants with different values of s2 for different tissues.

The model is a simple compartment model (see Barnes [1987]). Gas en-
ters the pulmonary circuit from the lungs at pressure pe, the ambient external
pressure. We assume that the gas pressure in the blood as it enters a tissue com-
partment is pe. The pressure in the tissue and the blood is quickly equalized to
the local pressure p, and the blood leaves the compartment at pressure p.
A balance of mass for the gas must hold:

The rate of increase of mass in the compartment =
Rate at which mass ßows in − Rate at which mass ßows out.

The mass of gas in the compartment at any time is V1s1p+ V2s2p, where V1

and V2 are measured in ml and represent the respective volumes of blood and
tissue in the compartment. The rate of increase of mass is then

d

dt
[(V1s1 + V2s2)p] g/sec.

Gas enters the compartment at a rate νs1pe g/sec and leaves at a rate of νs1p
g/sec. The balance of mass gives

[V1s1 + V2s2]
dp

dt
= νs1(pe − p) or

dp

dt
= k(pe − p),

3
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where k = νs1/(V1s1 + V2s2) is a constant for the tissue. A simple diagram for
this model is presented in Figure 1.

ßow in Blood vol V1, Tissue vol V2 ßow out
at rate solubility s2 at rate

−→ Tissue pressure p −→
νs1pe Mass of gas νs1p

Figure 1. Diagram for the compartment model.

In HaldaneÕs time, this model was thought to be appropriate for both com-
pression (pe ≥ p) and decompression (p ≥ pe). It was known already that
various tissues in the body required different values of s2, V1, V2, and ν, and
the sameblooddoesnotßowthroughall tissues. Indevisinghis tables,Haldane
considered Þve different values for the constant k in the differential equation.
His calculations were based on solutions of the differential equation and on the
experimental result that the external absolute pressure could be reduced by the
factorM at any time without an attack of the bends occurring.
In the work that follows, we assume for simplicity that air is all nitrogen. It

can be shown that this in fact makes no signiÞcant difference to the results (see
Exercise 6).

4. Solution of the Differential Equation
The differential equation

dp

dt
= k(pe − p), (1)

where k and pe are known constants, can be solved to Þnd the pressure p at any
time t, provided that the pressure p is known at one instant of time, usually
taken to be t = 0 (we measure the elapsed time from the instant at which the
pressure is known), i.e., p(0) = p0, a known constant. If you know enough
integral calculus, you can Þnd the solution of the equation, as shown below,
by the method of separation of variables. If you do not know integral calculus,
the solution can be veriÞed directly by substitution in (1).
To separate variables, we write (1) as

1

pe − p
dp

dt
= k

and integrate (antidifferentiate) both sides with respect to t. This gives∫
1

pe − p
dp

dt
dt =

∫
1

pe − p dp =

∫
kdt.

4
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Performing the integrations, we get

− ln |pe − p| = kt+ c

where c is an arbitrary constant. Taking exponentials of both sides gives

|pe − p| = e−(kt+c) = e−kte−c = Ae−kt,

where A is an arbitrary constant, A = e−c. Since we also require p(0) = p0, it
follows that |pe − p0| = A, and we obtain the solution

p = pe − (pe − p0)e−kt. (2)

Graphs of solutions for the case p0 = 1 atm, pe = 3 atm with (a) k = 0.2min−1,
(b) k = 0.1min−1 are given in Figure 2. The curves represent the pressure p in
the tissues of a diver at time tmin after descending from the surface (p = 1 atm)
to a depth of about 66 ft (p = 3 atm). Similarly, graphs for the case p0 = 3 atm,
pe = 1 atm with (a) k = 0.2 min−1, (b) k = 0.1 min−1 are given in Figure 3.
Here the curves represent the pressure tminutes after ascending to the surface
from a point where the tissue pressure is 3 atm.
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Figure 2. Solutions for the case p0 = 1 atm, pe = 3 atm. The lower curve is for k = 0.2 min−1

and the upper curve is for k = 0.1min−1. The curves give the pressure p in the tissues of a diver
at time tmin after descending from the surface (p = 1 atm) to a depth of about 66 ft (p = 3 atm).

The role of the constant k, which is measured in min−1 if t is measured in
min, is indicated in Figures 2 and 3. When p0 and pe are held constant, it takes

5
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Figure 3. Solutions for the case p0 = 3 atm, pe = 1 atm. The lower curve is for k = 0.2 min−1

and the upper curve is for k = 0.1 min−1. The curves give the pressure t min after ascending to
the surface from a point where the tissue pressure is 3 atm.

twice as long to attain a given pressure when k = 0.1 as it does when k = 0.2.
We also see that for any positive k, p approaches the constant external pressure
pe as t becomes large (t→∞) no matter what the value of p0. In other words,
the pressure equalizes over time, as expected.

5. The Half-Time
Because solutions of the exponential nature of (2) all have the same asymp-

tote p = pe for all positive values of k, they are often characterized by their
half-time, or half-life as it is called in the case of radioactive decay.
The half-time is the time required for the difference between p and the

external pressure pe to drop to exactly one half of its original value, that is, the
time at which (p− pe) = (p0 − pe)/2.

From (2), we see that if T is the half-time, then

p− pe = (p0 − pe)e−kT =
1

2
(p0 − pe)

and hence

e−kT =
1

2
⇒ ekT = 2⇒ kT = ln 2. (3)

6



The Mathematics of Scuba Diving 201

From this equation we see that k = ln 2/T no matter what the values of p0 and
pe are, and that the half-time T for a tissue completely determines the value of k
in (2). This makes the half-time extremely useful in characterizing the various
tissues in the body.
The relationships between bottom times and decompression programmes

differ for different half-times. The humanbody containsmanydifferent tissues,
as Haldane knew, and a safe decompression programme must make sure that
the bends do not occur in any of them. Haldane did not have exact values
for half-times, so to compile his tables he used Þve different values (5, 10, 20,
40, and 75 min) in the belief that this would cover any reasonable spectrum of
half-times. His tables were successful over the wide range of dives undertaken
at that time and for some considerable time thereafter.
Noting that

e−kT =
1

2
, e−kt = e−kT( tT ) =

(
e−kT

)(t/T )
=

(
1

2

)t/T
,

we rewrite (2) as

p = pe + (p0 − pe)
(

1

2

)t/T
. (4)

6. Scuba and No-Stop Dives
Most recreational divers usually dive to a given depth, remain at (or above)

that depth for a certain time, and then ascend directly to the surface. This is the
Òno stopÓ or Òno decompressionÓ dive, as shown in Table 1 below. The time
allowed at the bottom depends on the depth of the dive. For example, the table
says that you may stay (ÒstayÓ includes descent and ascent) at 70 ft for 50 min.

Table 1.

Diving table (from Hammes and Zimos [1988]).

Depth (ft) 40 50 60 70 80 90 100 110 120 130

Time (min) 200 100 60 50 40 30 25 20 15 10

A no-stop diving table can be produced from our model in the following
manner.
Wewish tomodel a situation inwhich a diver startswith an initial gas tissue

pressure of 1 atm and wishes to stay at a depth d ft where the external pressure
is pe = 1 + d/33 (33 ft of water gives a pressure of 1 atm; the equation contains
a 1 because there is already a pressure of 1 atm at the surface d = 0). We use (2)
to tell us the tissue gas pressure after tmin, which will be

p = 1 +
d

33
− d

33
e−kt (k being known for the given tissue).

7
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HaldaneÕs decompression experiment says that the diver may ascend directly
to the surface where the pressure is 1 atm provided that the pressure p attained
in the tissues is less than 2.15 atm. Thus the diver has a limiting dive time td
given by

2.15 = 1 +
d

33
(1− e−ktd),

d

33
=

1.15

1− e−ktd .

This relation gives the time for the tissue as characterized by its value of k
(equivalently, by its half-time T = ln 2/k).
The allowable time td becomes longer as k becomes less, that is, as the half-

time T (= ln 2/k) becomes greater. To be safe for all tissues, td is limited by the
tissue with the shortest half-time, which is 5 min in HaldaneÕs scheme. This
would give the relation

d =
38

1− exp(−td ln 2/5)
.

Tables are usually written with td as a function of depth d, which our model
gives as

td =
5 ln

(
d

d−38

)
ln 2

.

Youwill Þnd that this relationgivesqualitative agreementwithpublished tables
(see Figure 4); but the quantitative agreement is not very good, because of the
conservative nature of HaldaneÕs value ofM and his tissue half-time of 5 min
for short dives.

7. Dives with Decompression Stops
For dives that fall outside the no-stop dive range, a more complicated set

of conditions must be satisÞed. Again we follow HaldaneÕs recipe.
The standard method to calculate a decompression routine is to consider a

series of stops at depths that are multiples of 10 ft. The Þrst stop must be such
that the external pressure at that depth is not less thanM times the pressure in
eachof the tissues that hasbeen reachedduring the stayat thedivingdepth. The
tissue pressures depend on the time spent at depth and on the tissue half-time.
The greatest tissue pressure will be in the tissue with the shortest half-time.
Consider the following three examples.

Example 1. Consider a one-hour dive at a depth of 66 ft, where the
pressure is approximately 3 atm. To save some calculations, we assume

8
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Figure 4. No-stop dive. Graph of td = 5 ln

�
d

d− 38

�
/ ln 2 and td = 20 ln

�
d

d− 38

�
/ ln 2,

compared with points from the diving table of Table 1.

that there are three tissues (as opposed to HaldaneÕs Þve) with half-times
10, 20, and 40min. From (4), the pressure of a tissue at an external pressure
pe is

p = pe + (p0 − pe)
(

1

2

)t/T
,

where p0 is the initial tissue pressure, T the tissue half-time, and t is the
length of time at depth (in minutes). The pressure p0 at the beginning of
the dive is 1 atm. After one hour at 66 ft (3 atm for 60 min, pe = 3 atm),
tissue pressures are

T = 10-min tissue : p = 3− 2
(

1
2

)6 ≈ 2.97

T = 20-min tissue : p = 3− 2
(

1
2

)3 ≈ 2.75

T = 40-min tissue : p = 3− 2
(

1
2

)3/2 ≈ 2.29.

It is safe to ascend to an external pressure of 2.97/2.15 = 1.35, or about
12.5 ft. To keep the ascent steps in multiples of 10 ft, the Þrst ascent is
made to 20 ft (1.60 atm).
At this point, the diver makes a stop. We have to decide how long

this stop should be. To do this, we must decide the depth for the next
stop. We choose 10 ft or 1.30 atm. The diver must remain at 20 ft until

9
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all tissue pressures have declined to a value that will be safe when the
diver ascends to 1.30 atmÑthat is, until all tissue pressures are reduced
to 2.15× 1.30 = 2.795 atm. The three tissue pressures at the beginning of
the 20-ft stop are 2.97, 2.75, 2.29. The pressures of the 20-min and 40-min
tissues are already low enough to ascend to 10 ft. For the 10-min tissue,
tmin will result in pressures

10-min tissue: p = 1.6 + 1.37

(
1

2

)t/10

.

(Again we are using (4), with pe = 1.6 and p0 = 2.97 for T = 10.) The
divermust remain at the 20-ft level until all tissue pressures are below the
pressure 2.795 atm that is safe at the 10-ft stop (1.3 atm). For the 10-min
tissue, this means tmust be greater than the solution of

2.975 = 1.6 + 1.37

(
1

2

)t/10

or t = 10 ln

(
1.37

1.195

)
/ ln 2 ≈ 1.971.

Suppose that we make a 2-min stop at 20 ft. We must calculate the tissue
pressures after 2 min at 20 ft:

10-min: p = 1.6 + 1.37
(

1
2

).2
= 2.79

20-min: p = 1.6 + 1.15
(

1
2

).1
= 2.67

40-min: p = 1.6 + .69
(

1
2

).05
= 2.27.

These are the initial pressures at the 10-ft (1.3-atm) stop. The next ascent
will be to the surface (1 atm), where the safe pressure will be 2.15. The
stop at 10 ft (1.3 atm) must be long enough that all three pressures will
drop below 2.15. For a stop of tmin, the pressures will be

10-min: p = 1.3 + 1.49
(

1
2

)t/10

20-min: p = 1.3 + 1.37
(

1
2

)t/20

40-min: p = 1.3 + .97
(

1
2

)t/40
,

and t must be large enough that all three are less than 2.15. For the 10-
min tissue, this requires 7.62 min, for the 20-min tissue 13.77 min, and
for the 40-min tissue 8.09 min. The stop at 10 ft must be greater than
13.77 minÑsay 14 min. An appropriate decompression procedure for a
one-hour dive at 66 ft would feature stops of

2min at 20 ft
14min at 10 ft.

The ascentwould also be lengthened by the time to ascend the 66 ft, about
1.5 min.

10
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Example 2. We take an ascent as recommended in HaldaneÕs tables
[Hempleman 1982, 330]. For a dive of 130 min at 90 ft, HaldaneÕs ta-
bles recommend stops of

5min at 30 ft
25min at 20 ft
30min at 10 ft.

In this calculation, we will use all Þve of HaldaneÕs half-times of 5, 10, 20,
40, and 75 min.
First, we calculate the saturation levels for a dive of 130 min at 90 ft

≈ 3.73 atm. Thenwe calculate the pressures at the end of the period spent
at each stopping point. Finally, we note the safe pressure to ascend to the
next stop (see Table 2).

Table 2.

Analysis of ascent recommended by Haldane for a 130-min dive at 90 ft.

Tissue Pressure
half-time (min) 90 ft = 3.73 atm 30 ft = 1.9 atm 20 ft = 1.6 atm 10 ft = 1.3 atm

5 3.73 2.82 1.64 1.30
10 3.73 3.19 1.88 1.37
20 3.70 3.41 2.36 1.67
40 3.44 3.31 2.71 2.14
75 2.91 2.86 2.60 2.285

Safe pressure
at next stop 4.08 3.44 2.8 2.15

We see that at every stage except one, a safe pressure is attained in
each tissue to allow the diver to ascend to the next stop. The exception
is the last ascent to the surface for the 75-min tissue. Haldane allowed
2 min to move to and from the stops; if this time were included, the Þnal
pressures would be slightly reduced. This example, however, shows a
problem with HaldaneÕs tables for long dives.
A much more recent U.S. Navy Table TÐ10 (reproduced in Hammes

and Zimos [1988]) gives for this dive stopping times of

5min at 30 ft
36min at 20 ft
74min at 10 ft.

This decompression procedure allows for even larger half-times than
75 min.
Figure 5 shows graphs of the tissue pressures for half-times of 5, 10, 20,

40, and 75 min, using the decompression scheme from HaldaneÕs tables.
The piecewise ÒstepÓ graph at the right indicates the safe pressure at the
stops.

11
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Figure 5. A 130-min dive to 90 ft followed by ascent with decompression stops as recommended
by HaldaneÕs tables. At left, from top to bottom, are tissue pressures at 90 ft for half-times of 5,
10, 20, 40, and 75 min. At right, from top to bottom, are the tissue pressures during ascent. The
piecewise ÒstepÓ graph at far right indicates the safe pressures at the stops.

Example 3. We consider a dive to 80 ft= 3.43 atm for one hour. HaldaneÕs
tables give stops of

9min at 20 ft
18min at 10 ft.

Again we give the pressures as the diver leaves each level to proceed to
the next (see Table 3).
In this case, a safe tissue pressure has been reached at all levels for

all tissues before proceeding. This decompression procedure, however, is
now considered to be rather conservative. The U.S. Navy table suggests
17 min at 10 ft as the only stop for this dive.

A procedure of this kind can be calculated with as many tissues as appro-
priate. (You might like to write a computer programme to carry out the steps.)

12
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Table 3.

Analysis of ascent recommended by Haldane for a 60-min dive at 80 ft.

Pressure
Tissue 80 ft = 3.43 atm 20 ft = 1.6 atm 10 ft = 1.3 atm

5 3.43 2.13 1.37
10 3.39 2.56 1.66
20 3.17 2.75 2.08
40 2.57 2.43 2.13
75 2.03 2.00 1.89

Safe pressure
at next stop 3.44 2.80 2.15

Exercises

In all exercises, assume thatM = 1/2.15.

1. Find a decompression procedure for a dive of 40 min at 3.5 atm (80Ð85 ft)
with stops at 1.7 atm (23 ft) and 1.3 atm (10 ft). (Consider only 10- and
20-min tissues.)

2. Find a decompression procedure for a 2-hr dive at 4.0 atm (100 ft) with stops
at 1.9 atm (30 ft), 1.6 atm (20 ft), and 1.3 atm (10 ft). (Consider 10-, 20-, and
40-min tissues.)

3. Show that a slightly faster ascent for the dive of Exercise 2 could be made if
three stops of equal duration T1 are made, the Þrst at 1.9 atm (30 ft) and the
second and third at depths to be determined. (As a Þrst step, consider only
the 40-min tissue; then verify that the steps are appropriate for the 10-min
and 20-min tissues.)

4. Showthat for a single tissuehalf-timeT andann-stopdecompression sched-
ule, the shortest total ascent time is achieved by using equal times at each
step and determining the depths of each step according to the time. (The
actual time at each step is determined by the number of steps.)

5. Show that for a single tissue, it is possible to have a continuous ascent in
which the tissue pressure at time t is exactly 2.15 times the external pressure
that the diver is experiencing at that time. Find the diverÕs depth at time t
(pressure= 1+d/33 atm, where d is in feet). Using such a scheme, Þnd how
long it would take to ascend from a long dive at 4 atm. (Assume a single
tissue of half-time 40 min and an instantaneous ascent from 4 atm to 1.86=
4/2.15 atm.)

6. If the nitrogen (partial) pressure in a tissue is 80% of the pressure, and the
safe nitrogen pressure for a no-stop dive is 2.15 times that of the nitrogen
partial pressure in the atmosphere (0.8 atm), show that the equation relating
time and depth for no-stop dives is unaltered.

13
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7. Check for safety the following recommendations from HaldaneÕs tables for
a dive of 45 min at 85 ft (3.58 atm). Stop 2 min at 30 ft, 7 min at 20 ft, 15 min
at 10 ft. (U.S. Navy Table TÐ10 [Hammes and Zimos 1988] gives one stop of
17 min at 10 ft for this dive.)

8. Repetitive Dives
A major portion of the scuba diving tables is devoted to repetitive diving.

The problem with repetitive diving is the fact that after one Òno decompres-
sionÓ dive, the tissue pressure may be 2.15 times atmospheric pressure. An
immediate dive back to a depth greater than 37 ft (external pressure greater
than 2.15 atm) would raise the tissue pressure to above the limit that would
allow a safe ascent to the surface. A break at the surface between dives lessens
the pressure when the second dive is commenced, but it takes about twelve
hours to restore all tissue pressures to 1 atm. The tissue pressure remaining
after the Þrst dive is known as the residual nitrogen pressure (RNP). We consider
only a 20-min tissue in making our calculations, to keep things simple.

Example 4. Dive (1): 15 min at 80 ft. Dive (2) is to be to a depth of 100 ft
after a one-hour break at the surface. We calculate the safe time for a Òno
decompressionÓ second dive (20-min tissue only).
Tissue pressure p after 15 min at 80 ft (pe ≈ 3.4 atm):

p = 3.4− 2.4

(
1

2

)3/4

= 1.97.

Since this is less than 2.15, it is safe to ascend to the surface.
Tissue pressure p after one hour at the surface (pe = 1 atm):

p = 1 + .97

(
1

2

)3

= 1.12.

Descent to 100 ft (4 atm):

p = 4− 2.88

(
1

2

)t/20

.

The diver may remain until p = 2.15, that is, until

t = 20 ln(2.88/1.85)/ ln 2 = 12.77min.

Figure 6 shows the pressure as a function of time for this example.

Actual scuba tables cover the large numbers of different calculations by
classifying the residual nitrogen pressures into groups A, B, C, etc. The group

14
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Figure 6. Repetitive dive.

is found after the Þrst dive. The effect of remaining at the surface for a given
time period is to change the group; the new group determines the safe time for
the next dive. We give an example.

Example 5.

Dive 1: 100 ft for 15 min
Dive 2: 80 ft
Time at surface between dives: 1 hr

We consult Table 4. First look at the row for a dive to 100 ft. Note that the
no-stop time is 25 min. Our dive is for 15 min, so we go across the row
until we reach 15. We then move down the corresponding column and
Þnd the repetitive group label ÒEÓ.
The stay at the surface is for 60 min. We continue along the column

until we come to the two numbers that bracket 60 min:

0 : 55
1 : 57.

Wenowproceed left acrooss this row until we Þnd a new repetitive group
label ÒDÓ.
For the second dive, at depth 80 ft, we use the label D. We continue

across the row until we reach the column corresponding to 80 ft (at right).

15
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The entry contains the numbers 18 (RNT) and 22 (TR). This means that
because of the previous dive, it is as if we had already been at this depth
for 18 min, and our time remaining is 22 min. We must be back at the
surface within 22 min.

Exercises

Use (2) in the following exercises.

8. Consider the same sequence of dives as in Example 4 but include a 40-min
tissue. Does this make a difference for the second stop time?

9. Find the safe time for a second dive to 80 ft one hour after a Þrst dive to
100 ft for 10 min. Consider tissue half-times of 20 min and 40 min.

9. Changes inPressureDuringDescentand
Ascent

To this point, we have assumed that the passage from one level to another
is instantaneous. This is not possible; moreover, rapid motion is not recom-
mended. A steady ascent or descent rate of about 60 ft/min is not unreason-
able, and we will now examine the effect on tissue pressure of ascending at
such a rate.
Our basic equation

dp

dt
= k(pe − p)

(where pe is the external pressure) still holds, but pe is no longer constant. For
a descent at a constant rate of 60 ft/min, we have pe = 1 + 60t/33 atm, and the
differential equation becomes

dp

dt
= k

(
1 +

60t

33
− p
)

or
dp

dt
+ kp = k

(
1 +

60t

33

)
. (5)

This is no longer a separable equation but a Þrst-order linear equation, and it
must be solved in a different manner. Here we describe one possible method.
First we try to guess a solution. After examining the equation, we feel that

p = A + Bt, where A and B must be selected, seems a possible guess. If we
substitute this into (5), we see that we get a solution if we can choose A, B so
that

B + k(A+Bt) = k

(
1 +

60t

33

)
.
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The choiceB = 60/33, with kA+B = k, henceA = 1−60/33k gives a solution

p = 1 +
60

33

(
t− 1

k

)
.

We call this a particular integral. If we then write

u = p−
[
1 +

60

33

(
t− 1

k

)]
= p− 1− 60

33
t+

60

33k
,

where p is any solution of the equation, it follows that

du

dt
+ ku =

dp

dt
+ kp− 60

33
− k

(
1 +

60t

33

)
+

60

33
= 0,

since p is a solution of (5).
If du/dt+ ku = 0, then we can again use separation of variables to get∫

1

u

du

dt
dt =

∫
k dt

which implies that − ln |u| = kt + C, or u = Ae−kt , where A is an arbitrary
constant. In this approach, u is usually called the complementary function. Thus,
if p is any solution of (5), it can be written as

p = 1 +
60

33

(
t− 1

k

)
+ u = 1 +

60

33

(
t− 1

k

)
+Ae−kt;

that is, any solution is the sum of a particular integral and a complementary
function. The technique may be used on any Þrst-order linear equation. To
satisfy an initial condition p(0) = p0, we get

1− 60

33k
+A = p0 or A = p0 − 1 +

60

33k
,

p = 1 +
60t

33
− 60

33k
+

(
p0 − 1 +

60

33k

)
e−kt (6)

= 1 +
60t

33
− 60

33k
+

(
p0 − 1 +

60

33k

)(
1

2

)(t/T )

. (7)

A similar solution could be obtained for an ascent from a given depth.

Example 6. Find the pressure in a 20-min tissue on arrival at a depth of
100 ft (4 atm) after a descent from the surface at a rate of 60 ft/min.
The time to descend 100 ft at 60 ft/min is 10/6 = 5/3min.
The initial pressure is p0 = 1, and k = ln 2/T = .03466.
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Therefore,

p = 1 +
60

33
· 5

3
− 60

33(.03466)
+

60

33(0.3466)

(
1

2

)1/12

= 1.086.

Todoa completedive,wewouldhave to include these changesofpressure
in the complete diving schedule. Wewill not do this, although it ismerely
tedious rather than difÞcult.
WenoteÞnally that if thedescenthadbeenconsidered instantaneously,

the pressure after 5/3min at a depth of 100 ft would be 1.17 atm.

Exercise

10. Find the tissue pressure for a 20-min tissue at the end of an ascent from
100 ft to 10 ft at a speed of 60 ft/min, assuming that the pressure at the
beginning of the ascent was 4 atm. Compare it with the pressure at 10 ft
after an instantaneous ascent.

10. Conclusion
In this Module, we have discussed a simple technique for derivation of

diving tables, which is based on a model proposed by Haldane. Although
modern diving tables cannot be devised by means of such simple techniques,
most of them have been developed by reÞnements to the simple model and
methods proposed by Haldane, as tempered by experience (see, for example,
Bornmann [1970]).

11. Solutions to the Exercises
All solutions use either (4) or its inverse:

p = pe + (p0 − pe)
(

1

2

)t/T
or t = T ln

(
p0 − pe
p− pe

)
/ ln 2.

1. During the dive, pe = 3.5, t = 40min, p0 = 1.
For T = 10, p = 3.344; for T = 20, p = 2.875. It is safe to ascend to
20 ft = 1.6 atm, because 2.15 × 1.6 = 3.44. The stop at 1.6 should be long
enough that an ascent to 1.3will be safe. This requires that p be reduced to
2.15× 1.3 = 2.795.

For T = 10, this requires t = 10 ln

(
3.344− 1.6

2.795− 1.6

)
/ ln 2 ' 5.454 min

(p0 = 3.344, pe = 1.6).
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For T = 20, this requires t = 20 ln

(
2.875− 1.6

2.795− 1.6

)
/ ln 2 ' 1.870 min

(p0 = 2.875, pe = 1.6).
Thus, a stop of 5.454 min is required. After 5.454 min, the pressure in

the T = 20 tissue is 2.655, and that in the T = 10 tissue is 2.795.
The stop at 1.3 (10 ft) should be long enough that an ascent to the surface

(1 atm) is safe. This requires that p be reduced to 2.15.

For T = 10, this requires t = 10 ln

(
2.795− 1.3

2.15− 1.3

)
/ ln 2 ' 8.146min.

For T = 20, this requires t = 20 ln

(
2.655− 1.3

2.15− 1.3

)
/ ln 2 ' 13.455min.

A safe schedule is then a 5.454-min stop at 1.6 (20 ft) and a 13.455-min
stop at 10 ft. The total stopping time is 18.909min.

2. By similar means as in Exercise 1, the pressures at the end of the dive where
pe = 4, p0 = 1, t = 120 are: for T = 10, p = 4; for T = 20, p = 3.953; for
T = 40, p = 3.625.

Stop 1 at 1.9 atm: (This is safe since since 1.9×2.15 = 4.085.) Times to
reduce pressure to 1.6 × 2.15 = 3.44 are: for T = 10, 4.47 min; for T = 20,
8.296min; for T = 40, 6.547min.

A stop of 8.296 min is required. After this stop, the T = 10 tissue will
have a pressure below that of the T = 20 tissue, and this will remain true
for the rest of the dive. We need not consider the T = 10 tissue further.
After 8.296min at 1.9, T = 20 has pressure 3.44 and T = 40 has pressure

3.39.
Stop 2 at 1.6 atm: Times to reduce pressure to 2.15× 1.3 = 2.795 are: for

T = 20, 12.5 min; for T = 40, 23.4 min. From this point on we need only
consider the T = 40 tissue. After stop 2, its pressure is 2.795.
Stop 3 at 1.3 atm: Time to reduce pressure to 2.15 is 32.584 min for the

T = 40 tissue.
The total time for all stops is 64.3min.

3. The same dive as in Exercise 2. We consider the 40-min tissue only and
make three stops of equal time. The Þrst stop is at 1.9, but the depth of the
remaining stops must be calculated from the condition of equal times.
After the dive, the pressure in the T = 40 tissue is 3.625. Ascent to 1.9 is

certainly safe.
Suppose that the second and third stops are at pressures p2, p3. Then

the diver must stay at 1.9 until p = 2.15p2, must stay at p2 until p = 2.15p3,
and must stay at p3 until p = 2.15. From the inverse of (4), the equalization
times are

t1 =
40

ln 2
ln

(
3.625− 1.9

2.15p2 − 1.9

)
=

40

ln 2
ln

(
2.15p2 − p2

2.15p3 − p2

)
=

40

ln 2
ln

(
2.15p3 − p3

2.15− p3

)
.
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This gives

1.725

2.15p2 − 1.9
=

1.15

2.15
p3

p2
− 1

=
1.15

2.15

(
1

p3

)
− 1

.

The last two equations give p3/p2 = 1/p3, or p2 = p2
3. The Þrst two then give

2.4725p3
3−0.46p3−3.70875 = 0.The only real positive solution is p3 = 1.199.

Thus, p2 = p2
3 = 1.438 and t1 = 21.438. The total stop time is 3t1 = 64.314, a

very small improvement. We can verify that after the Þrst stop, the T = 20
pressure is 2.877 and the T = 10 pressure is 2.375, both below the 3.092
(= 2.15× 1.438) of the T = 40.

4. Weassume that the tissue pressure at the beginning of the ascent is p0, which
is known. The three stops will be at pressures p1, p2, p3, where p1 = p0/2.15
and the pressures at the ends of the stops will be 2.15p2, 2.15p3, 2.15. The
times at each stop will then be

t1 =
T

ln 2
ln

(
p0 − p1

2.15p2 − p1

)
=

T

ln 2
ln

 1.15

2.15
p2

p1
− 1

 ,

t2 =
T

ln 2
ln

(
2.15p2 − p2

2.15p3 − p2

)
=

T

ln 2
ln

 1.15

2.15
p3

p2
− 1

 ,

t3 =
T

ln 2
ln

(
2.15p3 − p3

2.15− p3

)
=

T

ln 2
ln

 1.15

2.15

(
1

p3

)
− 1

 .

We wish to minimize t1 + t2 + t3 by choosing p2 and p3. This is equivalent
to maximizing

F (p2, p3) = ln

(
p2

p1
−M

)
+ ln

(
p3

p2
−M

)
+ ln

(
1

p3
−M

)
,

whereM = 1/2.15 and p1 is known. Using calculus, we Þnd

∂F

∂p2
=

1(
p2

p1
−M

) 1

p1
+

1(
p3

p2
−M

) (−p3

p2
2

)
= 0,

∂F

∂p3
=

1(
p3

p2
−M

) 1

p2
+

1(
1

p3
−M

) (−1

p2
3

)
= 0.
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This gives
p2

p2 −Mp1
=

p3

p3 −Mp2
=

1

1−Mp3
,

and hence p2
2 = p1p3, p2 = p2

3, and Þnally

p3 = p
1/3
1 , p2 = p

2/3
1 .

This also gives

t1 = t2 = t3 =
T

ln 2
ln

(
1.15

2.15/p
1/3
1 − 1

)
.

(For p0 = 3.625, we have p1 = 1.686, p2 = 1.417, p3 = 1.190, t1 = 20.482min,
and the total time 3t1 = 61.447min.)

5. For a safe continuous ascent, the external pressure should be the tissue
pressure divided by 2.15. The differential equation for p(t) then becomes

dp

dt
= k(pe − p) = k

( p

2.15
− p
)

= −k 1.15

2.15
p, k = ln 2/T

dp

dt
= −.535kp.

The solution of this equation is p = p(0)e−.535kt, where p(0) is the pressure
at time t = 0. The diverÕs depth at time t is related to pe(t)(= p(t)/2.15) by

1 +
d

33
= pe(t) = p(0)e−.535kt/2.15.

For a long dive at 4 atm and T = 40, we have

d = 33× 1.86

(
1

2

).535t/40

− 33

= 33

[
1.86

(
1

2

).0134t

− 1

]
.

The time to ascend to the surface is the value of t at which d = 0, that is,

t =
1

.0134

ln 1.86

ln 2
≈ 66.81.
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6. If the partial pressure of nitrogen is 0.8p, where p is the tissue pressure,
then the maximum safe pressure for the nitrogen is 0.8 × 2.15, so that the
condition p < 2.15 is retained. Moreover, if the external gas pressure is pe,
the external nitrogen pressure is 0.8pe, and the equation for absorption of
nitrogen will be

d

dt
(.8p) = k(.8pe − .8p)

with initial nitrogen pressure .8p0. Thus, the differential equation for the
pressure is the same and the criterion for safe ascent is the same.

7. Table 5 gives the pressures at the ends of the stops for the half-times 5, 10,
20, 40, and 75 min.

Table 5.

Pressures at the ends of the stops for the dive of Exercise 7.

Safe pressure
5 10 20 40 75 at next stop

45 min at 3.58 3.57 3.46 3.04 2.40 1.88 4.08

2 min at 1.9 3.17 3.26 2.96 2.38 3.44

7 min at 1.6 2.62 2.67 2.29 2.795

15 min at 1.3 2.11 2.06 2.15

From the table, we see that a safe pressure has been reached to ascend
to the next stop in all cases. The blanks in the 75 column have not been
calculated, since they will all be less than 1.88. In the 5 column, the blanks
will be less than the corresponding entries in the 10 column, and the Þnal
entry in the 10 column will be less than that in the 20 column.

8. First dive at 3.4 atm for 15 min. Pressures will be for T = 20, 1.97; for
T = 40, p = 1.55.

After 60min at the surface, pe = 1. For T = 20, p = 1.12; for T = 40,
Descent to 4 atm. Diver may remain until tissue pressure is 2.15. For

T = 20, this requires 12.77min; for T = 40, 24.12min.
The diver must still return to the surface after 12.77min.

9. First dive 4 atm for 10 min. Pressures: for T = 20, p = 1.88; for T = 40,
p = 1.48.

After 60min at 1 atm: for T = 20, p = 1.11; for T = 40, p = 1.17.
Second dive to 3.4 atm until p = 2.15. For T = 20, 17.47min; for T = 40,

33.40min.
The diver must ascend after 17.47min.
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10. We use (7). The time for ascent is 90/60 = 3/2min, so we have

p = 1 +
60

33
· 3

2
− 60

33(ln 2/20)
+

(
3 +

60

33(ln 2/20)

)(
1

2

)3/40

= 3.92.

A stop of 1.5 min at 10 ft (1.3 atm) reduces the pressure to 3.86 atm.
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DECOMPRESSION THEORY AND THE RDP 
 
 
The Haldanean Decompression Model: 
 
Virtually all dive tables and dive computers calculate no decompression limits and 
decompression stops (when needed) based on a Haldanean decompression model. 
This is named after John Scott Haldane who developed the first such mathematical 
decompression model and based on it the first dive tables in 1906. 
 
Modern decompression models are based on the same ideas. 
 
When the diver descends to a given depth, the nitrogen pressure in his breathing air 
is higher than the nitrogen tissue pressure in his body, so more nitrogen dissolves 
into the body tissues. 
 
With enough time, the nitrogen pressure equalizes, and the body cannot take on any 
more nitrogen. This is called saturation. 
 
When the diver ascends the nitrogen tissue pressure in the body becomes higher 
than the nitrogen pressure in his breathing air, causing the tissues to release 
nitrogen to equalize the nitrogen pressure again. 
 
The difference between the dissolved nitrogen tissue pressure and the nitrogen 
pressure in the breathing air is called the pressure gradient. Whether the diver is 
descending or ascending. 
 
When the diver ascends the tissues can tolerate some gradient of high tissue 
pressure without causing decompression sickness. 
 
If the pressure gradient exceeds acceptable limits (supersaturation), bubbles may 
form and cause decompression sickness. 
 
Decompression sickness can be avoided by keeping the gradient within acceptable 
limits. 
 
This means the diver must stay within the limits dictated by his table or computer and 
maintain a slow ascent rate as indicated by his tables or computer. 
 
Haldane discovered that different parts of the body absorb and release dissolved 
nitrogen at different rates – slow and fast compartments. 
 
To account for these differences he constructed a model consisting of five theoretical 
tissues.  
 
These theoretical tissues do not directly correspond to any particular body 
tissue so they are called compartments or tissue compartments. The RDP has 14 
compartments. 
 



 

Each compartment has a halftime for the rate at which it absorbs and releases 
nitrogen. 
 
Halftime is the time, in minutes, for a compartment to go halfway from its beginning 
tissue pressure to complete saturation. 
 
After one halftime the tissue would be 50% saturated 
 
After two halftimes the tissue would be 75% saturated 
 
After three halftimes the tissue would be 87.5% saturated 
 
After four halftimes the tissue would be 93.75% saturated 
 
After five halftimes the tissue would be 96.875% saturated 
 
After six halftimes the tissue would be 98.4375% saturated 
 
It would never reach 100% using the halftime concept, so after six halftimes the 
tissue compartment is considered full or empty.  
 
Haldane’s original halftimes ranged from 5 to 75 minutes. 
 
The RDP’s halftimes range from 5 to 480 minutes, split over 14 compartments. 
 
They are 5, 10, 20, 30, 40, 60, 80, 100,120, 200, 240, 300, 360 and 480 minutes. 
 
Sometimes tissue pressure is expressed in metres of seawater (gauge) - msw. 
 
Example: A 5 minute halftime compartment will have a tissue pressure of 9msw after 
5 minutes in 18 metres of seawater. 
 
Example: A 20 minute halftime compartment will have a tissue pressure of 18msw 
after 40 minutes in 24m of seawater. 
 
Example: A 60 minute halftime compartment will take 360 minutes (6 hours) to 
saturate to a given depth. (60 x 6 halftimes). 
 
Besides different halftimes each compartment has a different M-value. 
 
The M-value is the maximum tissue pressure allowed in the compartment when 
surfacing to prevent exceeding the acceptable gradient. 
 
There are actually different M-values for each compartment at different depths, these 
are used to calculate decompression schedules. In no decompression diving we only 
use the one that applies to the surface 
 
The slower the compartment, the lower the M-value. 
 
The faster the compartment, the higher the M-value. 



 

 
The M-value is determined by test dives showing what does and what does not 
result in Doppler detectable bubbles. 
 
Remember that the M-values are calculated for surfacing at sea level which is why 
you need to apply special procedures when diving at altitudes above 300m. 
 
When any compartment reaches its M-value the dive ends or it becomes a 
decompression dive. 
 
On deeper dives faster compartments will reach their M-values first, hence deeper 
dives have short no decompression limits. 
 
On shallower dives, the depth is not enough for the faster compartments to reach 
their M-values. Therefore a slower compartment controls the dive and the model 
allows more no decompression time. 
 
The compartment that reaches its M-value first is called the controlling compartment. 
 
These models are mathematical extrapolations; there is no direct relationship 
between the decompression model and the human body. This is why divers learn 
that there is always some risk of DCS even within table/computer limits and are 
asked to dive conservatively within the limits. 
 
US Navy tables: 
 
The first dive tables to be widely used and adapted to recreational diving where the 
U.S.Navy tables designed in the 1950’s. 
 
Six compartments were used with a slowest halftime of 120 minutes. 
 
While at the surface all compartments would lose nitrogen at a different rate 
depending on their halftime. Any compartment could control a repetitive dive, 
depending on the first dive, the surface interval and the second dive. 
 
To solve this problem the U.S.Navy designed its surface interval credit on the worst 
case scenario, the slowest compartment (120 mins). This is why it takes 12 hours 
(720 mins. 6 x 120) to be “clean” when using their tables. 
 
These tables were tested with US Navy divers, subjects were all male in their 20’s 
and 30’s and reasonably fit. The test criteria were bends/no bends. 
 
 
The Recreational Dive Planner (RDP): 
 
In the mid-1980’s, Dr. Raymond Rogers recognized that the USN tables were not 
ideal for recreational diving. 
 



 

The 120 minute half time used for surface interval credit, while appropriate for 
decompression diving, seemed excessively conservative for recreational divers 
making only no-decompression dives. 
 
The test group the USN used didn’t reflect recreational divers who include females 
and people of all ages. 
 
New technology in the shape of Doppler ultrasound flowmeters had come into being 
; these showed that silent bubbles often formed at USN table limits, suggesting lower 
M-values would be more appropriate for recreational divers. 
 
With the help of DSAT (Diving Science & Technology), Rogers developed the RDP. 
It was tested in 1987/88 at the Institute of Applied Physiology & Medicine with Dr. 
Michael Powell as the principal investigator. 
 
A 60 minute gas washout tissue was used. Multi-level diving was tested with a large 
range of test subjects - recreational divers. Limited to Doppler detectable bubbles 
instead of bends/no bends. Tested to the limits for 4 dives per day for 6 days. 
Though more conservative diving practices are recommended. 
 
Dr. Rogers found that the old 120 minute gas washout tissue was too conservative 
for recreational diving and adopted a 60 minute gas washout tissue. 
This means you get twice as much credit for surface intervals and are clean in 6 
hours. The WXYZ rules make sure the slower compartments stay within limits. 
Dr. Rogers also lowered the M-values to match recent Doppler data. These are 
sometimes called Spencer limits after the physician who first proposed them. 
 
They produced different versions of the RDP.  The table version, (because that’s 
what divers were familiar with) and the multilevel electronic planner eRDPML version 
(originally the Wheel), to enable you to calculate multi level profiles. DSAT have also 
produced four tables for enriched air diving.  Tables for using EANx32 and EANx36 
an equivalent air depth table and an oxygen exposure table. 
The pressure groups from all versions of the RDP are interchangeable. 
 
The RDP works on 14 compartments, instead of the 6 used in making the U.S. Navy 
tables. 
 
You cannot use PADI RDP pressure groups with other agencies’ tables. 
 
Dive Computers: 
 
Dive computers offer maximum bottom time by essentially writing a custom dive 
table for the dive undertaken – this eliminates unnecessary rounding and therefore 
gives more dive time. 
There are essentially 5 different groups of models or algorithms used in the many 
computers available to the recreational diver. This will normally be described in the 
instruction book for the particular computer. They are being developed all the time 
with diver safety in mind as more research is done. 
 

1. Spencer limits, EE washout 



 

• Same M-values as RDP 
• All compartments release nitrogen at the surface at their underwater 

halftime rates. 
• Can permit dives that are beyond what is safe, i.e. short deep repetitive 

dives with short surface intervals. 
 

2. Spencer limits, 60 minute washout 
• Based on data for the RDP 
• Dives similar to what the RDP allows. 

 
3. Buhlmann limits, EE washout 

• Further reduced M-values 
• All compartments release Nitrogen at the surface at their underwater 

halftime rates. 
• Because of the reduced M-values similar to what the RDP data 

supports despite the EE washout. 
 

4. RGBM  (Reduced Gradient Bubble Model) and others. 
• Research is providing lots of new information on the behavior of divers 

and micro bubble build up. 
• Most dive computer models take this into account 
• If a diver exceeds a safe ascent rate on one dive he will be penalized 

on repetitive dives, the same with yoyo profiles. 
• Some take the water temperature into account and adjust accordingly. 
• Nearly all have altitude settings and settings for conservatism. 
• Some are integrated with air supply and take the divers breathing rate 

into account. 
• Nearly all models now support Nitrox diving. 
• Some support gas switch extended range and technical diving. 
• Some support trimix and CCR diving. 

 
 
PADI Recommendation for Diving with Computers: 
 

• Divers should not attempt to share a dive computer. 
• Each diver must use the same computer through a series of dives. 
• Each diver must have his own computer. 
• Computers have the same theoretical basis as tables so one is neither better 

nor safer than the other.  
• All standard guidelines apply, such as deepest dives first. 
• Follow all manufacturers’ recommendations. 
• End the dive based on the most conservative computer of a buddy team 

(you’re supposed to stick together anyway)! 
• If a computer fails whilst diving, ascend slowly to 5m and make a long safety 

stop as long as your air supply permits. You should then remain out of the 
water for 12 – 24 hours, so you can start clear again with another table or 
computer. 

• Make sure it is capable of altitude diving if diving at altitude. 



 

• Do not lend you computer to another diver if either of you have been diving. 
• Do not use a computer from another diver if either of you have been diving. 
• Do not try to change the battery between dives or underwater. 
• If it caters for mixed gas make sure it is set to the gas you are using. 
• Do not use the computer if it is displaying any error or not functioning correctly 
• When you turn your dive computer on, do not turn your brain off, after all the 

latter is a better computer! 
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