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A mathematical model is proposed to examine the interaction between blood perfusion and 
gas diffusion in the uptake of inert gases in tissue. The standard Haldane perfusion model 
is contrasted with the Hills radial bulk diffusion model in a variety of homogeneous tissue 
types used in decompression theory. I t  is the intention of the present analysis to fix ideas 
on the role of diffusion, perfusion and axial concentration and quantitative studies are 
given and seem to show that ]=Ialdane's perfusion theory is at best a poor approximation 
even at asymptotic times. I t  is shown that a strong interaction exists between diffusion 
and perfusion in muscle tissue and neither approach adequately describes the actual uptake 
half-time of an inert gas. 

1. Introduction. For  m a n y  years  there  has been some doubt  as to whether  
diffusion or perfusion is the  dominan t  mechan i sm for up t ake  of iner t  gas in 
tissue. 

A n u m b e r  of  different ma thema t i ca l  models  have  been proposed,  beginning 

wi th  Zuntz  (1897), yon  Schrot ter  (1906) and  Ha ldane  (1908). All these are 

similar and  were based  upon perfusion being the  dominan t  mechanism.  Ha l -  

dane  was the  first to introduce the  concept  of  a tissue hal f -sa tura t ion- t ime,  

which is defined to be t h a t  t ime for a tissue to receive one haf t  the  ne t t  u p t a k e  
of gas af ter  a sudden change in ar ter ia l  gas pressure.  I n  this w a y  various 
tissues become character ized b y  their  half-t imes.  Fo r  the  res t  of  this pape r  
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therefore, the early perfusion approach will be referred to as the Haldane 
model. 

The most comprehensive review of early papers is that  of Kety  (1951), and 
since then a number of papers have appeared. 

Perhaps the most important recent review is that  of Hills (1970b) who in a 
remarkable paper shows that  much of the present experimental data can be 
equally well correlated by a diffusion or perfusion theory approach. Perl 
(1962, 1963) also shows an interaction between diffusion and perfusion at large 
scale distances of 1 ram, for average rates of blood flow and intertissue diffusion. 
Thus, it seems that  perfusion and diffusion mechanics are inextricably inter- 
twined. The purpose of the paper will be to highlight this interaction and to 
define the conditions from a fundamental viewpoint. 

The main features of all these models of gas transport through tissue appear 
to be a combination of some of the following dominant aspects: 

(i) perfusion; 
(ii) bulk diffusion; 

(iii) fully transient; 
(iv) axial as well as radial concentration dependence. 

To a lesser extent additional features are present, and include a capillary per- 
meability term (often used in place of true bulk diffusion) and anisotropy 
(diffusion velocity different in radial and axial directions). 

Papers concerned with the uptake of a substance other than an inert gas 
introduce a number of other assumptions and boundary conditions, which will 
not be considered here. 

Of the more recent papers concerned with gas transport through tissue, a 
number have appeared which all a t tempt  to include some of the features (i) to 
(iv) above. These include Schmidt (1952, 1953), Thews (1953), Blum (1960), 
Perl et al. (1965), Johnson and Wilson (1966), Gonzalez-Fernandez and Atta  
(1968), Reneau et al. (1969), Bassingthwaite et aI. (1970), Hills (1970a) and 
Levitt  (1971). The most important paper prior to 1951 is probably that  of 
Morales and Smith (1948), being the final paper in a set of six (including Smith 
and Morales, 1944a, 1944b) covering various models and approaches (1944-1948). 

Schmidt and some of the latter authors at tempt  to treat  (i), (iii) and (iv) but  
instead of (ii) use a capillary membrane property which is a first order approxi- 
mation to bulk diffusion in the case of an inert gas. Table I gives a brief sum- 
mary  of recent approaches, most of which include an approximation to the 
axial dependent term (iv). Some are concerned with substances other than 
inert gases, but  are included for interest. 

However, in nearly all these earlier papers, very little at tempt has been made 
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TABLE I 

Summary of Various Mathematical Models of Transport in Tissue 

507 

(i) (ii) (iii) (iv) 
Per fusion Bulk Fully Axial 

diffusion transient dependence 

Morales ~md Smith 
(1948) Yes 1st Order Yes 1st Order 

Sehmidt (1952, 1953) Yes 1st Order Yes Yes 
Sangren and Sheppard 

(1953) Yes 1st Order Yes Yes 
Thews (1953) No Yes No Yes 
Blum (1960) No Yes No Yes 
Bellman et al. (1960) Yes Yes Yes Yes 
Johnson and Wilson 

(1966) Yes 1st Order Yes Yes 
Reneau et al. (1969) Yes Yes Yes Yes 
Bassingthwaite et al. 

(1970) Yes Yes Yes Yes 
Hills (1970a) 1st Order Yes No Yes 
Levitt (1971) Yes Yes Yes Yes 
Haldane (1908) Yes No Yes No 
Teorell (1937) No Yes Yes No 
Roughton (1952) No Yes Yes No 
Morales and Smith 

(1944--1948) Yes 1st Order Yes No 
Harris and Burn 

(1949) No Yes Yes No 
Hills (1969) No Yes Yes No 
Hills (1967) No Yes Asympt. No 
Hennessy (1971b) Yes Yes Yes No 
Perl et al. (1962, 1963, 

1965) Yes Yes Yes No 

Note: Not all models employ the same boundary conditions. 

to extract  and compare the crucial parameters  from the mathemat ica l  model, 

viz: vasculari ty index, perfusion t ime scale and the diffusion time scale. 

A very  common approximat ion is to the bulk diffusion term, where gradients 

are simply replaced by  their first order approximation,  t ha t  is, the linear 

difference between two nearby concentrations divided by  the distance between 
them. As Hills (1970a) has shown it is usually a poor approximat ion at  small 
to medium times. 

In  some cases, the model is assumed non-transient.  Whilst  this approach is 
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reasonable for experiments which may be slowly varying, and/or of short 
duration, considerable errors will occur over saturation times. 

At this stage it is perhaps pertinent to offer some justification for the emphasis 
on axial dependence, as shown in the first part of Table I. First of all there is 
no intuitive reason for omitting axial dependence in preference to bulk diffusion 
or perfusion. To see this, consider a long straight capillary surrounded by a 
tissue annulus. I f  the blood flow along the capillary is very fast, then one 
would expect that  diffusion into the tissue would be the limiting factor, because 
the wall of the capillary would be effectively at uniform arterial inert gas 
pressure. In  this case, axial dependence is negligible. 

If, on the other hand, blood flow is very slow, then linear perfusion becomes 
the limiting mechanism, because one can now imagine that  the tissue will absorb 
all the gas in the capillary leaving a zero concentration at the exit. Here once 
again, axial dependence falls away when considering the overall uptake of the 
tissue (which would be simply a linear growth rate). Clearly then between 
these two extremes, there may be a situation where radial and axial diffusion 
and perfusion interact and the length of the capillary then becomes important. 

Gonzalez-Fernandez and Atta  (1968) have shown the dependence of capillary 
length on oxygen extraction in the case of axial diffusion. With this model in 
mind, it can be appreciated that  depending on the flow velocity (which can be 
made very low by the pre-capillary sphincters), an entire spectrum of behavior 
can be expected ranging from a linear uptake to straight annular diffusion. 
The interesting feature of this model is a complex feed-back effect as the gas 
diffuses into the annulus near the arterial end. As saturation progresses, the 
capillary gas tension will be depleted less and more gas will become available 
to saturate zones further downstream. 

On heuristic grounds alone it seems reasonable to expect that  the typical 
length of a capillary is attributable to some dependence on its gas transport 
properties. I f  the capillary length does not appear directly in the model, then 
it implies that  the capillary is simply being treated as a point  source of gas, in 
which case, spherical diffusion might just as well be invoked instead of cylin- 
drical diffusion. 

On the other hand, it may of course be possible that  the capillary is indeed 
acting as a point source, by virtue of its length and distribution in the tissue. 

In  all the approximation shown in Table I there is hardly any rigorous justi- 
fication for ignoring a term, based on an order of magnitude analysis. Of 
course in some cases no estimate of a physical quantity may be possible. In  
these situations, analysis of the order of magnitude of a term can often high- 
light an area of future experiment, and can also curtail the domain of validity 
of an existing model. 
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Thus the aim will be to tbcus attention on tissue structures, where all four of 
the above features assume importance. In doing so, the role played by  per- 
fusion and diffusion in tissue is seen in a clearer light than perhaps hitherto. 
The model to be described has been discussed by Reneau et al. (1969), Bassingth- 
waite et al. (1970) and Levitt  (1971), although some boundary conditions and 
other features are different. Reneau's comprehensive analysis contains an 
oxygen consumption term and uses a modified alternating direction implicit 
numerical solution. His model also accounts for diffusion in the capillary 
(which can be shown to be negligible for an inert gas). The price paid for this 
sophistication was 10 hr of computing time to describe a physical process lasting 
a few seconds. Bassingthwaite et al. dispense with capillary radial diffusion, 
and use an explicit numerical method of solution. Levitt 's model includes a 
special boundary condition, the effect of which renders the model unfortunately 
similar to that  of using a Haldane approximation of assuming that  the venous 
flow leaves in equilibrium with the tissue (a situation which is only approached 
at asymptotic times). In none of these models is there an order of magnitude 
analysis of the various terms and essential parameters. In particular the 
main difference between these models and the one to be studied is in the ratio 
of the diffusion time scale to perfusion time scale which here is assumed to be 
of the order one, where an interaction may be expected between perfusion and 
diffusion. 

2. The Mathematical Model. Nearly all the models mentioned in Section 1 
propose a structure based upon a single straight capillary of given characteristic 
length (l), radius (a), surrounded by a tissue annulus, of some realistic outer 
radius (b). This approach dates back to Krogh (1919a, 1919b). 

Studies of a particular tissue show that whilst a, b and 1 all vary, they do so 
between definite limits. Therefore, there must exist a set of dimensions for a, 
b and I which characterize that  particular tissue under a given metabolic state. 
Changing the latter may cause a and b to vary by opening up non-active 
capillaries, for example. 

On the other hand it is noticed that capillaries are situated in an apparently 
random manner, where the end of one capillary may be placed near the begin- 
ning of another. Schmidt (1952) uses this argument to dispense with the axial 
extra-cellular concentration gradient. 

Thus the question arises how does one justify allocating a typical tissue 
radius or length of capillary? I t  seems that  the answer must be simply that  
there is at present no better tractable approach. In any case each capillary 
has to serve a definite volume of tissue in its immediate neighborhood; we 
merely specify it to be a circular cylindrical annulus on grounds of mathematical 
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convenience, and its apparent closeness to physical reality in specific tissues 
such as muscle. Contrast this approach with that  of Hennessy (1971b) who 
supposed the extra-vascular space to be a solid cylindrical space, with no direct 
reference to the capillary structure. However, in this paper we make an at tempt 
to relate the capillary dimensions with actual observation in tissue (Krogh, 
1919a). 

Moreover, as Gonzalez-Fernandez and Atta  (1972) have shown, negligible 
error is made by choosing a circular cylindrical annulus in preference to a 
hexagon of equal area cross-section. Larger errors can occur if square or tri- 
angular tissue structures are present. In  these cases, the cylinder must be con- 
sidered a first approximation. 

I t  is now necessary to describe the extra capillary space from the point of view 
of a diffusion medium. I f  this space is purely interstitial then diffusion will be 
very rapid (about 1-see saturation time) as Roughton (1952) has shown. I f  of 
course the tissue has a low vaseularity index a (= a/b), then the saturation time 
rises considerably, but still well away from the very large times known to exist. 
On the other hand the tissue is actually a heterogeneous diffusion medium since 
the diffusion coefficient is believed to be the 104 times smaller in cytoplasm 
(Hills, 1967). Because of this dominance for cellular diffusion, it seems reason- 
able to suppose that  the interstitial space is effectively fully stirred. 

However, we are then forced to give this space a precise volume in the tissue 
annulus, which will complicate the model considerably. To avoid this, we 
assume that  the annular tissue cylinder is an entirely cellular space, as envisaged 
by Hills (1966). Any actual interstitial diffusion which may be present may be 
included in a heuristic sense by adjusting (reducing) the vascularity ratio a or 
the capillary length. I f  on the other hand the cellular content of the annulus is 
sparse, then an entirely new model must be reworked. In other words, we are 
assuming effectively that  the inert gas capacity of the interstitial space is much 
less than the cellular content of the tissue annulus, a fact born out by observa- 
tion in many tissues, for example skeletal muscle. 

The outer boundary and sides of the annular cylinder are supposed imper- 
meable by symmetry.  I t  is not difficult to show that  the effect of axial 
diffusion down the capillary (Taylor, 1953) is quite negligible compared with 
perfusion (Blum, 1960). Also, radial diffusion may be supposed "instan- 
taneous" compared to the other terms. Thus the blood is assumed to be a fully 
stirred fluid in the radial direction as it travels through the capillary. There is 
a continual loss of gas en route down the capillary and thus the concentration is 
axially dependent. Figure 1 describes the model with its main parameters. 

We suppose that  blood (taken to be a Newtonian fluid, for purposes of defining 
a volume flux) flows uniformly through the capillary with velocity V. I t  
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carries an inert gas, whose arterial tension is fixed at Pa (atmospheres), derived 
from the exposure to an hyperbaric environment. Initially the region is at a 
tension Po. Let Sb and S~ be the gas solubility in blood and cells (g gas/ml blood 
or cells/atmosphere at 37~ and Sp = Sc/Sb. 

v m -  ~ _ - - ~ - ~ ~ ~ E E )  . . . . .  

Po (artericll ~ Pv (venous) 

S~ 
Porfifion coefficienf: Sp= Sb" 

( I -a 2) S O 
Gas capacify coefficienf:/z a 2 

a 
Vascu]arify: a = -'b'-, 

Di f fusionf imescale . X = b2/D~ 
Per fusion ?ime scale I /V  

F igu re  ] .  The  proposed mode l  o f  t rans ien t  i ne r t  
gas t r anspor t  in cellular t issue, which  includes 
perfusion,  diffusion and  axial dependency .  The 

main  pa ramete r s  of  the  model  are included 

We denote the gas tension in the blood by pb(z, t) and in the cellular tissue 
pc(r, z, t). Notice that  Pb only depends on z, because of rapid stirring in the r 
direction. 

Applying a mass balance to a disc of fluid in the capillary and taking the 
limit, we obtain 

_ v w  Dcs, 
~--i = - ~  + a \ ~r],.._o (1) 

where D c is the diffusion coefficient of inert gas in cellular tissue (cm 2 sec-1). 
Also the diffusion equation holds in the cellular space 

subject to 

@ c  Dc ~ ( ~Pc~ O2Pc 
s---i = r ~r r ~r /  + Dc '~z2 '  (2) 

•PC ~--~- = O, r = b, 0 <~ z <<. l, t >1 O, 

~c 
= 0 ,  z = O, 1, a <. r <<. b, t >>. O, 

~z 
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and 

P b  = P c ,  r = a ,  0 ~ z ~ l, 

P~ = P c  = P c ,  a ~< r ~< b, 0 ~< z ~< l, 

Pb = P a ,  z = O, t > O. 

t = O ,  (3) 

The mass uptake of inert gas is given by 

dM 
d t  = era2 V S b [ p a  - p b ( l '  t)]. (~) 

The average tissue gas tension is perhaps a more convenient variable than M ,  

and is given by 

p = M l [ r r a 2 l S b  + ~r(b 2 - a2)ISc] ,  (5) 

and thus 

dp = V/ l  [p~ - pb(l, t)]. (6) 
dt [ 

L 1 + 72 

Notice that  if V becomes very large, then pb(1, t)  --~ p ~ ,  which reduces to straight 
diffusion into the cellular annulus, and in the limit, using (1), we have 

<,,-, p_. . 
= a (  dt 1 + a ~  Sp 

(7) 

This is essentially Hills (1966) equation for pure radial diffusion into an annulus 
and will only be valid for V >> 1. 

Transform to dimensionless variables: 

b 2 
r = br ' ,  z = Iz ' ,  t = - - ~  t ' ,  

z~ c 

pb - p c  = p~,  pc  - p c  = p~,  ( s )  
P a  - -  PC P a  - -  P c  

P - Pc = p,. 
P ,  - Pc 

Substitute into (1), (2) and (6) to obtain, after discarding primes, 

where 

~t ~ + O < z ~ <  1, t > o ,  (9)  
a \ ~ r l ~ =  a 

b 2 / D c  diffusion time scale in cells 
= l / V  = perfusion time scale for capillary' 
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a parameter  used by  Perl (1963) to discuss the interaction between perfusion 
and diffusion at  the macroscopic level, and 

where f3 = b2/l 2. 

where 

~---t = r ~r _r ~r ] + fi-~z 2' 

0 < a < r  ~< 1, 0 ~< z ~< 1, 

Finally, we have 

= [1 - p (1, t)],  
dt 1 + ~  

t > O ,  

( l o )  

(11)  

•PC = 0,  r = 1, 0 ~ z ~< l ,  t >1 0,  
~r 

Pb = P c ,  r = a, 0 ~ z ~< 1, 

Pb = P c  = 0, a ~< r ~< l, 0 < z ~ 1, 

Pb = 1, z = 0, r = a, t > 0. 

(13) 
t = 0 ,  

(1 - a2)Sp gas capacity of cells 
= a 2 gas capacity of blood 

We have used b rather  than  a to reduce r and t to dimensionless variables. 
This is because it is conceptually more appropriate to consider the diffusion 
t ime scale as b2/Dc rather than  a2/Dc. The latter term is simply the diffusion 
t ime scale across the radius of a capillary which of course does not  consist of 
cellular material. The quant i ty  a2[Dc must  rather be regarded as a constant  
physical parameter  of the tissue structure (because it is known tha t  a varies 
only slightly in a given tissue under different conditions of stress). On the 
other hand b2/Dc is the diffusion time scale of the tissue and is a measure of the 
t ime for diffusion processes to occur in the extra-vascular space normal to the 
capillary. 

I f  V is large, than  A >> 1 and (11) will become in the limit the dimensionless 
equivalent of (7), 

d p  
. (12) 

dt a(1 + ~) \ ~r ]r=a 

Consider the parameter  fl = b2/l 2. Typical values of b are I5-30 ~m, whereas 
1 is normally 0.4 to 1 mm (Krogh, 1936). 

Thus fi < 0.005, and so the last term on the right-hand-side of (10) may  be 
ignored, over a wide range of vascularities, providing always tha t  the tissue 
remains a homogeneous and purely cellular. This approximation has the same 
effect as if the longitudinal diffusion coefficient is zero. 

The boundary  conditions become 
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Notice that  we must relax the condition 

0po  
Oz" = 0 on z = 0,1, a ~< r ~< 1, t /> 0, 

since otherwise the equations (9), (10) become overdetermined. The reason for 
this is that  since the z dependence has been removed from (10), it is no longer 
possible to specify a zero gradient at z = 0, 1. On the other hand the problem 
is still z dependent by  virtue of (9) and (13). T h u s  (Opc/~z)~=o, 1 will in general 
be non-zero, thereby implying a loss of gas from each end. However, this loss 
is quite negligible, as can be seen by inspecting the dimensionless mass flux 
from one face in the worst case: 

l- ~ Max ~ f~, 
a<.r<.l \ ~Z/z=o, 1 

which has been supposed << 1. Here we are assuming that  the dimensionless 
quanti ty ~io[Oz ~ 1 for all time. The same assumption applies to O~p[Oz 2, to 
enable the last term on the right-hand-side of (10) to be discarded. Clearly 
these assumptions are not true at small times following the step change in 
arterial tension and it is a separate s tudy to examine the effects of these terms 
at small times. However, if the terms were included, an analytic approach 
becomes unfeasible and a finite difference formula would be required which 
would also introduce its own errors at  small times. Thus failing an analytic 
solution, it seems difficult to establish accurately the effect of these assumptions. 
I t  is thus supposed that any sharp discontinuities are soon smoothed out as 
time proceeds, and that  these dimensionless terms remain of order one. 

The Laplace Transform is applied to the set of equations (9), (10), (11) and the 
boundary conditions (13). Solution is straightforward with the results set out 
in the following form (s is the Laplace Transform parameter): 

~(z,  s) = ~exp  - ~  1 a v I s g ( a ,  ' 

- "s) g(r,  s ) ,  (15)  o(r, z, 8) = 

and 
A 1 - sfi~(1, s) 

= 1 + t ,  ' 

where the functions f and g are defined as 

f ( r ,  s) = I i ( r ~ / s ) g l ( v ' s )  - I i ( v ' s ) K l ( r v / s ) ,  

g(r, s) = I o ( r V ' s ) g l ( v / s )  + I~(%/s)Ko(rV's) .  

(16) 

(17) 
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K is the modified Bessel function of the second kind. We are of course pri- 
marily interested in evaluating the average inert gas pressure of the tissue 
region given by (16). Unfortunately inversion of this function analytically is 
not possible, because the singularities are isolated essential and the residue can- 
not be obtained in terms of recognizable functions. This can be seen by 
attempting to form the Laurent expansion at the singularity points given by 
g(a, s) = 0. 

Thus a numerical inversion technique must be employed to invert (16). 

3. The Per  f u s i o n  Approach .  At this stage it is of interest to show how the 
Haldane perfusion dominated approach can be deduced from the present model. 
The basic step is to assume that  diffusion is unimportant in the extra-vascular 
space (assuming an "aqueous" D ~ 10 -5 cm2/sec). This is another way of 
stating that  the diffusion time scale is very much less than the perfusion time 
scale, or 2 << 1. This is effectively assuming the entire extra-vascular space to 
be fully stirred, which only approaches this condition at large times. This 
implies that  the blood leaves the tissue in equilibrium with the mean tissue inert 
gas pressure. This latter form was first used by Zuntz (1897) and has since 
formed the basis of all perfusion theories. 

Using this, equation (11) can be considerably simplified to read 

dp  
- -  = ~ (1 - p )  ( i s )  
dt 1 + ~  

which on integration, using the boundary conditions, we obtain 

p = 1 - -  e - ~ ' t l l + u  

which may be re-interpreted in terms of dimensional variables to read 

P = Pa - (Pa - Pc) e-k~ (19) 
where 

V P 
1 ( 1 + ~ )  a 2 + ( 1 _ ~ 2 ) S ~  

where P is the blood perfusion, i.e. the volume of blood entering the tissue per 
unit volume of tissue per minute. Thus 

~ra 2 V ~2 V 
P = ~ = 1 (20) 

In the case where S~ ~ 1, k reduces to P. Equation (19) is the well-known 
Haldane equation which gives a tissue half-time T• 

TH = [a2 + (1 -- a2)Sv] log 2 p minutes. (2 l) 
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The literature normally quotes T H -= (log 2 ) / P  where S v = 1 has been as- 
sumed. In any case even for lipids, where S v z 5, little error is made if a is 
small. Only in very vascular tissue is there an appreciable difference. Thus 
the Haldane approach yields two important parameters, the tissue half-time 
TH and the blood perfusion P.  I f  the present model is to be contrasted with the 
perfusion approach, it should relate these two parameters and compare it to the 
relationship of (21). 

I t  is worthwhile examining in closer detail the meaning of the approximation 
that  the blood leaves the tissue in equilibrium with the average pressure. 
First of all, as has been noted, this is only likely to be approximately true at 
large times. The rate of change of the average tissue pressure is given by  (11). 
Compare this with the rate given by  (18). I t  is clear that  since p > pb(1, t) for 
all t, then the actual rate of increase of the average pressure will always be less 
than the Haldane rate, becoming closer as the time grows large. This in turn 
means that  the t taldane half-time is in fact an over-estimate of the actual tissue 
half-time, other things being equal (such as perfusion vascularity, diffusion 
time scale, etc.). This fact can be clearly seen in the numerical solutions. 

4. The  Di f fus ion  Approach .  In contrast to the perfusion theory above, the 
diffusion approach is based on the assumption that  the diffusion time scale is a 
non-negligible entity in the extra-vascular space. That is, the diffusion co- 
efficient is very much smaller in the cellular space. This of course is an incom- 
plete assumption because the perfusion time scale may also be non-negligible. 
One must state that  2 >> 1. Effectively one is assuming that  the blood velocity 
is so fast that  the capillary wall is instantly exposed to the full arterial input 
gas pressure. Proceeding with this assumption, one easily solves the radial 
diffusion equation into an annular cylinder (Hills, 1966). 

This solution is also present in our model, and can be got by simply letting 
2 --> ~ in (14), (15) and (16). The result for h --> oo is 

= [1 _2 s .  + 
Vs e(s, ~)J/ 

which can be inverted by standard methods, and after some labour, yields 

{ A 1 + iz 1 4 e-Z~t [ J~(afln) 1 (22) 
p(t)  = 1 +----~ ~ 1 - a ~ = fl"-'~ [ J~(fln) 

where fl~ are the roots of 

Jo(afl) Yl( f l )  - Yo(afl)Jl(fl) = O. (23) 

Notice that  according to our general definition, the average pressure is that  of 
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the whole space, both intra and extra-vascular, whereas Hills definition for the 
total uptake considers only the extra-vascular space. In other words, he 
ignores the quantity of gas present in the capillary. Naturally in tissue of small 
vascularity, this omission is negligible. Thus as ~--> oo, p approaches the 
standard result for the average pressure in the annulus. [This is the term in 
brackets in (22).] This latter term has been used successfully by Hills (1966) 
as a model of gas uptake in tissue in correlating decompression formats. The 
value for/~ in this model was about 25 and thus a small error of 0.04 is made in 
the average pressure term. 

5. The Perfusion-Diffusion Interaction. Thus it is seen that the present model 
actually contains as subcases the Haldane perfusion model and the Hills 
annular diffusion model. In other words, by solving (16), using realistic 
values of the vascularity a, the diffusion time scale a2/Dc and the blood per- 
fusion P, the complete interaction may be observed and discussed in the light 
of the two extreme forms of the model, viz: diffusion versus blood perfusion. 

I t  should be noted that the model proposed by Hennessy (1971b) also at- 
tempted to highlight this interaction. In that  paper though, the entire extra- 
cellular region was assumed to be fully stirred, an assumption which has been 
avoided here by  assuming (i) purely cellular extra-vascular space, and (ii) an 
axially dependent gas distribution. In addition the present model is more 
realistic, taking into account radial diffusion from a capillary (as well as axial 
dependence). 

Suppose that  the Haldane and Hills curves of half-time are plotted against 
perfusion on log-log paper. Then by  (21), the Haldane curve should be a 
constant line of slope - 4 5  ~ for S T ~ 1. On the other hand, the Hills half- 
time is independent of the blood perfusion and the curves will thus be horizontal 
lines, where the ordinate intercept depends of course on the vascularity a. 
Clearly there will be zones where the perfusion P is very low, in which case the 
Haldane half-time >> Hills half-time, and vice versa for large P. 

The numerical solution of (16) may be expected to take up a curve which 
moves smoothly from the Haldane to the Hills curve as P is increased. The 
interesting issue is over which range of P is the interaction most predominant. 
In Section 8, this question will be fully answered, and the main results confirm 
in a positive manner that  neither diffusion nor perfusion may be singled out as 
the dominant mode of uptake. 

6. Large Time Solution. I t  is of interest to at tempt to obtain the large time 
solution of (16) in the hope that a dominant asymptotic exponential component 
may be extracted. However, a lengthy analysis and considerable manipulation 
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of the function ](r,  s), g(r, s) for small s proved disappointing. The best 
that  could be done was to show that  the average pressure has an exponential 
behavior at  large times, where the time constant k was the same as in the Hal= 
dane equation (19). However, the coefficient in front of the exponential could 
not be evaluated with any certainty (we expect it to be at least greater than the 
Haldane coefficient of unity). The details are omitted here owing to the incon- 
clusive results. In any case the numerical inversion takes care of this difficulty 
with apparent ease. 

7. Small Time Solution. The next step would be to inspect (16) for large s, i.e. 
small time. Once again there is considerable labor for the results obtained. 
The asymptotic expansions for I0.1 and Ko. 1 are taken from Abramovitz and 
Stegun (1965) and a first order approximation is carried out. The result is 

2 1 - e -G t~a2 exp - + ah ] J J  
~ s : ( 1  + 

This function can be inverted analytically without difficulty. On a close 
examination it will be seen that  the expression contains the small time solution 
when the model is perfusion controlled (A << 1) and also the small time solution 
if diffusion dominates (2 >> 1). This can be seen by considering the term 
e-G/Aa2. For 2 << 1, the exponential becomes very small, and the small time 
solution degenerates to a linear uptake of gas as to be expected. For 2 >> 1, the 
exponential approaches unity, and a little manipulation reveals the standard 
small time solution into the annulus (Carslaw and Jaeger, 1959), plus a correc- 
tion for the uptake in the capillary itself. For intermediate values (2 ~ 1), the 
solution is effectively a balanced combination of the perfusion and diffusion 
solutions. However, in the numerical calculations, this function was not 
inverted as a check against the analytical inversion of (24), because the method 
of inversion was well established and also that  the half-time solution was 
required. 

Instead it was found more convenient to compare as a "check" the Haldane 
half-time and the Hills haft-time with the numerical inversion of (16). 

8. Numerical Inversion. 
viz: the average tissue gas tension: 

2 { 1 - e x p [  s 
= s:( l  + - X  + - -  

where 

We wish to invert the function from (14) and (16). 

(25  
s) j )  

f (a ,  s) = I~(aV/s)K~(~/s) - I~(~/s)K~(aV/s) 

g(a, s) = Io(aV/s)K~(~/s) + I~(v's)Ko(a~/s).  
(26) 
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The numerical method chosen was that  of Norden (1961) as modified by  
Hansson-Mild (1972), owing to the excellent results using this method in a 
comparative study between the Bellman et al. (1966) and Piessens (1972) 
methods (Hennessy, 1973). 

All calculations were carried out in double precision on a Univac 1106 com- 
puter of the University of Cape Town. The Bessel functions of (26) were 
evaluated by  Chebyshev polynomials as detailed by Luke (1969) to at least 12 
significant figures. 

Instead of simply computing the uptake curves of the average tissue tension 
(which would be useful from a point of view of comparison with likely experi- 
mental uptake curves), we compute the half-time of the tissue and plot this 
against the perfusion P, as being the best method of illustrating the perfusion- 
diffusion interaction. 

The half-time is that  time at which the tissue is 50 per cent saturated from 
its initial to its final tension. In dimensionless units, this simply requires 
p(t) = (}.5, since the initial tension is zero, and final tension unity. 

The method of converging to the half-time was considered from several points 
of view. The final choice was the method of successive bisection. Even 
though slow, it is extremely stable in our case (since there is only one root 
p = 0.5 in the range 0 < t < oo) and once one half-time has been found for a 
given P,  all others follow easily, since there will exist a good guess from the 
previously found half-time. The algorithm required a little modification since 
whilst a lower limit to the root always exists (t = 0) there is no finite upper 
limit. Thus each search commenced with a quick check by  successive halving 
or doubling to produce an upper limit to begin the main algorithm. Five-figure 
accuracy was sought, and so iterating was terminated after 30 steps and an error 
message printed. However, this never occurred in the numerical experiments. 

For each run we select a value for: 

(i) the partition coefficient S, ,  1.0 for aqueous, 5.0 for lipid tissue; 
(ii} the basic diffusion time scale a2/Dc, 7.752 rain (Hills, 1966), 9.456 min 

(Hennessy, 1971a, based on a = ~), and two purely aqueous values of 10 -3, 
10- 4 rain for comparison; 

(iii) the vascularity a(--a/b) ~ _!_1o, _115 and ~ ;  the last two were considered a 
little unrealistic in the sense that  the average cell is about 30 ~m in diam- 
eter, and the radius of capillary about 4-5 ~m giving an a ~ ~o as a 
likely lower limit; 

(iv) typical values of the perfusion P,  measured in ml blood per ml tissue per 
minute were taken from Bell et al. (1961), where we have 0.01 ~< P ~ 5.6 
ml/ml/min. Thus P was chosen 10 -4 < P ~< 10 on the basis that  it 
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seems possible that  very low perfusion rates may occur in cases of partial 
vasoconstriction, or simply in zones of low vascularity in resting tissue. 
But  it should be recalled that  P ~ 10- ~ ml/ml/min is a common value for 
muscle tissue. 

The actual diffusion time scale/perfusion time scale ratio A is calculated from 
the formula A = a~/Dc • P/a% using (20). 

The dimensionless half-time is converted to minutes by multiplying it by the 
factor (a2/Dc)/a 2, where it will be recalled that  the dimensionless time was 
defined by t', t = (b2/Dc)t '. 

When P is large, A is large, and so there is clearly a loss of precision in evaluat- 
ing (25). Accordingly, the exponential is expanded in a power series for large 
A (A /> 108 was chosen), which allows ~(s) to be evaluated to its original high 
precision. 

On the same graph we wish to plot the curve for the perfusion or t taldane 
half-time given by (21): 

T = [a 2 + (1 - ae)S~] log 2 / P  min, 

1 ~  i " ! I 

. . . . . .  a ~ l / 1 5  

lO ~- _ 

10 2 _  " ,  ~ a = l / 5  -- 
o ~ . . . . .  - - ~ - - - - ~ ,  
.E \ 

i 

o~ I0  - -  \ - -  

t -  H o l d a n e  \ 
\ 

l . o -  ~ -  

10-'10_ 4 

Figure 2. 
perfusion for various vascularities (Sp = 1; a2/Dc = 
9.456 rain). The equivalent curves of the Haldane 
(perfusion) and Hills (diffusion) theories aro included 

i I I 
IO -~ 10 -2 I0 -I I ' 0  

P e r f u s i o n  ( P ) ,  m l l m l  p e r  m i n  

Aqueous tissue half-times plotted against 

(27) 
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and the diffusion half-time, obtained by solving the half-time from (22) and (23) 
for each a and a2[Dc. However, this was not done in the latter case directly 
because the numerical inversion converged to the value in an unmistakab, le 
manner. This half-time will be called the Hills half-time even though it is not 
strictly so [see the note after {23)]. To illustrate these three curves a log-log 
plot is chosen as already mentioned. In this case the Haldane half-time 
becomes a straight line inclined at - 4 5  ~ and is unvarying for different a, if 
S T = 1, an added advantage for comparison. The Hills half-time is indepen- 
dent of the perfusion and is thus a horizontal line. The numerical inversion is 
shown plotted in Figures 2 and 3 for various vascularities. 

L 

r 

io ~ 
i I I 

l O 4 

I Hi,I( "L\ 

\ 
\ 

\ 
\ 

I0-- ~ -- 
Haldane \ 

\ 

I 'Oi 0_4 IO -5 I0  -a ]0  -I i ' 0  

Per fus ion  (P), m I / m ]  per rain 

Figure  3. Lipid tissue half- t imes plot ted  against  
perfusion for var ious vasculari t ies (Sp = 5, a2/Dc = 

9.456 min) 

Tables I I  and I I I  show some typical values for an aqueous type tissue 
(Sp ~ 1) and a lipid type tissue Sp ~ 5. All the half-times are longer, of course, 
and there seems to be a general shift towards a diffusion based system. 

I t  will be noticed that  for a given perfusion and vascularity, significant 
differences always exist between the actual and the Haldane half-time, except 
where the curves cross. On the other hand, the actual half-time merges 
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T A B L E  I I  

Aqueous Tissue Half-Times over a Perfusion Spectrum 

(Sp = 1.0, a2/Dc = 9.456 min) 
Hills value is the limit of columns 2, 3 and 4 

Perfusion Tissue Half-Times (rain) 
(ml/m]/min) 

a = ~ a = -lx6 a = ~ Haldane 

0.0001 4947 5071 5683 6932 
0.001 518 887 1788 693 
0.01 108 534 1456 69 
0.1 73 502 1424 7 
1.0 69 499 1421 0.7 

10.0 69 498 1421 0.07 

T A B L E  I I I  

Lipid Tissue Half-Times over a Perfusion Spectrum 

(Sp = 5, a2/Dc = 9.456 rain) 

Perfusion Tissue Half-Times (min) 
(ml/ml/min) 

a = ~ a = ~ a = -1~" Haldane 

0.0001 23,956 24,541 24,832 33,549 
0.001 2397 2671 3439 3355 
0.01 279 690 1608 335 
0.1 91 522 1446 34 
1.0 74 506 1430 3 

10.0 73 505 1429 0.3 

s m o o t h l y  w i t h  t he  Hil ls  ha l f - t ime  for  large pe r fus ion  r a t e s  b u t  d iverges  for  

smal l  P .  The  m o s t  s ignif icant  f inding is t h a t  in t he  reg ion  P ~ 0.01 (muscle  

t issue) a n d  a ~ ~, t he re  is a zone  where  

(i) all th ree  ha l f - t imes  are  a s imilar  o rder  o f  m a g n i t u d e ,  
(ii) t he  ac tua l  ha l f - t ime  is longer  t h a n  t he  others .  

I n  o t h e r  words  (i) implies  t h a t  on  a casual  ana lys is  i t  will be v e r y  difficult  t o  

decide w h e t h e r  per fus ion  or  diffusion is d o m i n a n t  in regions  where  P ~ 0.01 a n d  

(ii) implies  t h a t  in ac tua l  f ac t  t he re  is an  i n t e r ac t i on  be tween  pe r fus ion  a n d  

diffusion to  c rea te  a longer  hal f - t ime.  
F o r  smal ler  va lues  o f  t he  vascu la r i t y ,  t he  effect  begins  t o  d i sappea r  a n d  dif- 



THE INTERACTION OF DIFFUSION AND PERFUSION 523 

fusion dominates as to be expected. On the other hand it can be seen that  even 
for large values of the perfusion, diffusion still controls the uptake half-time. 
This may at first seem surprising, however, it should be realized that  those 
organs which have a large peffusion require this for metabolic reasons, and this 
effect has been ignored in this paper. Thus whilst increasing the peffusion by a 
large amount will not increase the half-time of the tissue for an inert gas, it will 
of course replenish depleted oxygen tension on high metabolic demand. 

Two runs were tried using very low values of the diffusion time scale (0.001, 
0.0001 rain), and it is confirmed that the actual curve closely follows Haldane's 
curve as to be expected since this is the basis of the perfusion theory. 

I t  will be noticed that  for very low values of the perfusion the Haldane curve 
and actual curve are parallel. I t  is of interest to calculate this difference 
theoretically and compare with the numerical output. 

As P -+ 0, ~ -~ 0 and (25) degenerates to 

A 1 
~ - -  

1 + / z s  '2 

Thus as P --> 0, 
a 

p(t) -+ 1 + t ,  

a constant rate of increase, as to be expected in cases where V is very low. On 
the basis of this equation, the actual half-time for very low values of the per- 
fusion approaches 

Tx = (1 + 

which in dimensional units, and with S T = 1, is 

T .  = jR-1.  

The log of this term is to be subtracted from the log of the Haldane half-time 
given by (27) and the result is obviously 

loglo log e 4 -- 0.1419, 

which is in satisfactory agreement with the computed numerical inversion 
result of 0.1461. (The error is acceptable in that  the half-time is very large, 
where the numerical method starts to yield poor results.) 

9. C o o l . i o n .  I t  is seen that  the Haldane solution is at  best an asymptotically 
orientated technique which gives too high a half-time over a wide range of small 
perfusion, and too small a half-time for large P.  I t  is only marginally correct in 
the interaction zone, which appears to be muscle tissue. On the other hand the 
Hills type diffusion approach is accurate for large perfusion rates but  poor for 
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small perfusion zones. I n  general it  is to be preferred to the  Haldane  approach,  

however.  
At  first sight, our  model m a y  appear  to  be too complicated to be of  pract ical  

use (the Hills model  likewise). 
However ,  the  program used to generate  the  solutions on a modern  computer  

with adequa te  l ibrary  software is quite short.  I t  can thus  be seen w h y  the  
Haldane  theo ry  persisted for so m a n y  years.  I t  is conceptual ly  s t ra ightforward 
and  computa t iona l ly  simple. I f  i t  fails to  provide a good fit, s imply " ad ju s t "  
the  half- t ime unti l  the  da t a  curve gives a reasonable fit. Thus for example,  
Haldane  employed  five tissue half-t imes for his ear ly  decompression tables. 
Over  the  in tervening years  more and more half-t imes had  to be inven ted  to 
fit the  facts. Today  the  U.S. N a v y  employ  up to 14 half-t imes to  provide oxy-  
hel ium decompression table predict ions based on the Ha ldane  perfusion theory .  
Clearly with so m a n y  parameters  v i r tua l ly  any  t heo ry  can be made  to  fit a da t a  
curve. Hills (1966) diffusion theory  on the other  hand  requires only  two para-  

meters  (the vascular i ty  and diffusion t ime scale) to  give a convincing analysis of  
decompression schedules for  exposures to a pressure equivalent  to 60 m sea 
depth.  

I t  is suspected t h a t  to car ry  the  va l id i ty  of  decompression calculations to 
grea ter  depths,  the  th i rd  parameter ,  the perfusion, mus t  be included as shown 

in this paper .  

L I T E R A T U R E  

Abramovitz, M. and I. A. Stegun (eds.). 1965. Handbook of Mathematical Functions. 
New York: Dover. 

Bassingthwaite, J. B., T. J. Knopp and J. B. Hazelrig. 1970. "A Concurrent Flow 
Model for Capillary Tissue Exchange." In Capillary Permeability, Crone, N. and N. A. 
Lassen, eds. New York: Academic Press. 

Bell, G. I-I., J. N. Davidson and H. Scarborough. 1961. Textbook of Physiology and 
Biochemistry. London: Livingstone. 

Bellman, R., J. A. Jacquez and R. Kalaba. 1960. "Some Mathematical Aspects of 
Chemotherapy: I. One-Organ Models." Bull. Math. Biophysics, 22, 181-198. 

- - ,  R. Kalaba and J.-A. Lockett. 1966. Numerical Inversion of the Laplace Trans- 
form. New York: American Elsevier. 

Blum, J . J .  1960. "Concentration Profiles in and Around Capillaries." Am. J. Physiol., 
1 9 8 ,  991-998. 

Boycott, A. E., G. C. C. I)amant and J. S. Haldane. 1908. "The Prevention of Com- 
pressed Air Illness." J. Hygiene, 8, 342-443. 

Carslaw, H. S. and J. C. Jaeger. 1959. Conduction of Heat in Solids. London: Oxford 
University Press. 

Gonzalez-Fernandez, J. M. and S. E. Atta. 1968. "Transport and Consumption of 
Oxygen in Capillary-Tissue Structures." Math. Bioscienee, 2, 225-262. 

- -  and - - .  1972. "Concentration of Oxygen around Capillaries in Polygonal 
Regions of Supply." 1bid., 13, 55-69. 



THE INTERACTION OF DIFFUSION AND PERFUSION 525 

Hal(lane, J .S .  See under Boycott, Damant  and Haldane (1908). 
Hansson-Mild, K. 1972. "Diffusion Exchange between a Membrane-Bounded Sphere 

and its Surrounding." Bull..Math. Biophysics, 34, 93-102. 
Harris, E. J. and G. P. Burn. 1949. "The Transfer of Sodium and Potassium Ions 

between Muscle and the Surrounding Medium." Trans. Faraday Soc., 45, 508-528. 
Hennessy, T. R. 1971a. "Inert  Gas Diffusion in Heterogeneous Tissue: I. Without 

Perfusion." Bull. iVlath. Biophysics, 33, 235-248. 
1971b. "Iner t  Gas Diffusion in Heterogeneous Tissue: ]I.  With Perfusion." 

Ibid., 33, 249-257. 
1973. Ph.D. Thesis, University of Cape Town. 

Hills, B .A.  1966. A Thermodynamic and Kinetic Approach to Decompression Sickness. 
Adelaide: Libraries Board of South Australia. 

1967. "Diffusion Versus Blood Perfusion in Limiting the Rate of Uptake of 
Inert  Non-Polar Gases by Skeletal Rabbit  Muscle." Clinical Sci., 33, 67-87. 

1969. "The Time Course for the Uptake of Inert  Gases by the Tissue Type 
responsible for Marginal Symptoms of Decompression Sickness." Rev. Subaquat. 
Physiol., 1, 255-261. 

1970a. "An Assessment of the Expression C = Q [ 1 -  exp (-PS/Q)] for 
Estimating Capillary Permeabilities." Phys. Med. Biol., 15, 705-713. 

1970b. "Vital Issues in Computing Decompression Schedules from Funda- 
mentals: II .  Diffusion Versus Blood Perfusion in Controlling Blood-Tissue Exchange." 
Int. J. Biometeor., 14, 323-342. 

Johnson, J. A. and T. A. Wilson. 1966. "A Model for Capillary Exchange." Am. J. 
Physiol., 210, 1299-1303. 

Kety, S.S.  1951. "The Theory and Applications of the Exchange of Inert  Gas at the 
Lungs and Tissues." Pharm. Rev., 3, 1-41. 

Krogh, A. 1919a. "The Number and Distribution of Capillaries in Muscles with Cal- 
culations of the Oxygen Pressure Head Necessary for Supplying Tissue." J. Physiol., 
52, 409-415. 

1919b. "The Supply of Oxygen to the Tissues and the Regulation of the Capil- 
lary Circulation." Ibid., 52, 457-474. 

1936. The Anatomy and Physiology of Capillaries. New Haven: Yale Univer- 
sity Press. 

Levitt, D. G. 1971. "Theoretical Model of Capillary Exchange Incorporating Inter- 
actions between Capillaries." Am. J. Physiol., 220, 250-255. 

Luke, Y. 1969. The Special Functions and Their Approximations. Vols. I and II .  
New York: Academic Press. 

Morales, M. F. and R. E. Smith. 1944. "On the Theory of Blood-Tissue Exchanges: 
I I I .  Circulation and Inert-Gas Exchanges at the Lung with Special Reference to Satura- 
tion." Bull. Math. Biophysics, 6, 141-152. 

- - - -  and - -  1945a. "A Note on the Physiological Arrangement of Tissues." 
Ibid., 7, 47-51. 

- - - -  and - -  1945b. "The Physiological Factors which Govern Inert  Gas 
Exchange." Ibid., 7, 99-106. 

- - - -  and - -  1948. "On the Theory of Blood-Tissue Exchange of Inert  gases: 
VI. Validity of Approximate Uptake Expressions." Ibid., 10, 191-200. 

Norden, H. 1961. "Numerical Inversion of the Laplace Transform." Acta Acad. 
Aboensis Math. et Phys., 22, (8), 1-31. 

Perl, W. 1962. "Heat and Matter Distribution in Body Tissues and the Determination 
of Tissue Blood Flow by Local Clearance Methods." J. Theor. Biology, 2, 201-235. 

1963. "An Extension of the Diffusion Equation to Include Clearance by 
Capillary Blood Flow." Ann. N.Y.  Acad. Sci., 108, 92-105. 



526 T . R .  HEI~NESSY 

Perl, W., H. Rackow, E. Salanitre, G. L. Wolf  and R. M. Epstein.  1965. "Inter- t issue 
Diffusion Effect for Iner t  Fat-soluble Gases." J. Appl. Physiol., 29, 621-627. 

Piessens, R. 1972. "A New Method for the Inversion of the Laplace Transform." J .  
Inst. Matks. Applics., 10, 185-192. 

Reneau, D. D., D. F.  Bruley and M. H. Knisely. 1969. "A Digital Simulation of Tran- 
sient Oxygen Transport  in Capillary Tissue Systems." A.I.Ch.E. Journal, 15, 916-925. 

Roughton, F.  J . W .  1952. "Diffusion and Chemical Reaction Velocity in Cylindrical 
and Spherical Systems of Physiological In teres t ."  Proc. Roy. Soc. B, 140, 203-221. 

Sangrcn, W. C. and C. W. Sheppard. 1953. "A Mathematical  Derivation of the Ex- 
change of a Labelled Substance between a Liquid Flowing in a Vessel and an External  
Compartment ."  Bull. Math. Biophysics, 15, 387-394. 

Schmidt, G . W .  1952. "A Mathematical  Theory of Capillary Exchange as a Funct ion of 
Tissue Structure."  Ibid., 14, 229-263. 

1953. "The Time Course of Capillary Exchange."  Ibid., 15, 477-488. 
Smith, R. E. and M. F.  Morales. 1944a. "On the Theory of Blood Tissue Exchanges: 

I .  Fundamenta l  Equat ions."  Ibid., 6, 125-132. 
- -  and - -  1944b. "On the Theory of  Blood Tissue Exchanges: I L  Applica- 

tions." Ibid., 6, 133-139. 
Taylor, G . I .  1953. "Dispersion of Soluble Matter  in Solvent Flowing slowly through a 

Tube."  Proc. Roy. Soc. A 219, 186-203. 
Teorell, T. 1937. "Kinetics of Distr ibution of  Substances Administered to the Body:  

I.  The Extra-Vascular  Modes of Administrat ion."  Arch. internat. Pharmacodyn. et 
Thdrap., 57, 205-224. 

Thews, G. 1953. "(~ber Die Mathematische Behandling Physiologischer Diffusion 
Prozesse in Zylinderf5rmigen Objekten."  Acta Biotheoretica, 10, 105-137. 

von Schrotter, H. 1906. "Der Sauerstoff in der Prophylaxe und Therapie der Luft  
druekerkrankungen." In Handbuch der Sauerstofftherapie, Michaelis M., ed., Berlin: 
Hirschwald. Cited by  K e t y  (1951). 

Zuntz, 1~. 1897. "Zur Pathogenese und Therapie der durch rasche Luftdruekanderun- 
gen erzeugten Krankhei ten ."  Fortschr. d. Med., 15, 632-639. Cited by  Ke ty  (1951). 

RECEIVED 8-6-73 

REVISED 5-8-74 


