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Abstract-A mathematical model for decompression is presented. It includes a first-order 
linear differential equation, which models the diffusion of gases within the body, as well as 
initial conditions and a nonlinear constraint inequality which insures safety from decom- 
pression sickness. The model is solved (numerically and/or analytically) under various 
hypotheses, and the results are compared with the U.S. Navy Dive Table. 

INTRODUCTION 

Occasionally, human beings will enter an environment different from their normal one, in 
which changes in pressure on the body may result in a buildup of air bubbles in the tissues. 
This condition is known as decompression sickness or, more commonly, the “bends.” Scuba 
diving is a popular sport in which participants subject themselves to changes in pressure. 
Other examples are provided by the man-in-space program and certain tunnelling operations 
in which air pressure on the body is alternately increased and decreased. 

During respiration, air is inspired into the lungs, from which it enters the blood. The air 
in solution in the blood is then carried to the body tissues where it is released by the blood 
into the tissues. The driving force for the exchange of gas at either the lungs or the body 
tissues is the difference in the partial pressures of the different gases on either side of the 
transaction site. 

In the normal situation in which the pressure on the body is decreased, the pressure of 
the air that is breathed is less than that in solution in the body tissues. When this happens, 
the body will act to relieve the difference in pressure. The blood will pick up excess gas in 
solution in the tissues and transfer it to the lungs from which it is exhaled. A dangerous 
situation occurs when the outside pressure is decreased so much that the tissue-blood-lung 
transfer of excess gas cannot take place rapidly enough. In this case, the gas pressure in the 
tissues will force the excess gas out of solution, resulting in the formation of gas bubbles in 
the tissues. 

The diffusion of a gas between lungs and blood and between blood and tissues can be 
modeled mathematically. Henry’s Law is a linearized pressure law which guarantees that a 
gas will flow from a higher pressure region to a lower pressure region at a rate which is 
proportional to the difference in the partial pressure of the gas in the two different regions. 

In what follows, we shall be concerned mainly with the effect of nitrogen and carbon 
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dioxide in the body tissues. Nitrogen comprises approximately 79% of the air we normally 
breath (including scuba divers who breath compressed air), and it doesn’t react very much 
with elements in the body tissues. 

On the other hand, oxygen, the other major component (20%) of the air we breath, does 
interact with other elements in the body, and it is consumed during these intratissue chemical 
reactions. Thus, when the external pressure is reduced, the difference in partial pressure of 
oxygen between the tissues and the external environment will increase at a rate less than that 
of nitrogen. Therefore, all other things being equal, oxygen is much less likely than nitrogen 
to be the cause of decompression sickness. 

The other gas which may lead to the onset of decompression sickness is carbon dioxide. 
It forms a negligible fraction (less than 0.5%) of the air we inhale. However, it is a product 
of the oxidation of elements in the tissues, and the air we exhale normally contains about four 
percent carbon dioxide. This production of carbon dioxide will lead to higher partial pressure 
differences, which, in turn, may lead to the formation of gas bubbles in the tissues. 

Other gases form such a minute fraction of the air we breath that we shall ignore them. 
Thus, we can single out carbon dioxide and nitrogen as the two gases which initially cause 
the onset of decompression sickness. 

The first systematic study of decompression was done by Haldane [1,2] in the early part 
of the twentieth century. He conducted experiments, mainly on goats, and concluded that the 
body could withstand a reduction in outside air pressure by approximately 50% without 
suffering from decompression sickness. More recently, this theory has been refined. 

Concern was first focused on the problem during World War II when U.S. Navy frogmen 
were called upon to perform military operations underwater. Since that time, the U.S. Navy 
and other agencies have performed numerous experiments and collected a large mass of data, 
which led to the compilation of the U.S. Navy Standard Air Decompression Table [3] which 
now serves as a standard guide for scuba divers. During that time, the mathematical theory 
of decompression has also evolved to its present form. See, for example, [l-9]. 

In the remainder of this paper, we present the basic model and show its solution under 
various hypotheses. We start with the Haldane model and proceed to more refined models. 
It should be noted that the model we present [see Eq. (2)] assumes that diffusion takes place 

instantaneously from the body tissues to the external invironment. In actuality, there is a 
delay due to the time it takes for the blood to transfer gas from the tissues to the lungs. 
However, if the external pressure does not change too rapidly, there will be a smooth flow 
of gas from tissues to blood to lungs, and the model should be adequate. 

THE MODEL 

Let us consider the case of a scuba diver, diving in the ocean, breathing compressed air. 
At sea level, atmospheric pressure is approximately 14.7 pounds per square inch (psi). 
Seawater weighs approximately 64 pounds per cubic foot. An elementary calculation shows 
that the pressure at the bottom of a 33 foot high column of seawater will be double that at 
the top. In other words, the pressure will increase by one atmosphere (14.7 psi) for each 33 
feet of descent below the surface of the ocean (assuming seawater is incompressible). Because 
of this equivalence (1 atmosphere = 33 feet seawater = 14.7 psi), we choose to measure 
pressure using units of feet-seawater (fsw), so that depth and pressure can be equated. 

We introduce the following notation to be used in our model: 

P = P(t) = ambient (external) pressure, 

A = A (t) = pressure of gas in in tissues, 

d = d(t) = depth below the surface, 

D = D(t) = absolute depth = d + 33. 
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Here, t represents time. Since ambient pressure is proportional to absolute depth, we let 

P = k,D, 

and we can choose k, = 1 by choosing the units so that both P and D are measured in fsw. 
Another quantity which we shall be interested in is the rate of ascent, r(t), which satisfies 
the equation 

r(t) = _g = _g. (1) 

We are interested in finding the optimum safe rate of ascent (in fsw/mintthe rate which will 
allow the diver to ascend to the surface in the least time and which will also ensure that the 
diver does not develop decompression sickness. This optimum ascent rate is chosen so that 
the ratio of the partial pressure of gas in the tissues to that in the lungs (A/P) never exceeds 
a predetermined value, f(A), which may depend on the tissue pressure. 

In order to model the situation mathematically, recall that the rate of exchange of gas 
between the lungs and blood and between the blood and tissues is proportional to the 
difference between the partial pressure of the gas in the blood and the partial pressure of the 
gas in the tissues or in the lungs. Therefore, we must solve the differential equation 

$=k2(P-A), 

with the initial condition 

A(O)=D(O)=A,. (3) 

Here, k, is the constant of proportionality, and it depends on the tissue. It will be positive, 
since tissue pressure increases (decreases) if P > A (P < A). If z represents tissue half-time 
(time during which the difference between tissue pressure and ambient pressure is halved), 
then 

k2 = ln2lT. (4) 

In solving the model, we must also impose the condition that A/P <f(A). 

SOLUTION OF THE MODEL 

The solution of the initial value problem (2)-(3) for A is 

s I 

A (t) = A, emk2’ + k, e:kZ(‘pS)P(s) ds. (5) 
0 

In order to solve for A and P, we use the condition that 

A(f) IfV(f)) . P(f). (6) 

The function f can be experimentally determined and tabulated. Of course, it depends not 
only on A but also on the properties of the tissue. We solve (5) and (6) for A and P, and 
determine the optimal ascent rate from (1). 
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THE HALDANE MODEL 

The earliest and simplest theory of decompression, proposed by Haldane [ 1, 21, states that 
ambient pressure could safely be halved. This implies that j”(A) = 2. The problem then 
becomes one of solving the inequality 

A, eckz’ + k, s ‘e-kzC’-s)P(s) ds I 2P(t). 
0 

The optimal (least time) solution of this problem would require that A/P = 2 for all t > 0. 

Otherwise the difference in partial pressure would not be large enough to allow the 
elimination of the excess air in the least time. Thus, the optimal solution of this mathematical 

problem requires the diver to ascend immediately from depth A,, to depth AJ2, and to continue 
to ascent from that point to the surface according to the exponential solution 

P(t) = (A,/2) e-k2’/2 

of 

A, eek2’ + k, 
s 

re-k2cf--S)P(s) ds = 2P(t), (74 
0 

which is (7) with the inequality replaced by equality. 
The quick initial ascent is impractical for two reasons. First, it is impossible to ascend at 

an infinite rate. Second, even if the diver were to ascend at a very high but finite rate to depth 

A,/2, he would expose himself to a potentially far more serious danger, that of an air 
embolism (a problem we shall not pursue further here). Therefore, we shall assume that the 
diver makes his ascent at a rate of 60 fsw/min. There are several reasons for using this figure. 
First, as long as the diver is careful, he should not be in danger of an embolism at this rate. 
Second, the diver can monitor his ascent rate by following his air bubbles as they rise, since 
air bubbles will rise at approximately 60 fsw/min. Third, the calculations become easier if we 
assume that the diver ascends at the rate of 1 fsw/sec. 

The problem thus is one of solving (7) for P(t). We get 

P(r) = 
-6Ot+A,, Ostst,, 

P,(t), t, I t I t,. 

Here, t, is the smallest positive solution of 

A(t,) = 2P(t,). 

P](t) is found by solving 

A (f> = =‘,(t), t, I t I t2, 

(8) 

(9) 

(10) 

and t, is the total ascent time. 

EXAMPLE USING THE HALDANE MODEL 

Suppose that a diver is at a depth of 99 feet below the surface (D = 132), and is saturated 
with gas at that depth. The Haldane model says that he could safely ascend immediately to 
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a depth of 33 feet (D = 66). To complete the solution to the problem, we make the additional 
assumption that all tissue half-times are the same, say 20 min. This assumption is unreason- 
able for obvious reasions, but it does simplify the calculations and discussion. Later, this 

assumption will be modified. We then find, from (4), that k, = 0.0346. Substituting (8) into 
(9) we find that t, must solve 

132emkz’l+k 2 

s 
“e-k~(‘~--l)(-60~ + 132)ds =2(-60t, + 132). 

0 

This reduces to 

whose solution is 

ePk?l _ k,t, = 1 - ‘j’ k2, 

t, = 1.11 min = 66.7 sec. 

Thus, the diver would ascend at the constant rate of 60 fsw/min for 66.7 set, until he reached 
a depth of 32.3 feet (D = 65.3). (Note: he could rise to a depth, d, slightly less than 33 feet, 
since he was exhaling some excess gas during the 66.7 set ascent, thus relieving some of the 
excess pressure.) Now, for t > t,, we must solve (10): 

132 em@ + k, 
s 

” eckz(‘p”)(-60s + 132) ds + k, 
s 

’ e-k2(‘pS)P,(s) ds = 2P,(t). (11) 
0 'I 

Equation (11) is a Volterra integral equation of the second kind for PI(t). One way to solve 
this equation is by the method of resolvent kernels. An easier 
differential equation. We have 

P,(t) = C, emklr + 2 
s 

I 
emk2’ ek2”P,(s) ds. 

‘I 

Multiplying by ekI’, we obtain 

P,(t) ek2’ = Cl + 2 s , ek2'P,(s) ds. 
‘I 

We let 

so that 

y(t) = P,(t) ek2’, 

y(t)= C, +% 
s 

‘y(S)ds, 
‘I 

which, upon differentiation, yields 

way is to reduce it to a 
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The solution for P is 

PI(t) = C, e(-k2i2)‘. (12) 

C, can be evaluated using 

so that 

p(t,) = P,(t,) = C, e(-k2i2)‘l = 65.3, 

We now evaluate f2 from 

which yields 

Cz = 65.3 e(k2’2)r’ = 66.6. 

P(&) = c* &kz’2)‘2 = 33, 

t, = 40.5 min. 

Thus, if the diver follows the optimum ascent rate (with the specified restrictions) given by 
(1) and (8), he would surface 40.5 min after he left the bottom, without suffering the effects 
of the “bends,” if we are to believe this model. Note: the U.S. Navy table requires more than 
three times that amount of time for ascent. 

We are assuming that the diver can monitor his rate of ascent so that he ascends at an 
exponential rate (anaphrotropic decompression [4]). It is unreasonable to expect the diver to 
be able to do this. More commonly, the diver will ascend at a constant rate (60 fsw/min) until 
he reaches a certain depth, at which he stops (first decompression stop) for a specified period 
of time. Then he will ascend to a second decompression stop. This process continues until 
he is able to surface without letting A(t) become larger than 2P(t). In this case, 

I -6Ot +A(O), 0s t 5 t, 

t, I t I t4 

t4 I t I t, 
(13) 

I : 

where t3 I t,. Generally, for practical reasons, the decompression stops are taken at 10 foot 
intervals. In our example, the diver would ascend to 40 feet (he cannot go all the way to 30 
feet because at that depth A > 2P), and remain there until it is possible to safely ascend to 
30 feet. The computations for this situation are done in a manner similar to that given above. 
The P(t) function given is not optimum, so that it would take longer than 40.5 min to safely 
surface at the rate given by (1) and (13). Note also that the computations become easier with 
a piecewise linear function for P(t) in (13). 

A MORE COMPLETE MODEL 

The procedure described above is generally the one adhered to by scuba divers who plan 
a sequence of ascents and decompression stops, which enables them to relieve the excess gas 
pressure in the tissues without causing the bends. However, the theory behind the idea has 
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gradually evolved, with the aid of a wealth of experimental data gathered over the years by 

the U.S. Navy, private dive organizations, and other groups. 
There are several main features of the current model which differ significantly from the 

previous one. First, instead of just one type of tissue, we must consider several different types 
of tissues with varying half-times. In fact, there are as many tissue half-times to consider as 
there are tissues in the body. For simplicity, we shall consider only six tissue half-times, 
ranging from 5 to 120 min. Second, it has been found experimentally that the ability of a tissue 
to ward off the bends by withstanding differences of pressure between itself and the 
surrounding medium increases with decreasing tissue pressure. For example at four atmo- 
spheres of pressure, the ratio of tissue pressure to ambient pressure may be restricted to be 
no more than 1.9: 1 for a certain tissue, whereas at two atmospheres of pressure, that limiting 
ratio may increase to 2.4: 1 for the same tissue. Thus, this limiting ratio (often referred to 
as the critical pressure ratio) must be considered not as a constant, as in the Haldane theory, 
but as a decreasing function of tissue pressure. 

To facilitate the discussion, we limit ourselves to the consideration of the following tissue 
half-times: t, = 5 min, z2 = 10, z3 = 20, zq = 40, 75 = 80, z6 = 120. Also, we suppose that the 
functions f,, =f,,(A) are given (perhaps experimentally determined) for each type of tissue 
(i.e., for each half time, z,, i = 1, 2. . . 6). 

The reason that we must consider different half-times may not be obvious. Why couldn’t 
we just do the calculations as before for each tissue half-time, and then just choose the proper 
ascent rate from amongst those six? The problem is that, during descent or ascent, critical 
pressure ratio curves (functions of time) for the different tissue half-times cross one another. 
Thus, for part of the ascent, one tissue may be the controlling one, while, for another part 
of the dive, another tissue may take over control. For example, on a dive from the surface 

to 198 feet (assume time for descent is short), the 5 min tissue would accumulate enough gas 
in 5 min to be saturated to a depth of 82.5 feet. On the other hand, after 5 min, the 120 min 
tissue would have hardly accumulated any excess nitrogen at all. Thus, on ascent, the 120 min 
tissue could ascend all the way to the surface, but the 5 min tissue would be forced to 
decompress at a depth of 24.75 feet. At that depth, as well as all intermediate depths, the 
5 min tissue would be losing gas, but the 120 min tissue would still be gaining gas. After a 
while, the 120 min tissue would have accumulated enough gas so that it could not ascend 
directly to the surface. Then, on ascent, the 5 min tissue would lose its excess gas and be able 
to return to the surface quickly, whereas the 120 min tissue would require a longer time to 
surface safely. It has now become the controlling tissue. Control generally shifts from the low 
half-time tissues to the high half-time tissues during a simple descent-ascent dive. 

In our previous example then, the optimum ascent rate must be a composite of different 
rates. For example, we would begin our ascent at a constant rate. After that, it would be a 
composite of certain other rates, depending on initial conditions and dive history. Thus, we 
would have an ascent rate given by (l), with P(t) given by [compare Eq. (S)] 

I -6Ot+A(O), Ojtjt,, 

P(t) = pt(t). I : t, I t I t,, 

1 Pdf), f6 5 t I t,. 

Here, t, is the solution of 

A (t,) =L,(A (t,))P(t,), i=l,2...6, 

P,(t) is found by solving 

M)=.L,(&))P;(t), tiI t If,+,, i=l,2...6, 
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and t, is the total ascent time. Pj(t) may no longer be an exponential function because of the 
complication introduced by using specified, nonconstant functionsf,, . In general, we can only 
hope to solve for P,(t), i = 1,2 . . . 6, and ti, i = 1, 2 . . 7 numerically. 

SOLUTION OF THE NEW MODEL 

The previous examples were used to illustrate the method. Now we present examples for 
purposes of comparison with the U.S. Navy Table. In the examples, we assume the diver 
descends to a certain depth at a constant rate (60 fsw/min), remains at the depth for a fixed 
period of time, then, on ascent, performs a series of ascents (at 60 fsw/min) and decom- 
pression stops (for fixed periods of time) at 10 foot intervals, until he is able to surface safely. 

We also use the following functions [see inequality (6)] in the calculations: 

f,,(A) = 132.0/A + 2.8, 

f,,(A) = 99.0/A + 2.1, 

&(A) = 79.2/A + 1.68, 

&(A) = 64.68/A + 1.372, 

f,JA) = 5511/A + 1.169, 

&(A) = 53.13/A + 1.127. 

We now point out some interesting features of the above functions. First, at any given 
pressure, the function values decrease as we go down the list. In other words the critical 
pressure ratio for a five minute tissue is larger than that for a 120 min tissue. This indicates 
that the five minute tissue is less apt to cause the bends than a 120 min tissue, since it can 
eliminate excess pressure more quickly. Second these functions were chosen (with much trial 
and error) so as to be able, as much as possible, to duplicate the U.S. Navy Table. This serves 
two purposes. It allows a comparison with the Navy Table, and it gives the scuba diver more 
confidence to make a dive that is not listed in the Navy table by following the ascent schedule 
which can be derived from these functions. 

The results of some of the calculations follow. For comparison purposes, we place our 
results side-by-side with the U.S. Navy Table (Table 1). In the table the depth and time at 
depth are listed in the two left-hand columns. The table lists the decompression stops required 
and the length of time at each stop. For example, on a dive to 130 feet for 70 min, the U.S. 
Navy Table requires the diver to ascend to 30 feet, remain for 16 min, rise to 20 feet, remain 
for 24 min, rise to 10 feet, remain for 61 min, and then rise to the surface. Our table requires 
the diver to ascend to 40 feet, remain there for 4 min, rise to 30 feet for 18 min, rise to 20 
feet for 28 min, rise to 10 feet for 54 min, and then ascend to the surface. Total ascent time 
from our table is 3 min more than that from the U.S. Navy Table. 

CONCLUSION 

The U.S. Navy Dive Table has evolved over the years to its present form in the following 
way. (1) A mathematical model was developed to produce decompression schedules. (2) The 
schedules were tested on U.S. Navy divers. (3) The mathematical model was revised, based 
on the results of the tests, and the updated model was again tested. This procedure continues. 
See, for example, [5]. 

This test-and-revise method used to develop the table is unpleasing mathematically. 
However, the scuba diver has other reasons for not putting complete faith in the table. First, 
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Table 1. Comparison of U.S. Navy Table and mathematical model ascent schedules 

Bottom 

Depth Time 

Decompression Stops (feet) 

U.S. Navy Table Mathematical Model 

(feet) (min) 
50 40 30 20 10 60 50 40 30 20 10 

40 200 

210 

230 

250 

270 

300 

50 100 0 

I10 3 

120 5 

140 10 

160 21 

180 29 

200 35 

220 40 

240 47 

60 60 0 

70 2 

80 I 

100 14 

120 26 

140 39 

160 48 

180 56 
200 I 69 

70 50 0 3 
60 8 7 
70 14 13 
80 18 I8 
90 23 22 

100 33 1 32 
110 2 41 4 38 
120 4 47 6 44 
130 6 52 8 50 
140 8 56 10 54 
150 9 61 16 54 
160 13 72 22 56 
170 19 79 27 60 

80 40 
50 
60 
70 
80 
90 

100 
I IO 
120 
130 
140 
150 

2 
7 

II 
13 
17 
19 
26 
32 

0 4 
10 9 
17 17 
23 I 22 
31 5 27 
39 9 36 
46 12 44 
53 15 50 
56 19 54 
63 27 54 
69 1 33 59 
77 2 39 63 

3 

5 

10 

20 

28 

35 

40 

44 

0 

2 

14 

25 

38 
48 

2 54 

10 58 
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Table 1. (confd.) 

Decompression Stops (feet) 

___. -... 
Depth Time U.S. Navy Table Mathematical Model 

(feet) (min) _.. 

50 40 30 

90 30 
40 
so 
60 
70 
80 
90 

100 
110 
120 
130 

100 25 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 

110 20 
25 
30 
40 
50 
60 
70 
80 
90 

100 

120 15 
20 
25 
30 
40 
so 
60 
70 
80 
90 

too 

130 10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 

5 

3 
7 

10 
12 

1 
7 

12 
15 

2 
9 

15 
19 
23 

3 
9 

16 
3 19 
8 19 

20 10 60 50 40 30 20 10 

0 
9 

18 
25 

7 30 
13 40 
18 48 
21 54 
24 61 
32 68 
36 74 

0 
3 

15 
2 24 
9 28 

17 39 
23 48 
23 57 
23 66 
34 72 
41 78 

0 
3 
7 

2 21 
8 26 

18 36 
23 48 
23 57 
30 64 
37 72 

0 
2 
6 

14 
5 25 

15 31 
22 45 
23 55 
27 63 
37 74 
45 80 

0 
1 
4 

10 
3 18 

10 25 
21 37 
23 52 
24 61 
35 72 
45 80 

1 

4 

1 
3 
8 

12 

2 
4 

11 

3 
7 

12 
18 
17 
71 1 15 L. 

2 
6 
8 

10 

1 
3 
8 

12 
15 
17 

3 
6 

12 
17 
17 

4 
6 

13 
17 
18 
21 

1 
4 
9 

14 
19 
20 
27 
34 
40 

2 
5 

11 
17 
20 
21 
31 
38 
45 

I 
5 
9 

16 
20 
21 
32 
41 

1 
3 
8 

13 
20 
20 
31 
41 
47 

1 
2 
6 
9 

17 
20 
28 
40 
47 

3 
8 

17 
22 
27 
38 
46 
53 
54 
58 
64 

3 
7 

13 
21 
25 
37 
47 
54 
54 
61 
67 

3 
6 
9 

17 
24 
34 
46 
54 
54 
63 

2 
4 
8 

10 
21 
28 
42 
53 
54 
63 
71 

0 
3 
6 

10 
13 
23 
35 
49 
54 
61 
70 



Depth Time 

(feet) (min) 

140 

150 

160 

170 

180 

190 

Bottom 

IO 
15 
20 
25 
30 
40 
50 
60 
70 
80 

5 
IO 
I5 
20 
25 
30 
40 
50 
60 
70 
80 

5 
IO 
I5 
20 
25 
30 
40 
50 
60 

5 
IO 
I5 
20 
25 
30 
40 
50 
60 

5 
IO 
15 
20 
25 
30 
40 
50 
60 

5 
IO 
15 
20 
25 
30 
40 
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Table I. (con/d.) 

Decompression Stops (feet) 

U.S. Navy Table Mathematical Model 

40 30 20 IO 60 50 40 30 20 IO 

4 
IO 

2 
6 

I6 
I9 
23 

2 
5 

16 
24 
23 
32 
41 

0 
2 
6 

14 
21 
26 
44 
56 
68 
79 

I 
3 

2 
5 

II 
I5 

I 
6 
9 

16 
I7 
19 

2 
4 
7 

I2 
20 
22 
36 
46 

I 
4 
7 

I1 
I7 
24 
41 
54 
58 
69 

3 
II 
17 

5 
12 
I9 
I9 
19 

2 
4 
8 

19 
23 
26 
39 
50 

0 
I 
3 
7 

17 
24 
33 
51 
62 
75 
84 

I 
3 

IO 

I 
5 
9 

I6 
I6 

I 
2 
8 

12 
18 
I7 
27 

I 
3 
6 
9 

I5 
20 
29 
43 
47 

0 
I 
4 
9 

I3 
I9 
30 
48 
54 
65 
75 

2 
9 

2 
7 

I6 
I9 

I 
3 
7 

II 
23 
23 
33 

0 
I 
4 

II 
20 
25 
39 
55 
69 

2 
4 

I 
4 
6 

I3 

I 
2 
4 
7 

I6 
17 

I 
3 
I 
9 

I9 
20 
37 

0 
2 
5 

IO 
I6 
22 
36 
53 
58 

I 
5 

I5 

2 
4 

IO 
I8 
22 

2 
4 
7 

I3 
23 
23 
37 

0 
2 
5 

I5 
23 
26 
45 
61 
74 

I 
4 

I 6 

I 
I 
6 
8 

I6 

I 
2 
6 
9 

17 
I7 

2 
5 
9 

IO 
20 
27 
44 

0 
3 
7 

IO 
I8 
24 
42 
54 
64 

3 
9 

I6 

1 
3 
6 

I4 
19 
19 

3 
5 

IO 
I7 
23 
30 
44 

0 
3 
6 

17 
24 
27 
50 
65 
81 

2 
1 6 
4 IO 

I 
2 
7 

11 
I5 

2 
4 
8 

I2 
17 
22 

I 
3 
6 
9 

I2 
20 
34 
46 

0 
3 
8 

12 
20 
24 
47 
54 
70 

I 
8 

2 
5 
8 

I4 

I 
4 
6 

II 
I9 
23 

0 
3 
7 

20 
25 
43 
55 

I 
5 

1 
2 
5 
7 

I5 

I 
3 
7 
9 

I5 
20 

0 
3 
9 

14 
22 
29 
52 
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the U.S. Navy Table was tested on U.S. Navy divers who tend to be more physically fit than 
the average scuba diver. For this reason alone, the normal diver should not try to stretch 
the decompression schedules to their limit. Second, the U.S. Navy Table is incomplete, since 
many dives which a diver would want to take are not listed. (For example, a dive to 1 I5 feet 
for 47 min, or a dive to 90 feet for 10 min, followed by an ascent to 50 feet for 15 min.) 

The present model is a step toward correcting some of these inadequacies. For instance, 
the functionsf,,, i = 1 . .6, could be decreased for an out-of-shape diver. This would provide 
an extra measure of protection by increasing the total ascent time. Also, the model could be 
solved for any dive to give an appropriate decompression schedule. In fact, the U.S. Navy 
has developed an underwater decompression computer which can be worn by the diver. This 
computer can be programmed, using this model, to monitor the diver’s depth and time and 
to signal the diver when it is unsafe to ascend any further. With such an anaphrotropic 
decompression schedule at his disposal, the diver can now ascend more quickly to the surface 
than if he had followed the ascent schedule listed in the U.S. Navy Table. Dieter [4] shows 
this to be the case, under different hypotheses. 
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