

Rebreathers Deep capability or deep trouble?

Associate Professor Simon Mitchell MB ChB, PhD, FUHM, FANZCA

Department of Anesthesiology University of Auckland

2013 UHMS ASM

Diving with open circuit SCUBA has limitations

How much gas is needed for a 90m (300') dive?

MarkSpencer.com.au

You need: a dive plan a gas plan a decompression regimen

Diving and Hyperbaric Medicine Volume 43 No. 2 June 2013

Review articles

Recreational technical diving part 1: an introduction to technical diving methods and activities

Simon J Mitchell and David J Doolette

86

You need:

a dive plan a gas plan a decompression regimen

- 90m (300') for 20 minutes
- Bottom gas trimix 13:47
 13% oxygen; 47% helium; 40% nitrogen
- Decompression gases

 Nitrox 36
 Oxygen 100%

Decompression prescription: 90m 20 min

- **90** →
- 63 fo
- 60 fo
- 57 fo
- 54 fo
- 51 for 1
- 48 for 2
- 45 for 2-

Trimix 13:47 Nitrox 36

- 27 for 2
- 24 for 2
- 21 for 3—

Oxygen

- 18 for 5 15 for 7 12 for 9 9 for 14 6 for 16 • 3 for 28 3 → 0
- Run time = 131:18

Calculation for trimix 13:47

Depth	Pamb	Time	SAC	Pamb x Time x SAC
0→90	5.0	5	20	500
90	10.0	15	20	3000
90→63	8.4	4	20	672
63	7.3	1.5*	12	131
60	7.0	1.5	12	126
57	6.7	1.5	12	121
54	6.4	2.5	12	192
51	6.1	1.5	12	110
48	5.8	2.5	12	174
45	5.5	2.5	12	165
42	5.2	2.5	12	156
39	4.9	3.5	12	206
36	4.6	2.5	12	138
33	4.3	3.5	12	181
30	4.0	3.5	12	168
Total:				6040 L

Usual to multiply by 1.3 for safety margin:

6040 x 1.3 = <u>7852 L</u>

Depth	P _{amb}	Time	SAC	P _{amb} x Time x SAC	
	C	Calculation			
27	3.7	2.5*	12	111	
24	3.4	2.5	12	102	
21	3.1	3.5	12	131	
15	2.5	7.5	12	225	
12	2.2	9.5	12	251	
9	1.9	14.5	12	331	Nitrox 36
Total				1050>	1050 x 1.3 = <u>1365 L</u>
Calculation for oxygen					
6	1.6	16.5	12	317	
3	1.3	28.5	12	445	Oxygen
Total				762	762 x 1.3 = <u>991 L</u>

...then figure out how to carry it....

Trimix 13:47 Twin 18 L steel tanks Can hold 8280 L (7852 L required)

Nitrox 36 deco gas 10 L steel tank Can hold 2300 L (1365 L required)

Oxygen deco gas 10 L steel tank Can hold 2300 L (991 L required)

....and that was 90 m, what about deeper??

Useful dives to all of those depths <u>COUID</u> be done with nothing more than this

PO₂ is optimized across all depths

Generally agreed that the maximum safe inspired PO₂ during diving is around 1.3 ATA

Staying as close to that as possible minimises inert gas uptake and maximizes inert gas elimination

PO₂ during decompression

No bubbles

Optimized decompression

Minimal gas consumption

Warm humidified gas

No bubbles

Optimized decompression

Minimal gas consumption

Warm humidified gas

Steady uptake by recreational "technical divers"

Data from IANTD, TDI, ANDI

Annual entry-level rebreather certifications

Dituri J, Carney B, Betts E. A tripartisan look at the state of rebreathers. ANDI, IANTD, TDI collective rebreather certification numbers and market analysis. Rebreather Forum 3 Proceedings, 2013: In press

Remarkable achievements

- Regular dives to depths around or in excess of 300'
- <u>Wreck</u>: wrecks deeper than 600' located and explored
- <u>Cave</u>: 2008 11km at ~300' over 7 hours bottom time followed by 15 hours of decompression. Wakulla – Leon Sinks system, Florida.

Deep capability?

Rebreathers are: Complex maintenance-dependent devices that work well the vast majority of the time, but with multiple failure points used by highly motivated humans in a hostile non-respirable environment often with a real or virtual ceiling

Examples of failure modes not present or less insidious in open circuit scuba

Problems related to human factors

Human error

Especially at the human – machine interface

Normalisation of deviance

 Every time an undesirable behaviour doesn't result in a problem we become more tolerant of it

 Temporarily corrupted motivation paradigms

 Divers prioritize completion of a goal or task over self preservation

 $SP = PO_2$ set point in ATA

What do the numbers say?

Diving and Hyperbaric Medicine Volume 43 No. 2 June 2013

Analysis of recreational closed-circuit rebreather deaths 1998–2010 Andrew W Fock

DHM 2013;43(2):78-85

78

Rebreather diving mortality

- ~20 deaths per year
- ???How many rebreather divers???
 - 18,000 entry level certifications
 - Plus ? more
 - Some drop-outs must have occurred
- If 15,000, 20 deaths = 133 / 100,000 / yr
- If 10,000, 20 deaths = 200 / 100,000 / yr

Recreational scuba air fatalities

Diving and Hyperbaric Medicine Volume 38 No. 4 December 2008

Original articles

Scuba injury death rate among insured DAN members

Petar J Denoble, Neal W Pollock, Panchabi Vaithiyanathan, James L Caruso, Joel A Dovenbarger and Richard D Vann

Insured DAN members – vast majority scuba air

Death rate 16 per 100,000 participants per year

182

Rebreathers: 130 - 200 / 100,000 / yr

Insured DAN members (SCUBA air): 16 / 100,000 / yr

Denoble et al. Diving Hyperbaric Med 2008;38:182-188

Analysis of recreational closed-circuit rebreather deaths 1998–2010 Andrew W Fock

2010: there were ~14,000 active rebreather divers Survey data suggest 30 dives per year per diver 20 deaths per year = 4 - 5 deaths per 100,000 dives

Training Scuba Divers: A Fatality and Risk Analysis

Drew Richardson

PADI Worldwide 30151 Tomas Street Rancho Santa Margarita, CA 92688 USA 0.48 deaths per 100,000 open circuit training dives

Vann RD, Lang MA, eds. *Recreational Diving Fatalities*. Proceedings of the Divers Alert Network 2010 April 8-10 Workshop. Durham, N.C.: Divers Alert Network, 2011. ISBN #978-0-615-54812-8.

? Deep trouble Probably

Photo: Kevin Denlay

Prevention of rebreather deaths

The diver

Can we engineer out HMI failure points?

The rebreather

Health: Cardiovascular screening

Training Practice Behaviour

Hot issues:

Sensor technology More or less automation? Information display? Mouthpiece retainers

RECREATIONAL DIVING FATALITIES WORKSHOP PROCEEDINGS

UHM 2011, VOL. 38, NO. 4 – MEDICAL SCREENING OF DIVERS FOR CARDIOVASCULAR DISEASE

Medical screening of recreational divers for cardiovascular disease: Consensus discussion at the Divers Alert Network Fatality Workshop

SIMON J. MITCHELL M.B. CH.B., PH.D, FANZCA¹; ALFRED A. BOVE M.D., PH.D.²

¹ Department of Anesthesiology, University of Auckland, Auckland, New Zealand

² Emeritus Professor of Medicine, Cardiology Section, Department of Medicine, Temple University Medical School. Philadelphia, PA, USA

DURHAM, NORTH CAROLINA

Prevention of rebreather deaths

The diver

Can we engineer out HMI failure points?

The rebreather

Health: Cardiovascular screening

Training Practice Behaviour

Hot issues:

Sensor technology More or less automation? Information display? Mouthpiece retainers

CHECKLISTS:

"The forum acknowledged the overwhelming evidence demonstrating the efficacy of checklists in preventing errors in parallel fields that share similar technical complexity. Two recommendations regarding checklists were consequently agreed". The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL ARTICLE

A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population

NEJM 2009;360:491-9

Introduction of a surgical safety checklist significantly reduced mortality and morbidity in a multicentre study

CHECKLISTS 1.

The forum recommends that rebreather manufacturers produce carefully designed checklists, which may be written and / or electronic, for use in the pre-dive preparation (unit assembly and immediate pre-dive) and post-dive management of their rebreathers.

 Written checklists should be provided in a weatherproof or waterproof form.

 The current version of these checklists annotated with the most recent revision date should be published on the manufacturer's website

CHECKLISTS 2.

The forum recommends that training agencies and their instructors embrace the crucial leadership role in fostering a safety culture in which the use of checklists by rebreather divers becomes second nature.

DESIGN AND TESTING 4.

The forum strongly endorses industry initiatives to improve oxygen measurement technologies, and advocates consideration of potentially beneficial emerging strategies such as dynamic validation of cell readings and alternatives to galvanic fuel cells.

Consensus statements at:

http://rubicon-foundation.org/News/rf3-consensus/

Deep capability or deep trouble?

?? possibly the Cumberland

	E150.090°	E150.095°	E150.100°
s37.328°			\$37.328°
s37.330°			\$37.330°
\$37.332°			\$37.332°
s37.334°			\$37.334°
	E150.090°	E150.095°	E150.100°

Thank you