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Abstract-Transfer mechanisms and critical pressures are essential elements in decompression calculations 
and staged procedures. By coupling a multi-tissue transfer model to fitted critical pressures, decompression 
data can synthesized for rapid numerical implementation in air diving applications and procedures. 
Parametric fits to the critical N, pressures used to construct the U.S. Navy air tables are generated for 
the six tissue compartments (5, 10, 20, 40, 80 and 120min) at sea level, with both linear and constant 
pressure ratio extrapolations to altitude conveniently effected with the barometer equation. The 
macroscopic model used to transfer inert N, in tissues is described and functional forms of the fit equations 
are motivated. Accurate (single parameter) exponential representations for mantle pressures, and the 
well-known Cross altitude factors, are also generated. Fitted critical tensions vary inversely as the 
approximate fourth root of the tissue half-life and increase linearly with depth. Air mantle pressures 
decrease exponentially with altitude and inverse temperature. Using bounce dive constraints, a set of bulk 
(single tissue) decay coefficients, which increase logarithmically with depth, are extracted from a Royal 
Navy (depth-dependent) decompression criteria and contrasted with corresponding multi-tissue decay 
parameters. Bends statistics and a decompression titration experiment, which predicts decreasing critical 
ratios at depth, are discussed. Overlapping predictions of the multi-tissue and bulk models, and 
correlations with experiment are identified. 

I. INTRODUCTION 

Calculations of decompression schedules for diving at sea level are based on a model originally 
used by the English physiologist J. S. Haldane [I]. His original observation, using experimental 
goats which had been chamber saturated to depths up to 165 feet of sea water (ft-sw) suggested 
the animals did not develop decompression sickness if subsequent decompression was limited to 
no greater than halving the ambient pressure. Thus animals saturated at 6 atm (absolute pressure) 
could be immediately decompressed to 3 atm, from 2 to 1 atm, and so forth. In all cases the critical 
saturation ratio (absolute N, pressure/absolute ambient pressure) was found to be 1.58, since the 
N, air fraction is 0.79. Translated to humans directly, researchers reckoned that body tissues and 
fluids apparently tolerate a I ._58 overpresssure factor before the onset of decompression sickness, 
presumably because N, bubbles are not formed. Using these findings, Haldane then constructed 
decompression schedules which did not allow the critical saturation ratio of 1.58 to be exceeded 
in any of five theoretical tissue compartments. The tissue compartments were characterized by their 
half-life, i.e. the time required for the compartment to lose or gain 50% of existent N,. The five 
original compartments (5, 10, 20, 40 and 75 min) were employed in decompression calculations 
and staged procedures [2] for 50 years with little modification. 

In the mid-1950s, by empirically performing deep bounce dives and expanding the range of 
depths and exposures covered by the tables, the U.S. Navy advocated the use of six tissues (5, 10, 
20,40, 80, 120 min) in constructing decompression schedules, with each tissue compartment having 
its own critical ratio [3-71. Temporal uptake and elimination of inert gas were based on a simple 
tissue response function [8] which addressed only the macroscopic aspects of N2 transport in body 
tissues and fluids. Exact bubble production mechanisms, interplay of competing pressures and 
temperatures and related transport phenomenon were not quantified and remain only partially 
understood today, though pertinent research continues. 

The interpretation given to the extensive body of experimental decompression data has also 
changed over the years. While Haldane and coworkers regarded critical ratios and pressures as limit 
points, separating bubble formation from non-bubble formation, the decompression data is more 
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properly a statistical predictor of bends thresholds for a given set of predisposing conditions. 
Decompression tables and procedures, as extracted from experiment and parameterized with any 
transfer model, serve to separate bends provoking exposures from non-bends provoking exposures 
within statistical confidence levels. In the same sense, bubble formation can then be viewed as 
symptomatic or sub-symptomatic, instead of present or non-present. Of course, fit equations, 
transfer models and biological response functions then gain efficacy by their ability to adequately 
reproduce experimental data, somewhat independent of their physical interpretation. 

Inert N, transport in the body of a diver breathing compressed air is governed by many factors, 
such as gas diffusion, blood perfusion, phase separation, nucleation and cavitation, membrane 
permeation, fluid shifts and combinations thereof. Owing to the complexity of biological systems, 
multiplicity of tissues and media and diversity of boundary conditions, it is difficult to solve the 
Nz transport problem directly in divers. Nonetheless, extensive efforts [9-l 31, over the past 75 years, 
directed toward establishment of safe diving procedures and formats, consistent with tests and 
measurements, have produced an empirical body of data called the decompression tables. Central 
to all tables are estimates of maximum N, saturation pressures, critical saturation or critical 
pressure differences and a tissue response function. We collect and quantify an extensive body of 
decompression data, and then fold this data over a response function which has been historically 
employed in decompression calculations and gross transfer modeling. 

Specifically, a parametric fit to the critical pressures is described, with extrapolation to altitude 
using the barometer equation. Standard transport and decompression phenomenology are briefly 
reviewed. Linear and exponential treatments of atmospheric pressure are contrasted. A continuous 
representation for altitude pressure and Cross factors is detailed. Both linear and constant pressure 
ratio altitude extrapolations are discussed. Bulk coefficients are suggested, using bounce data and 
the Royal Navy critical ratios, and contrasted with the U.S. Navy multi-tissue parameters. Some 
statistics of bends occurrence and a simple, yet powerful, decompression titration experiment 
having interesting implications for critical ratios are briefly reviewed. Correlations between the two 
tissue models and experiment are discussed. 

2. N, TRANSPORT AND DECOMPRESSION PHENOMENOLOGY 

Transport of matter by random molecular motion across regions of varying concentration or, 
equivalently by Henry’s law, pressure can be driven by the local gradient [8]. The classical 
approaches to decompression rest on this assumption, For a uniform system, the time rate of 
change of inert gas tissue tension is proportional to the difference between inspired partial pressure 
of the gas, pi, and the instantaneous value, p, 

!2= 
at -J(P -PA (1) 

with 2 being the particular tissue decay parameter. Integrating equation (l), taking, p = p,, at t = 0, 
yields 

P -Pi = (PII - P,>exp( - At). (2) 

Similar gradient-driven linear phenomena, such as radioactive decay, reactive current flow, bulk 
heating and cooling, explosive burn propagation and signal attenuation, employ expressions closely 
resembling equation (2). The above equations have received the misnomer, dz&sion, from 
investigators, probably because of semblance to transient heat flow expressions. Actually, equations 
(1) and (2) are simple rate equations, neither collisionally dominated diffusion nor streaming 
transport equations, and bulk transfer is more appropriate. 

The time for p -pi to decrease to half its immediate value, after reduction in pi, is the tissue 
half-life, r. Six compartments with 5, 10, 20, 40, 80 and 120 min half-lives are generally employed 
in applications and half-lives are assumed to be independent of pi. A one-to-one correspondence 
between the six compartments and specific anatomical entities is neither established, nor implied. 
Specification of the tissue half-life, r permits immediate evaluation of the tissue decay constant, 
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i, from equation (2), 

&In, (3) 
T 

Bulk, or single tissue, treatments [3] of N, transport, do not link 1. to a particular compartment 
and are employed in bounce diving applications. Bulk decay constants may differ from the tissue 
constants given by equation (2) in attempting to account for the collective response of dominant 

compartments. 
An underlying assumption built into equations (l)-(3) requires that blood saturated at ambient 

pressure will equilibrate with tissue at each round of circulation. Although one appreciates that 
the distribution of blood flow throughout the body is not uniform, so that better perfused tissues 
saturate faster than poorly perfused tissues, the continuous spectrum of perfusion-controlled 
response times is thus approximated by six compartments with time constants differing in roughly 
constant ratio. In this way, some perfusion limiting is implicit in the multi-tissue model. 
Intercellular spatial diffusion of inert gas occurs rapidly [ 11, 121 within circulation cycles, so as to 
not significantly limit, nor effect, the foregoing multi-tissue gradients. 

If diffusion, perfusion and metabolic assimilation are mechanistically included, equation (1) 
generalizes to the Fick-Fourier expression, 

ap 
at =V.DVp -~(p -pi)-Z, 

with V the spatial gradient operator, D the diffusion coefficient, Zn the metabolic consumption rate 
and K a perfusion time constant, related to the perfusion rate, r, and partition fraction of gas 
(blood and tissue), v, by 

K = TV. (5) 

For inert gases, Z = 0, and we obviously take D z 0, with K = In 2/t in the multi-tissue sense. 
Additionally, discrepancies between measured values of D and those values needed to fit the 
decompression data exist [l 1, 121. 

Denoting the ambient (absolute) pressure by P, Haldanian theory [l] assumes that the degree 
to which any tissue compartment tolerates N, supersaturation is limited by a critical ratio, r, 

According to fixed gradient theory [2], tissue supersaturation is limited by a critical difference, 

1, such that 

p-P<I. (7) 

Obviously r and I depend on many factors, not always discernible. The values of p for which 

the equalities hold in equations (6) and (7) are the critical tissue pressures, M, (maximum values). 
Determinations of r and I, or the corresponding critical pressures, M, have been a phenom- 
enological thrust of decompression theory and bases for construction of staged decompression 
tables [9-131. Early analyses employed fixed values for r, 1 and M, but today critical parameters 
generally vary across compartments, and with depth. Supersaturation theories regard the critical 
parameters as trigger points for bubble formation, while phase equilibration approaches treat the 
critical parameters as metastable limits for suspended gas transformation. 

Uptake and elimination symmetry of the tissue response function, equation (3), remains valid 
only if the biological system maintains a true state of thermodynamic supersaturation and there 
is no separation of gas from solution. If inert gas separates (as it inevitably does according to 
nucleation theory [14]), the driving force for elimination can differ significantly from the uptake 
gradient, destroying the symmetry. The classical supersaturation assumptions are tantamount to 
a bubble-free hypothesis, but the presence (or non-presence) of bubbles does not affect the 
computational model, since expressions ultimately link to experimental values of r, I or M. 
However, for the record, the preponderance of measurement and theory [l 1, 12, 141 soundly 
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supports notions of nucleation, gas separation and bubble growth, even below observable bends 

thresholds. 
Physical analyses of decompression focus directly on the microphysics of nucleation and bubble 

siting, gas separation, rate limiting effects and other biophysical influences to predict, or correlate, 
r, 1 and M from first principles [lO-12, 141. The empirical description, by focusing on the body of 
macroscopic data which has been gathered over the years, uses only coarse models to quantify the 
transfer mechanisms. Such a description is aptly a phenomenological approach. 

3. EXPONENTIAL ATMOSPHERE AND BAROMETER EQUATION 

Measuring pressure in feet of seawater (ft-sw) the absolute pressure, P, at depth, x, is given by 

P=P,+x, (8) 

for surface atmospheric pressure, P,. At sea level, P,, = 33 ft-sw. Above sea level, PO varies 
exponentially with altitude following a barometer equation. At approx. 18,000 ft, PO is half its value 
at sea level. 

If air were an incompressible media, such as water, a simple linear dependence on altitude could 
be employed to compute P,, Since air is compressible, simple linear relationships such as those used 
compute water pressure are not generally applicable (though a simple linear reduction of PO with 
altitude is not a bad approximation over a low range of altitudes, as will be shown). Kinetic theory 
[ 151, which predicts the behavior of an ideal gas in a gravitational field, can be employed to compute 
P,. Assuming the constituent molecules of air are Maxwellian distributed (locally) at temperature, 
T, the total surface pressure, P,,, at altitude, z, is obtained by summing the appropriate barometer 
expressions [ 15, 161 for each partial component (N,, O? and Ar) normalized to sea level pressure 

[161, 

P0 = 33 c u,,exp(-&z/T), 
n-1 

(9) 

with U, the gas mixture fractions, /In constants and temperature, T, measured in absolute (K) 
degrees. The three exponential (barometer) terms are the contributions of each component. 
Assuming a standard mixture of N,, 0, and Ar, the partial fractions are simply [16] 

% = 0.7811, q,, = 0.2095, uAr = 0.0094, (10) 

and equation (9) thus represents an effective barometer equation for air. The factors fin depend on 
the masses of the component gases, m,, the acceleration of gravity, g, and Boltzmann’s gas 

constant, k, according to 

8, = m,glk, (11) 

with specific values (Kjft) 

PNZ = 0.010067, &, = 0.011496, bar = 0.014361. (12) 

Variable concentrations of CO, and water vapor, and trace concentrations of heavier gases are 

neglected. 
The comparative behavior of P,, with altitude and temperature is shown in Fig. 1, which plots 

atmospheric pressure in increments of 1000 ft for Kelvin temperatures of 100, 300 and 500 K, (or 
-279, 80 and 440°F). Departures from linear fall off are seen with both increasing altitude and 
decreasing temperature. Above roughly 7000 ft, linear extrapolations become less accurate for 
temperature ranges encountered on the earth. 

The behavior of P, is also important to altitude diving modifications [17-241, especially the 
coupling to decompression criteria. Obviously, as z -+ cc or T +O, we have P,+O from equation 

(9), consistent with boundary conditions and thermodynamics. As T-+co, the atmosphere tends 
toward isotropy and PO decays very weakly with altitude. Over finite altitudes and less severe 
temperatures, a more complicated dependence is exhibited. Defining y, for convenience, 

2, = P.IT> (13) 
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Fig. I. Atmospheric pressure at altitude for different temperatures. 

10 

the exponential terms can be expanded in a Taylor series for y,z < 1: 

exp(-y,z)= 1 -y,z ++(r,z)*. (14) 

Keeping only terms through first order from equation (14) and using equations (10) and (1 l), 
equation (9) reduces to a linear approximation for y,z < 1: 

P 0 = 33[1 - (G2YN2 + @.o,Yo, + %YAr)Zl. (15) 

Relative accuracy depends on each Y,,z, and necessarily increases for high temperature and low 
altitudes. Similarly, the approximation is better for lighter gases than heavier gases, since p, is 
directly proportional to the molecular mass. 

Direct altitude measurements [25] of the earth’s pressure mantle correlate with the barometer 
equation. Figure 2 contrasts measured pressures with equation (9) for T = 273 K (32°F). Seasonal 
and geographical variations of 7% are normal. Agreement between predicted and actual pressures 
is excellent (near 1% for altitudes up to 20,000 ft). Thus, taking T = 273°K in equation (13) gives 

14 I I I I I I I I I I 
0 2 4 6 a 10 12 14 16 18 20 

Altitude (lOOOff) 

Fig. 2. Measured vs exponential atmospheric pressure at T = 273 K. 
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Table I. Atmospheric pressure at altitude and cross factors. 

Altitude (ft) 
Pressure 
(ft-SW) Cross factors 

0 33.00 1.000 
3000 29.51 I.116 
6000 26.43 I .248 
9000 23.60 1.399 

I2000 20.99 1.572 
15000 18.65 1.770 
18000 16.50 2.000 

a good global estimate of atmospheric pressure, i.e. 

yNI = 0.000036875, yoz = 0.000042110, YAr = 0.000052604. (16) 

in units of ft-‘. Table 1 also lists atmospheric pressures in 3000-ft increments, up to 18,000 ft as 
well as the ratios of sea level pressure to altitude pressure, 5. 

<Z, (17) 
0 

which are the usual Cross (correction) factors [17,20,21] for altitude table conversion. Since P,, 
decreases exponentially, clearly the Cross factors increase exponentially with altitude. 

4. CRITICAL RATIOS AND N, PRESSURES 

The critical pressures (M-values) collected by Des Granges [4] and Dwyer [7] for the tissue 
compartments at various depths, as well as the later compilation of Workman [6], represent a 
database for information reduction and extraction. Critical ratios [4], r, vs depth, x, are plotted 
in Fig. 3 (- ) for the six tissue compartments at sea level, (P, = 33 ft-sw). Surfacing ratios [l 11, 
r,, and critical N, pressures, MO = r,P,, are given in Table 2. 

In general, U.S. Navy investigators claim that the overall incidence of decompression sickness 
is less than 1% in their data tabulations. While this is a genuine statistic, their figures include many 
no-stop exposures. When gradual (stage) decompression is required, Navy divers tend to be more 
conservative than the tables, effectively adding 5 or 10 min to their bottom time. Such procedure 
obviously renders the U.S. Navy statistics under predictive. A 5-10% bends incidence is probably 
more realistic [l 1, 121 using the above data. 

3.25 

2.75 
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.o 
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Fig. 3. Fitted and critical ratios. 
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Table 2. Surfacing ratios and critical N, 
pressures (PO = 33 rt-SW) 

Half-life Surface N, pressure 
(min) ratio (ft-SW) 

5 3.15 104 
IO 2.61 88 
20 2.18 72 
40 1.76 58 
80 I .58 52 

120 1.55 51 

The tissue curves in Fig. 3 appear hyperbolic-like, roughly parallel functions with surfacing ratios 
and N, pressures as listed in Table 2. The 80 min tissue ratio, 1.58, represents the classical Haldane 
air value. Faster tissues obviously support higher degrees of supersaturation (and slower tissued 
lesser degrees) than the Haldane ratio. Considering equations (6) and (8) and the asymptotic 
behavior of the tissue ratios (Fig. 3) a general form, 

AxB+C 
r= 

x+33 ’ 
(18) 

is suggested for the critical curves. If B < 1, r -+O as x + cc, while r --* cc, as x + cc, for B > 1. For 

B = 1, certainly r +A when x+co. From Fig. 3, it is doubtful that the tissue curves rise with 
increasing depth, so that we expect 

B<l 

for each tissue curve. Extrapolation of the curves to altitude, 0 < P0 < 33 ft-sw, depends on both 
M,, and P,, (as discussed later). At the surface, x = 0, it follows from equation (18) that 

C 
ro=jj, 

so 

C=M,, (20) 

for the MO listed in Table 2. The case B = 1 yields linearily-dependent N, saturation, curves, with 
corresponding hyperbolic loci of critical ratios, as intimated in other analyses [6, 11,221 for both 
air and heliox mixtures. 

While a reasonable fit to each of the curves using equation (18) might be expected over depth, 
a multi-dimensional representation over tissue half-times and depth is desirable. The critical ratios 
increase with decreasing half-life so, accordingly, equation (18) is extended over half-lives by 
writing 

ArDxB + CzE 
r= 

x+33 ’ 
(21) 

with A, B, C, D and E constants. Other parametric representations are possible, but equation (20) 
is adequate for our needs. Because the critical ratios increase with decreasing half-life, one expects 

D < 0, E < 0. 

The case D = E represents half-life scaling of critical N2 pressures, anticipated by the apparent 
parallel behavior of the tissue curves. 

The Levenberg-Marquardt algorithm [26], which minimizes the sum of the squares of J 
non-linear functions in K unknowns, can be employed to fit the data over depth and tissue 
half-lives. Using the Common Los Alamos Mathematics Software (CLAMS) library routine, 
SNLSE, to fit the data depicted in Fig. 3, we obtain 

A = 3.247, B = 0.999, C = 152.770, D = -0.221, E = -0.242, (22) 

with B, D and E dimensionless and ArD and CrE measured in ft-’ and ft-sw, respectively. Critical 
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Table 3. Critical tissue ratio limits 
(P” = 33 ft-SW) 

Half-life Surface 
(min) limit 

Depth 
limit 

5 3.15 2.21 
10 2.61 2.01 
20 2.18 1.67 
40 I .76 1.34 
80 1.58 1.26 

1.20 1.55 I.19 

N, pressures, M, generated by the fit, satisfy 

A4 = ArDxB + CtE, (23) 

Figure 3 also plots the fitted critical ratios (. . . . .) against the experimental ratios (- ). Agreement 
is excellent, with the (fair) exceptions of the 40 and 120 min curves which are off a nominal 10%. 
WithDxEandB=l, scaling of the critical pressure curves with 5°.23 is a good overall estimate. 

For better agreement with the 40 and 120min curves, a more general equation of the form 

M = [(120/~)~ + (r/120)‘][AxB + C] (24) 

is useful at the better than 5% level for all six compartments. Using SNLSE, one finds 

A =0.590, B =0.999, C = 24.895, D = 0.37, E=0.062. 

As in the previous case the tissue curves scale with z. 

(25) 

From the above, it is easy to trace the range of ratios by taking the appropriate limits, x +O 
and x +co. The surfacing values, rO, are given in Table 2, and the limiting values at depth, rm, 

are just the coefficients of x in equations (21) or (24), as discussed earlier. Table 3 lists 
corresponding limits, (ro, rr), for the six tissue compartments. 

In the U.S. Navy tables [4, 6,7], as reflected in Fig. 3, critical ratios are larger for faster tissues 
and greater absolute pressures. As seen in Table 3, the range of variation is not large, especially 
within compartments. Depending on the method used to extend M-values to reduced pressure 
(altitude), however, the surface values can change dramatically while the values at depth remain 
unchanged. Indeed, surfacing (or near-surface) values are the principal concerns in classical 
decompression applications. Thermodynamic theories [12, 141, however, also focus on values at 
depth, assuming gas separation from the dissolved (saturated) phase to be a continuous process. 

5. ALTITUDE PHENOMENOLOGY 

The three-term sum in equation (9) is easily replaced by a single exponential [17] for 
computational convenience. For small Y,,z, equation (9) can be expanded to first order, using 
equation (14), to obtain an effective y, 

so that 

P, = 33 exp( - yz), (27) 

and the Cross factors similarly reduce to the expressions, 

5 = exp@), (28) 

with, from equations (10) and (16), 

y = 0.000038119, (29) 

in the same units (ft -I). This compact representation of PO and 5, useful in the following, is accurate 
to 1% at 20,000 ft. At increasing altitude, accuracy is enhanced by the fact that aAr is small and 
yN, x yo,. Density differences between fresh and salt water are neglected. 
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Table 4. Extrapolated intercepts and line 
shoes below sea level oressure 

Half-life 
(min) 

Intercept 
(ft-SW) 

Line 
slo!x 

5 28.99 2.24 
IO 23.59 I .92 
20 16.73 1.64 
40 12.81 1.37 
80 II.31 I.21 

I20 10.98 1.12 

For altitude excursions or flying after diving, projected critical N, pressures and ratios are 
important for table modifications. Two generic extrapolation schemes, which we call the linear 
pressure [4,22] and the constant ratio [20, 21,241 have been proposed for altitude applications. The 
linear scheme extends the saturation curves in equation (23) to ambient pressures below 33 ft-sw 
while the constant ratio scheme attempts to maintain the (same) critical ratios of Fig. 3 at altitude. 
Not as much testing of altitude schedules has transpired, as compared to sea level testing, but the 
growth of diving has probably given impetus to altitude experiments [19,22-241. 

Since the critical N, pressures decrease with absolute pressure, while critical ratios tend to 
increase, Bell and Borgwardt [22] suggested that the critical N, saturation curves might be linearly 
extended to altitude [negative depth in equation (23)]. The extrapolated, zero pressure intercepts 
(x = -33 ft) and line slopes are positive, and are listed in Table 4. The altitude N, curves are just 
straight line extensions of the tissue curves predicted by equation (23). Corresponding ratios track 
as hyperbolas at altitude, approach infinity as P,, -+O, and therefore suggest greater degrees of 
relative saturation. The extrapolated critical pressure curves are replotted in terms of absolute 
pressure (ft-sw) in Fig. 4. Points to the left of 33 ft-sw are the altitude extrapolations, while points 

to the right recover equation (23). The extrapolation is probably good to near 7000 ft, since 
atmospheric pressure varies linearily up to that altitude. Beyond that point, atmospheric pressure 
tends to drop off faster and the linear scheme leads to very large critical ratios. 

The severe behavior of the critical ratios as ambient pressure drops in the linear scheme can be 
mitigated by extending the tissue curves through the origin. One extension, suggested by Smith [20], 
Cross [21], Wienke [17] and Bassett [24], employs the barometer extrapolation 

M = CrEexp(-yz), (30) 

with CrE the sea level saturation pressures from equation (23), also listed in Table 2. Since absolute 

Pressure (ft- SW) 

Fig. 4. Critical N, pressures (linear extrapolation). 
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Fig. 5. Critical N2 pressures (constant ratio extrapolation). 

pressure varies in the same proportion, this extension yields constant critical ratios at altitude, 

CtE 
r=T, (31) 

which are more conservative than the linearly extrapolated ratios. N, saturation curves for the 
constant ratio extrapolation are shown in Fig. 5. 

Smith [20] and Cross [21] proposed a constant ratio scheme for altitude diving, based on the 
equality of ratios for a given altitude exposure and another equivalent exposure at sea level 
(similarity method). Denoting an equivalent sea level depth, d, for excursion to depth, x, at altitude, 
z, it is easy to determine similarity relationships after equating critical ratios: 

M(x) M(d) 
x + 335 -’ =d+ 

(32) 

with r given by equation (28). Rearranging the 1.h.s. gives the desired form, 

<M(x) M(d) p=-, 
<x+33 d+33 

(33) 

so the transformation is satisfied by 

and 

d = 5x (344 

M(d) = (M(x). (34b) 

Dives at altitude are thus similar to deeper excursions at sea level, according to equations (34a, b), 
Actual stops and ascent rates at altitude, conversely, are slower and shallower [20] by factors of 
< -I. Though the Smith-Cross method is well-known in altitude applications, confusing notions of 
its extrapolation methodology exist. 

6. BULK- OR SINGLE-TISSUE PARAMETERS 

While the U.S. Navy adopted the Haldane multi-tissue method just described, the Royal Navy 
has opted for a single-tissue treatment of N, transport. Hempleman [3] introduced the single-tissue 
concept, but noted that the standard response function, equation (l), so popular in decompression 
calculations, could not model bounce dive phenomenon with a single parameter exponential term. 
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Fig. 6. Predictions of the t ‘J law and the no-decompression limits. 

Single, no-decompression exposures down to 190 ft satisfy a relatively simple depth-time law [4,27]: 

xt “2 = 500 (ft min”2), (35) 

with x (ft) the depth and t (min) the no-decompression time limit. Though the t”* law provides 
a good fit for relatively short time intervals, it breaks down for large values oft. Figure 6 compares 
the predicted t ‘I2 [-- equation (35)] against the no-decompression limits (0) of the tables. 

While a single decay barameter, 1, cannot fit the bounce dive data of Fig. 6, a depth-dependent 
expression [28] can be obtained from equation (3) once a critical ratio is specified. Allowing A to 
vary with depth reflects variation in tissue response to pressure, though no physiological coupling 
is implied. Hempleman [3, 11, 121 also suggested a depth-dependent decompression criteria for the 
Royal Navy which is a compromise between a fixed pressure and rapidly varying critical ratio, 

709 

r=p+ (36) 

with P given by equation (8). At the surface, r = 1.62, while at 100 ft, r = 1.34. At approx. 460 ft, 
r = 0.79 and decompression is not possible, which obviously serves to bound the expression. 

Bulk models are attractive theoretically since they permit the transfer process to be tracked by 
one equation. Some feel this type of correlation is more meaningful, because only two constants 
(M-value and time coefficient) are needed to model the transfer process. With only 2 d.f., a rigorous 
test of the model is afforded. However, the time constant needed to give a realistic base to the 
approach implies a diffusion coefficient several orders of magnitude lower than that observed for 
gases in water or gross tissue. The variable ratio given by equation (36) however, offers a means 
of coupling, and comparing, the single- and multi-tissue approaches. 

Dividing equation (2) by P, equating p/P to equation (36) and simplifying, yields 

(37) 

which can be employed to estimate 1 from the single, no-decompression time limits (surface 
bounce). Results are tabulated in Table 5 for various exposures, with p. = 0.79 x 33 = 26.1 ft-sw, 
p, the continuous N, saturation pressures at depth, and P = PO = 33 ft-sw for immediate return to 
the surface. One notes that 1 is a slowly increasing function of depth with fluctuations. 

Since the no-decompression time limits decrease monotonically with depth, while the faster tissue 
compartments control decompression, in the multi-tissue picture, it is reasonable to expect 1 to 
smoothly increase with depth. Fluctuations can be removed by fitting Table 5 to the logarithmic 
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Table Decay constants from 
decompression limits 

the no- 

Depth Time limit Decay constant 

(ft) (min) (min-‘) 

40 200 0.0063 
50 100 0.0080 
60 60 0.0095 
70 50 0.0089 
80 40 0.0089 
90 30 0.0098 

100 25 0.0098 
110 20 0.0105 
120 15 0.0120 
140 IO 0.0137 
190 5 0.0152 

expression 

with the result 

1, =Glnx +H, (38) 

G = 0.005217, H = -0.013055, (39) 

measured as before (min-‘). 
Comparing the range of equation (38) or Table 5, with equation (5) for the six tissue 

compartments, it is seen that the depth-dependent predictions of A overlap the multi-tissue decay 
parameters for the 120, 80 and 40 min compartments, but not the 20, 10 and 5 min compartments 
which control deeper exposures in the U.S. Navy tables. Multi-tissue parameters vary by a factor 
of 24, while the single-tissue parameters only increase by a factor of 3 in the range 40 < x < 190 ft, 
reflecting the compromise between a fixed pressure and rapidly varying decompression ratio, as 
embodied in equation (36). 

Such behavior is neither surprising, nor suspect, since multi-tissue tables omitting the fastest 
compartments [7,29] have been fabricated and used in the past. The differences in decay 
parameters, reflected in the single- and multi-tissue treatments, attest to diversity and granularity 
in possible computational approaches employed to track critical parameters. The overlaps between 
the model decay parameters suggest a broad quasi-equivalence between the two approaches. 

7. DECOMPRESSION STATISTICS AND THRESHOLD PARAMETERS 

Many factors contribute to bends susceptibility. Age, obesity, physical condition, exercise and 

temperature are a few. Whatever the contributing factors, the distribution of minimum bends 
depths has been obtained [30] by gradually increasing the pressure, Q, at which a diver has been 
saturated before rapid decompression to threshold pressure, P. Characterization of the threshold 
distribution is not only of academic interest, but is also helpful in modifying decompression formats 
and tolerances, independent of the underlying calculational model. 

Hills [31] has determined that the distribution of minimum bends depths fits a Weibull function. 

If the cumulative fraction of bends cases up to Q is x, the survivor fraction satisfies the Weibull 
criterion 

ln(1 -x) = [(Y - 14.3)/25.1]4.73, 

with minimum bends differential, Y, measured in ft-sw, 

(40) 

Y=Q-I'. (41) 

As the differential grows, the survivor function approaches zero exponentially. The smallest 
differential for bends provocation is 14.3 ft-sw, which can be contrasted with the average value of 
33 ft-sw. The efficiency of the Weibull function in providing an excellent fit to the decompression 
data is not surprising. The Weibull distribution has been employed heavily in reliability studies 
involving a multiplicity of fault factors. 
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In a similar experiment, Hempleman [32] exposed goats to compressed air at absolute pressure, 
Q, for 12 h and then decompressed the animals to another absolute pressure, P, for several hours, 
checking for bends development. A few days later, the same goats were exposed to the same 
pressure, Q, and decompressed to slightly higher, or lower, pressures, P, until a distribution of P 
was obtained, separating bends from no-bends points. The titration is then repeated for a new series 
of Q. An ensuing linear relationship between Q and P supports the pressure ratio, r, as an index 
of bends provocation, motivates the linear altitude extrapolation procedure and suggests decreasing 
critical ratios with depth, simultaneously. This can be seen in the following way. 

In analyzing the titration data, Hills [33] proposed a complete separation of bends from no-bends 
points via the linear (fit) relationship 

with 

Q =uP+u, (42) 

u = 1.72, v = 9.2, (43) 

and pressures measured in the usual ft-sw. Dividing Q by the ambient pressure, P, separating bends 
from no-bends occurrences and multiplying Q by 0.79 to convert to N, partial pressure, the critical 
ratios predicted by the titration experiment satisfy 

r = 0.79 p +: , 
( 1 

obviously decreasing with P. At the surface, equation (46) gives r = 1.62, while at depth, r = 1.35, 
more in keeping with the range of equation than the range of Table 3. Restricting attention to the 
slowest three compartments in Table 3, ranges are more comparable, as seen previously in the bulk 
parameterization of equation (38). 

Linear extrapolation of M-values at altitude (absolute pressures below 33 ft-sw) in the 
multi-tissue scheme is consistent with the titration trend of equation (42). From equation (42), the 
maximum permissible N, pressure, at zero ambient pressure, is approx. 7.3 ft-sw, while the slope 
of titration curve (in N, partial pressure units) is 1.35. Corresponding multi-tissue intercepts and 

slopes are listed in Table 4. The 120 min intercept, 10.98 ft-sw, and the 40 min slope, 1.37, come 
closest to the titration curve. However, the corresponding bulk M-value is zero, which is consistent 
with the constant ratio altitude extrapolation of equation (30). In the absence of extensive altitude 
decompression data, the difference between the bulk and multi-tissue models is largely academic, 
especially since the linear and constant ratio extrapolation schemes are equivalent to near 10,000 ft. 

8. COMPUTER PROGRAM 

DECOMP is a general purpose package [34] which transfers inert N, in tissues of arbitrary 
half-life and contrasts computed N, tensions with benchmarked critical (maximum) values used in 
staged decompression procedures. From the tabulated data used to construct the U.S. Navy tables, 
linear fits to the critical N, pressures are generated, based on the six tissue compartments (5, 10, 
20, 40, 80 and 120 min) at sea level, with critical pressure extrapolations to altitude conveniently 
effected with the fitted barometer equation, which agrees to 1% with mantle pressure measurements. 

User inputs include the tissue half-lives dive profiles (depth and time at each level), altitude, 
ascent (descent) rates, initial tissue pressures and initial depth. For the six compartments (5, 10, 
20, 40, 80 and 120 min), the actual saturation data are employed to compute critical pressures and 
ratios. Between points, saturation curves are interpolated using our fit, which is accurate to 5%. 
Between levels. N2 transfer can be estimated by an averaging technique which employs ascent, or 
descent, rates across levels. Output from DECOMP includes computed N, tissue pressures, 
decompression ratios, critical N2 tissue pressures, critical decompression ratios and pertinent data 
at the end of stages (also between stages) for each compartment. 

The program is written in FORTRAN for use on Crays, CDC 76OOs, CDC Cybers or any other 
machine with at least 420000 byte high-speed storage and a FORTRAN compiler. The program 
is 200 card images long. DISSPLA graphics software [35] is convenient for post-processing, but 
not required for calculations. Terminal, printer and graphics server are the only necessary 
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peripherals to process I/O. Calculations for six compartments in a lo-level excursion require < 1 s 
on the Cray. 

DECOMP models gas transfer, according to the foregoing multi-tissue analysis, in divers 
breathing compressed air (79% N, and 21% 0,). Repetitive and multi-level (depth and time) 
activities are traced continuously in time. Computed N, pressures are compared with critical values 
used to fabricate the U.S. Navy air tables. In repetitive applications, continuous tensions at the 
end of one stage form the initial values for the following stage. The tissue equations used to transfer 
N, treat compartments as uniform media of differing half-lives as discussed earlier. 

9. SUMMARY 

An extension parameterization of critical N2 pressures and decompression ratios, at sea level and 
altitude, in both single- and multi-tissue models, has been described. The information is useful for 
rapid numerical application, extrapolation, and interpolation within the constraints of the air tables 
and associated methodology. Fits to the data included critical N2 pressures and critical ratios for 
the multi-tissue U.S. Navy approach, the single-tissue decay constants for bounce applications in 
the Royal Navy scheme, and ambient air pressures and Cross factors at altitude. The phenom- 
enology of decompression at sea level and altitude was discussed, and an exponential altitude 
extrapolation of critical pressures and ratios was also suggested. Pertinent statistics and impli- 
cations were presented and discussed. Consistency between the multi-tissue and bulk models was 
described, and numerical correlations with experiment were identified and contrasted. A software 
package, DECOMP, incorporating the elements of this analysis has been contructed and is 
available to interested users. 

These types of calculational methods, in the absence of complete physical information, can only 
address a limited range of conditions. No model approach yet is purely synthetic, relying upon first 
principles and handbook constants. This analysis suggests nothing so new, but rather summarizes 
and encapsulates a vast body of experimental data into a manageable set of parametric equations 
which are motivated both by traditional and recent developments. Even as more comprehensive 
theories develop, bodies of experimental data, such as described, must still be integrated into 
workable hypotheses. 
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