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Multi-tissue and thermodynamic decompression algorithms are described and a computational equiv- 
alence is established between the two approaches. Eigenvalues and weighted eigenfunctions of the Fick- 
Fourier equation effectively define response functions from which Haldane half-lives can be extracted 
from arbitrary exposures, operationally bridging the two approaches. Decompression criteria for the 
algorithms are also described and coupled. Comparisons of similarities and differences of approaches are 
given from both theoretical and applied viewpoints. A seven-parameter set, spanning both models, forms 
the basis of analysis. We find that representative thermodynamic parameters in a perfusion-diffusion 
model effectively recover Haldane half-lives in a bootstrap and that critical parameters overlap, though 
ranges differ in the two cases. 

Keywords: Decompression; Mathematical models; Tissue gas exchange; Critical parameters; Multi-tissue 
supersaturation; Phase equilibration: Perfusion-diffusion transport 

Introduction 

Models based on supersaturation [l-7] and phase equilibrium [7-l l] are 
employed in decompression applications, even though exchange equations, staging 
criteria, and test correlations differ. Computational algorithms also track the same 
data sets with differing implementations. Such being the case, we bridge implimen- 
tations of multi-tissue and thermodynamic algorithms by relating eigenvalues and 
eigenfunctions of the Fick-Fourier equation to multi-tissue response functions of the 
Haldane equation. Time scales in both algorithms are contrasted for choices of 
model parameters. Tissue diffusivities, 0, and perfusion rates, K, in a perfusion-dif- 
fusion framework are employed to estimate gas tensions for ranges of exposures, 
and the resulting tensions are then inverted to estimate the usual Haldane half-lives, 
T. For short time intervals, a Haldane-like approximation to the perfusion-diffusion 
exchange equations is suggested by requiring continuity of response functions and 
their first derivatives, and the same asymptotic behavior at late time. Critical (dis- 
solved gas) tensions, M, and thermodynamic (separated gas) fractions, x, are also 
related for multi-tissue compartments. Procedurely, the overlap is exhibited over 
sets of depth-time exposures. 
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In contrasting these algorithms, basic assumptions and mathematical techniques 
are also described [12,13]. An algorithm simply consists of a set of inert gas 
exchange equations and staging criteria for arbitrary exposures, the application of 
which is central to the fabrication of decompression tables and meter software. It is 
well known that perfusion and diffusion parameters employed in most algorithms 
are not strongly correlated [14-171 with measured critical tissue values. Some of 
this is due to model limitations in describing gas transport and phase mechanics, that 
is, equations must be stretched to support dynamics outside algorithm range and 
model framework. But even given these caveats, a basic commonality between the 
two algorithms can be demonstrated in applications, the delineation of which is 
hopefully timely and unambiguous. We underscore the overlap in computational 
terms, focusing on the tissue exchange equations and staging criteria. Sections 2 and 
3 detail the multi-tissue and thermodynamic algorithms and computational bases. 
Section 4 details the operational equivalences which can be erected between the two 
models. A parameter set involving A, M, 0, K, and x is employed in the synthesis. A 
cursory discussion of tissue gas exchange models and equations will facilitate devel- 
opment before addressing specifics. 

Tissue is separated into intravascular and extravascular regions for modeling. 
Blood containing dissolved inert and metabolic gases passes through the intravascu- 
lar zone, providing both initial and boundary conditions for subsequent gas trans- 
port through the extended extravascular zone. Arterial blood first equilibrates with 
alveolar partial pressures, and venous blood then equilibrates with arterial tensions 
at a somewhat slower rate. Tissue tensions fall somewhere between arterial and ven- 
ous tensions during equilibration. Three equations are applied to model transport, 
namely, a diffusion equation, a perfusion rate equation, and a combined perfusion- 
diffusion equation. Defining the instantaneous gas tension, p, given any constant 
tension, po, with the relative difference, Il = p - po, the diffusion equation is given 
by, 

(1-l) 

with V the spatial gradient operator, t the time, and D the diffusion coefficient. The 
arbitary tension, p,,, can always be chosen to yield homogeneous initial or boundary 
conditions, that is, ll = 0 initially, or on the boundary [ 131. The perfusion rate 
equation for gas exchange is similarly written, 

al-l 

31= -All, (l-2) 

for A some characteristic time constant for buildup, or decay. Solutions to Eqn. 
(l-2), depending only on the initial condition, are independent of position in tissue, 
obviously a simplification that requires rapid intercellular gas diffusion compared to 
time scales on the order of A-l. When diffusion, perfusion, and metabolic assimila- 
tion are included in the balance, the transport equation generalizes to the Fick- 
Fourier expression. 
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(l-3) 

with 2 the metabolic consumption rate and K, a perfusion time constant. For inert 
gases, obviously 2 = 0. Solutions to Eqn. (l-3) depend on both initial and boundary 
conditions, with simplification afforded in the homogeneous case, as with solutions 
to Eqn. (l-l). Clearly, the Fick-Fourier expression contains the diffusion and perfu- 
sion rate equations as limiting subsets. It will be convenient to express ambient pres- 
sures, P, in units of feet-of-sea water cfsw), and gas partial pressures, p, as mole 
fractions of ambient pressure. 

Multi-tissue Algorithm 

The multi-tissue algorithm is based on a bulk perfusion equation. Classical and 
modern multi-tissue approaches [ 1,181 to decompression are based on assumptions 
of limited supersaturation, with the transport of matter across regions of varying 
concentration, or pressure, driven by the local gradient, and gas uptake and elimina- 
tion limited by blood flow rates. As discussed, the rate equation is given by Eqn. 
(l-2), with A a set of phenomenological (tissue) constants. Denoting initial tension, 
pi, we have, 

ll(0) = pi - pu = lli, (2-l) 

and integrating Eqn. (l-2) subject to the above yields, 

p-/b = (pi-pu)exp(-AtI. (2-2) 

The time for p - p, to decrease to half its immediate value, after reduction in pd is 
the tissue half-life, T, 

In 2 
7=-. 

A 
’ (2-3) 

As many as ten (hypothetical) compartments with 2.5, 5, 10, 20, 40, 80, 120, 180, 
240 and 360 min half-lives are employed in applications, and half-lives, T, are rou- 
tinely assigned to be independent of p,. Compartments are just computational enti- 
ties, and direct anatomical linkages are neither intended nor implied. Much detail is 
obviously buried in these tissue parameters, since they are not correlated with critical 
tissue equilibration rates [8]. Given absolute pressure, P, multi-tissue theory postu- 
lates that the degree to which any compartment tolerates nitrogen saturation is lim- 
ited by a critical ratio, R, 

GR, 
P (2-J) 

having a modern range, 1.10 4 R Q 3.20, popularized by the US Navy. Realistically, 
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R depends on many factors, not always discernible. Alternatively, the values of p for 
which the equalities hold in Eqns. (2.13) and (2-4) are the critical tensions, M. The 
correlated critical pressures collected by Buhlmann [5] and Workman [18] for spe- 
cific compartments at various depths, as well as the later phenomenological compi- 
lation of Schreiner [ 191 and VGE analysis of Spencer [20] provide a staging criteria. 
Surfacing ratios, R,, critical pressures, M, = R,,Po, and depth ratios, R, (d + a), 
are shown in Table I for six compartments. As a function of altitude, z, measured in 
feet, atmospheric pressure, P,,, is conveniently represented [6] by the barometer-like 
expression, 

P,, = 33 exp(-&), 

with, 

& = 0.38 1 19X IO-‘yt-‘. 

The extension of the critical surface pressures and ratios in Table I to altitude has 
been a study in itself [4,5]. Linear [4] and exponential [6] extrapolations of the criti- 
cal pressures back to zero have been proposed. A few-parameter fit [6] to the critical 
pressures, expressed as linear functions of absolute pressure, also suggests that criti- 
cal pressures vary inversely as the fourth root of the compartment half-life, T, as 
seen in Fig. 1. The fit to the surfacing tensions, M,, takes the form, 

M,) = 15s 7-(‘.*s, (2-7) 

as tabulated in the fourth column of Table I. Surfacing critical tensions, M,,, corre- 
spond to near saturation exposures at depth, do, 

d,, = I .265 M,, - 33. (2-W 

The critical ratios are larger for faster tissues and lesser pressures, yet range of 
variation is not large, especially within compartments. Blood rich, well-perfused, 

TABLE I 

SURFACING AND DEPTH RATIOS, CRITICAL AND FITTED NITROGEN PRESSURES (P, = 33 

fsw) 
T (min) 47 M” VW 155 743 (fsw) R_ 

5 3.15 104 104 2.21 
10 2.61 88 87 2.01 
20 2.18 72 13 1.67 
40 1.76 58 60 1.34 
80 1.58 52 52 1.26 

120 1.55 51 49 1.19 
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Fig. 1. Critical tensions and half-lives. 

aqueous tissues are usually assumed to be fast (small values of T), while blood 
poorer, scarcely-perfused, lipid tissues are assumed to be slow (large values of 7). 

The multi-tissue model addresses dissolved gas exchange, with saturation gradients 
driving the interchange between blood and tissue. In the presence of free phases, 
exchange-mechanisms outside the multi-tissue model framework are enabled 
[7,11,17]. Free-dissolved and free-blood gradients can compete with dissolved-blood 
gradients. If gas nuclei are entrained in the circulatory system, blood perfusion 
rates are effectively lowered, an impairment with impact on all gas exchange pro- 
cesses. 

Thermodynamic Algorithm 

Questions of whether perfusion or diffusion are rate limiting in tissue, whether 
bounded or bulk models are sufficiently representative for decompression analyses, 
how are free-dissolved gas interactions quantified, and why are seemingly dissimilar 
models successful in applications, prompted studies with a broader kinetic 
perspective. Thermodynamic models are an offspring of such studies, culminating in 
a number of algorithm approaches [3,7,9,10]. An approach, suggested by Hills [l l] 
and extended by Hennessy [8], is more comprehensive than multi-tissue treatments, 
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addressing a number of additional issues. This thermodynamic algorithm is based 
on phase equilibration of dissolved and separated gases, with uptake and elimina- 
tion of inert gas limited by perfusion and diffusion. From a boundary (vascular) 
zone of thickness, a, gases diffuse into the cellular region. Cylindrical, one-dimen- 
sional, symmetry, as seen in Fig. 2, is assumed in the extended zone [16]. The radial 
diffusion equation, given by Eqns. (l-l) and (l-3), is subject to the boundary 
conditions, 

n(a,t)=p,-p,=O, 

al-UC* t) -= atp- P”) = () 
ar a1 * 

(3-l) 

with the venous tension, p9 a time-dependent quantity linking blood flow rate and 
gas solubility to the mass flux across the vascular boundary according to a balance 
equation. The derivative boundary condition at c = b/2 imparts reflection symme- 
try to the spatial solution. Accordingly, separating variables in Eqn. (l-l) and solv- 
ing, we write, 

p - p” = (Pi - p,W(r, t), (3-2) 

Fig. 2. Cylindrical tissue geometry. 
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with U, defined in Eqn. (2-2), and the derivative boundary condition at the mid- 
point, r = c, requiring, 

JO(P”U) Y,(P”C) - YO(P.~)J,(P”C) = 0. (3-4) 

for which the eigenvalues, /3, are the roots of the tonal equation. The transport 
model also assumes a fully-stirred extended vascular zone from which venous blood 
leaves in equilibrium with respect to all gases, while arterial blood either diminishes 
or replenishes gases in the zone. Perfusion-limiting is applied as a boundary condi- 
tion through the time-varying venous tension, p,, by enforcing a mass balance across 
both the vascular and cellular regions at r = a, with Il, = p, - p8 

s~~=-KsJI”-“scD g = , 
a [ 1 I a 

(3-5) 

for K a perfusion time constant, S, and S,, the nitrogen cellular and blood solubilities, 
and p8 the arterial gas tension. Clearly, Eqns. (3-2) and (3-5) bootstrap the tissue 
tension, p, venous tension, p,, and arterial tension, p,, in a complex feedback loop. 
Hennessy [8] has shown that the solution to the coupled set, Eqns. (3-3), (3-4), and 
(3-S), in various limits contains the solutions to all deterministic models hitherto 
described for gas exchange. In a few paragraphs, an analytic solution to the Fick- 
Fourier equation will be presented that has common features with the thermodyn- 
amic approach, but is easier to contrast with the multi-tissue algorithm because only 
one exchange equation with appropriate boundary conditions is employed. 

One can couple the volume of separated gas, u, to mass balance under worse-case 
conditions. With cellular solubility, S, in tissue volume, V, the mass balance, with 
zero gas elimination, is given by, 

VP,, = VSc[p - PNJ' (3-h) 

which states that the amount of separated gas is the difference between the original 
amount of nitrogen in solution before decompression and the amount left in solu- 
tion. Employing the perfusion boundary tension, 9, the balance equation takes the 
form, 

(3-7) 

withy = u/V, and the spatially-averaged response function given by, 

- 1 J:(P”d R(f)=(h24U2)“~,~[J~(PnU)-J:(Bnr)l expi-PZDf) = $J k(f). (3-X) 
n=I 
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which permits evaluation of the separated gas fraction, x, for arbitrary exposures 
provided the partial pressure, PN2, is known. Both are limited for the phase algorithm 
in the following way. 

Hills [ 1 l] proposed a criteria for decompression pain based on pressure differen- 
tials between separated gas and surrounding tissue. If the presssure differential, 8, 
exceeds a critical threshold, S’, pain occurs, 

s > 8. (3-9) 

or, equivalently, by Boyle’s law with tissue modulus, K, 

Kx a 8, (3-10) 

with critical thresholds in the range, 

0.43 c 6’6 1.13fsw. (3.11) 

These thresholds correspond to separated gas fractions, employing a nominal value 
[lo] for K, 

0.0039 s x s 0.0093, (3-12) 

which are small, yet not insignificant. The identification of the separated gas frac- 
tion, x, as a critical indicator is a significant development. Hennessy and Hemple- 
mann [9] established a linear titration curve between saturation and safe 
decompression pressures, assuming that the same critical volume of released gas 
provokes mild attacks of decompression sickness. Their analysis also offers explana- 
tions for changes in signs and symptoms which follow changes in the nature of the 
exposure to pressure. Similarly, Yount and Hoffman [21] linked separated gas vol- 
umes in a bubble formation model to establish decompression criteria. 

While inert gas tensions vary dramatically with depth, oxygen, carbon dioxide, 
and water vapor tensions are fairly constant under normal conditions. Worse-case, 
separated nitrogen pressure, PN2, as a function of ambient pressure is also suggested 
by Hills [ll], 

P&= P+3.2lfsw. (3-13) 

Here separated nitrogen takes up the difference between total hydrostatic pressure 
and the sum of metabolic gas and water vapor pressures. Arterial nitrogen equili- 
brates with alveolar nitrogen in less than a minute. At equilibrium, the nitrogen tis- 
sue, p, venous, p,, and arterial, p,. tensions are all equal to the alveolar partial 
pressure, PN2, which can be written, accounting for water vapor dilution (1.61 fsw), 

I-N = 0.79P- 1.61 fsw, (3- 14) 
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taking 0.79 as the nitrogen mole fraction. The pressure difference, A, between 
ambient pressure and the sum of dissolved gases is the biological inherent unsaturu- 
tion, [lo], or the oxygen window [3], 

A = P - po, - p<-th - pH+3 - pN2 = 0.2 1 P - 3.85 f,%‘, (3-15) 

taking the sum of dissolved and separated oxygen, water vapor, and carbon dioxide 
to be the same, according to Hills [lo], 

PO, + p<.+ + Pli*O = 5.47 fsw. (3-16) 

The unsaturation occurs because carbon dioxide produced by metabolism is more 
soluble in tissue than oxygen consumed and exerts a lower partial pressure. 

The Fick-Fourier algorithm employs Eqn. (l-3), which is the diffusion equation 
with a perfusion term, kll, included. The presence of the perfusion term will force all 
tensions to approach the arterial tension, pti over long time scales, that is, II = p - 

pll = 0 when time derivatives and diffusion gradients vanish. A time-dependent 
boundary condition, mocking up the mass balance constraint, Eqn. (3-5), can also 
be introduced to account for relaxation times between venous and arterial tensions. 
The algorithm parallels the thermodynamic formulation in many respects, as seen 
accordingly. 

From the vascular boundary, gases diffuse into the cellular zone according to the 
Fick-Fourier equation. Planar, one-dimensional symmetry, is assigned in the 
extended zone. We first change variables under the substitution, 

11 = u eXp(-Kr) (3-17) 

with perfusion constant, K, defined, 

K=f/-L (3-18) 

for f the blood-tissue fraction and ~1 the perfusion rate. The initial and boundary 
conditions, allowing venous tensions at the boundaries to relax to arterial tensions at 
some rate, a, possibly slower than the perfusion rate due to flow considerations ((I <. 
K), are taken to be, 

ll(X, 0) = pi - pa = lli, 

Il(a, I) = (pu -pa) exp(-at) = II,, exp(-gcrl), 

ll(h, [) = (pu - pu) exp(-at) = lI,,exp(-rrt), (3-19) 

constituting an inhomogeneous set. These boundary conditions attempted to emu- 
late a mass-balanced (average) tissue tension. Substituting Eqn. (3-17) into Eqn. 
(l-3) to eliminate the perfusion term, yields a diffusion equation for U in plane 
geometry, 
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D”2U au -=- 
ax2 at ’ (3-20) 

with initial and boundary conditions, 

U(X, 0) = Iii 

u(U, t)=n,,eXp[(K-U)t] 

U(b, t) = n,, exp[( K - a) t]. (3-21) 

The general method of Duhamel [12] can be invoked to solve Eqns. (3-20) and 
(3-21). The solution, V, is broken into two parts, Xand W, 

cJ=x+ w, (3-22) 

with associated boundary conditions 

X(X, 0) = Iii 

X(a, t) = 0 

X(b, t) = 0 

W(x, 0) = 0 

W(a, t) = no expb - a) tl, 
Wb, t) = n,, exp[( K - a) tl, 

for a dual set of diffusion equations, 

a2w aw D$=g Dd*2=1. 

(3-23) 

(3-24) 

(3-25) 

Unlike the previous case, the tissue, arterial, and venous tensions are not boots- 
trapped by separate mass balance and transport equations, obviously a numerical 
simplification. Solving Eqns. (3-23) through (3-26) and multiplying the solution U 
by exp ( -it) according to Eqn. (3-17) yields, 

P-P~=(Pv-P~)G(x, t)+(Pi-Pu)H(Xv t), (3-26) 
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x [exp(-crt) -exp(-a$,-, Dt - Kt)] 

= i, Gzn-Ax, t), 

H(x- t) = i, (*n” 1) Wsin[u2,_I(x - a)] exp(-cz$n-l Dt - KC) 

co 

and eigenvalues, Q defined by, 

a, _, p-‘)m 
_n (b-a) * 

(3-27) 

(3-28) 

Obviously for large perfusion and/or diffusion rates, the response function decays 
very rapidly in time. The perfusion terms, exp ( - Kc) and exp ( - ot), multiply the 
sum of Fourier diffusion components. But, because only a single equation is 
employed, perfusion and diffusion are not sequenced in a two-step process, as in the 
preceding thermodynamic treatment. The analytic form is not only easier to handle 
numerically, it also permits direct coupling to the multi-tissue algorithm, as will be 
seen in Section 4. 

Denoting the vascufarity, L = a/b, the blood-tissue partition coefficient, f, from 
Eqn. (5-19) is taken [8,1 l] in this model, 

Sh I 
f= s/&2+(1 -&SC = ??Z+(l -E2)SP’ 

s 2% 
p Sh’ (3-29) 

for S, (0.0125 atm-‘) and S’ (0.069 atm-‘) blood and cellular nitrogen solubilities, and 
typical ratios, S, c 1 for aqueous tissue, Sp = 5 for lipid tissue. Vascularity, E, has the 
range, l/l S 6 E 4 l/5, so that for most applications, f = l/S,. The balance equa- 
tion takes the analogous form to Eqn. (3-7), 

xpNz= !%[~a +(p”-p,,)~(t)+(pi-p,)~7(t)-PNZl, (3-30) 
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with averaged response functions given by, 

eXp(-a$,-, Df - Kt) = i fi2n_l(l). 
ll=l 

(3-3 1) 

The functions, Rand G, broadly reflect diffusion and perfusion exchange in 
opposite limits, though effects get folded together by virtue of decaying exponentials 
involving both K and D. Exchange is clearly perfusion-controlled whenever ain_ ,D $ 
K, and then R < G . But, when a2 2n _ ,D 4 K, diffusion can compete with R > Gi . 
To give a better feeling for the net effects of K and D on the exchange, consider the 
lowest order (n = 1) terms in the expansion given by, 

8 G(t)=- D 

(b-U)‘(Y:D+K-CT 
[expl-at)-exp(-a:Dt- KI)], 

H(t)=8exp(-ly:Dt- Kf). 
IT2 

For large 0, 

G(t)+Lexp(-rrl). 
T2 

H(t)-+4 

while for small 0, 

8 D 
G(t)+m a:D + K _ o[exp(-ot)-eXp(-Kt)]. 

H(t)-tLexp(-Kt) 
72 

(3-32) 

(3-33) 

so that the response depends on D for small 0, and on K and (I for large D. When D 
and !K are of similar magnitude, perfusion and diffusion bootstrap each other, with 
neither one or the other predominating. 

The average tissue tension, Jr, in a circulation-limited (perfusion) exchange satis- 
fies the mass balance [14,15], with I? = jr - pd 

SC $ = - s,Kn. (3-35) 
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similar in structure to Eqn. (3-5). Integrating, and applying the initial condition 
that, 

R(X, 0) = pu -pu = iii. (3-36) 

yields, 

i?-p,, =(p,-p,)exp(-at), (3-37) 

with, 

B FZK. 

Since, 

(3-38) 

(3-30) 

one has in general, 

fTs K. (3-40) 

The boundary conditions, Eqns. (3-19), thus impose mass balance through the mean 
tension, p . 

Algorithm Equivalence 

Opposing limits of Gi and R suggest that effective half-lives, T can be defined 
which depend inversely on D and K, that is, considering only the lowest order diffu- 
sion term@ = l), 

7= To+ TK, (4-I) 

with, 

In 2 
TD = -y- 

a,D’ 

In 2 
T#( =-. 

K 

exhibiting the limiting form as D + 00, 

(4-2) 

7+In 
K 

(4-3) 
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orasu+w, 

In 2 
r+- CYfD' 
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(4-4) 

Implicit to Eqn. (4-l) is an approximate time scale for gas penetration that adds sep- 
arate diffusion and perfusion time scales together, though the response function, 
Eqn. (3-31), includes boundary effects from the relaxation parameter, u. Still one 
reasonably expects that CI and K are of the same magnitude so that the approximation 
scale remains valid. Higher order diffusion terms, that is terms with n 9 1, damp out 
rapidly in the response function. Thus in opposite extremes, T is bounded by diffu- 
sion or perfusion time scales. In between, effects interfere, as first noted by Hen- 
nessy [8] and Hills [l 11. Tables II and III contrast lipid and aqueous half-lives for 
various values of 8 = D/d, and J fiing E = l/5 for illustration, and taking the 
lowest order diffusion term, n = 1. Values of 8 = D/d represent the two extremes 
of homogeneous (water) and heterogeneous(cellular) diffusion, that is D = 10s5 cm2 
s-’ and D =: lO-*O cm2 s-l. In the last columns, the perfusion half-lives,TK, are also 
listed for contrast. 

For small 8, both perfusion and diffusion contribute to T, while for larger 8 only 
perfusion matters in both Tables. An overlap between T and r,, is clearly exhibited 
for smaller values of the perfusion, p, in all of the above cases. Accepting the water 
(tissue) value of 8 = 104 min-‘, perfusion would be the controlling mechanism for 
gas uptake and elimination. The set of half-lives, T, (5, 10, 20, 40, 80, 120, 180, 
240, 360 min), employed in the multi-tissue algorithm are recovered from Tables II 
and III in the perfusion range, 0.0014 p < 1 .O min-I, for 8 = 104 mitt-‘, but a requi- 
sitely broader range for 8 = 10-l min-‘. For small value of the diffusivity, 8, and 
large perfusion cc, diffusion is rate-limiting. Effective half-lives for aqueous tissue 
are five times faster than their lipid counterparts for large 8, but decrease from a 
maximum of five times their lipid values at very small perfusion, p, to approximate 
equality at large perfusion cc, for small 8. For quick comparison, Table IV gives the 
perfusion rates, p, required by Eqns. (3-18) and (3-29) for the standard set of half- 

TABLE II 

AQUEOUS TISSUE HALF-LIVES AND PERFUSION-DIFFUSION SPECTRUM (c = l/5, S_ = 1) 
P 

p (min-I) T (min) ~~ (min) 

e = lo-‘(min-I) 0 = l(r(mirrl) 

o.ooo1 6942.7 6931.4 6931.5 
0.0010 104.4 693.1 693.2 
0.0100 80.6 69.3 69.3 
O.looo 18.2 6.9 6.9 
1.000 11.9 0.7 0.7 
10.00 11.3 0.07 0.07 
100.0 11.2 0.007 0.007 
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TABLE III 

LIPID TISSUE HALF-LIVES AND PERFUSION-DIFFUSION SPECTRUM (E = l/5, S, = 5) 

p (min-I) T (min) TK (mm) 

8 = 10-l (mmI) 6 = lW(mW) 

0.0091 33559.0 33548.0 33548.0 
0.0010 3366.0 3354.8 3354.8 
0.0100 346.7 335.4 335.5 
0.1000 44.8 33.5 33.5 
1.090 14.6 3.4 3.4 
10.00 11.6 0.34 0.34 
100.00 11.2 0.034 0.034 

lives, T, and E = l/5 in lipid and aqueous tissue. Lipid and aqueous perfusion rates 
vary by a constant factor, f = 4.84, for E = l/5. For a given value of K which 
recovers T, there are any number of values of cc, E, and S, according to Eqns. (3-18) 
and (3-29). 

Having described exchange models, decompression criteria, and time scales, we 
now apply algorithms to a set of arbitrary exposures and quantitatively delineate the 
overlap using parameters such as A, 0, K, and u, as well as M, d’, and x. This seven- 
parameter set constitutes a basis for many deterministic algorithms. The 
corresponding sets of perfusion, cc, in lipid and aqueous tissue, computed in Table 
IV for the standard set of multi-tissue half-lives, are pertinent by virtue of their 
widespread effective use in table and meter fabrication. The well-known P law for 
bounce exposures to depth, d, originally suggested by Hempleman [2], and later 
modified by Spencer [20], offers a simple time scale to compare algorithms, 

dr “2 S 475 fsw min”2. (4-S) 

TABLE IV 

PERFUSION RATES AND HALF-LIVES FOR LIPID AND AQUEOUS TISSUE (E = l/5) 

T (min) K (min-I) p (mine’) 

s, = 1 s,=5 

5 0.13863 0.13863 0.67096 
10 0.0693 1 0.0693 1 0.33546 
20 0.03466 0.03466 0.16775 
40 0.01733 0.01733 0.08387 
80 0.00866 0.09866 0.04191 

120 0.00578 0.09578 0.02797 
180 0.00385 0.00385 0.01863 
240 0.00289 0.00289 0.01398 
360 0.00193 0.00193 0.90934 
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TABLE V 

MULTI-TISSUE AND THERMODYNAMIC HALF-LIVES (6 = 10-l min-‘) 

T (min) d (ft) 

30 50 80 110 140 170 200 

5 5.5 5.5 5.4 5.3 5.2 5.2 5.1 
10 11 11 11 10 10 10 10 
20 22 22 21 21 20 20 20 
40 44 43 42 41 40 38 37 
80 88 86 83 79 75 72 68 

120 130 130 120 110 110 100 93 
180 200 190 180 160 150 140 12Q 
240 260 250 .240 210 190 170 150 
360 390 370 330 290 250 220 190 

Using Eqns. (3-26) and (3-31) to compute tissue tensions at depths, d, for bounce 
exposures limited by Eqn. (4-S) and K given in Table IV, Tables V and VI compare 
multi-tissue half-lives obtained by equating Eqn. (2-l) to Eqn. (3-26) and then 
inverting to estimate A and T for each K. In Tables V and VI, values of 8 vary as 
before, that is, 8 = 10-r min-‘, and 8 = 104 min-r. For added simplicity, we also 
take cp = @” - P& - P,) = 0.9 and u = 0.9 K. Equation (3-29) are again 
employed to estimatef. In the summation over diffusion terms in Eqns. (3-31), 25 
terms (n = 1, 25) are used. The standard set, T, is listed in column one and the 
inverted values, obtained from the perfusion-diffusion equations, are compared in 
the remaining columns for exposures in roughly 30 ft increments. 

For the same K as given in Table IV, the inverted half-lives of Tables V and VI 
clearly overlap the standard set in a range which grows larger as the half-lives 
increase, regardless of the value of the diffusivity, 0. Computationally, this means 
that both Eqns. (2-2) and (3-26) track similar depth-time exposures, limited simply 
by Eqn. (4-5) for quoted ranges of parameters. For fast tissues, the relative spread is 

TABLE VI 

MULTI-TISSUE AND THERMODYNAMIC HALF-LIVES (0 = 10’ min-‘) 

T (min) d (ft) 

30 50 80 110 140 170 200 

5 5.6 5.6 5.5 5.5 5.5 5.5 5.5 
10 11 11 11 11 11 11 10 
20 22 22 22 22 22 21 21 
40 44 44 44 43 42 41 40 
80 88 88 86 83 80 76 72 

120 130 130 120 110 110 100 99 
180 200 190 180 170 160 150 130 
240 260 260 240 220 200 180 160 
360 390 380 340 290 260 230 200 
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TABLE VII 

CRITICAL TENSIONS AND SEPARATED GAS FRACTIONS 

7 (min) M, UW d,, (ft) to (min) 

5 103.6 98.2 23.4 
10 87.2 77.3 37.1 
20 13.3 59.7 63.1 
40 61.6 45.0 111.3 
80 51.8 32.6 212.2 

120 46.8 26.3 326.6 
180 42.3 20.6 533.4 
240 39.4 16.8 794.8 
360 35.6 12.0 1555.6 

x X 
aqueous lipid 

0.0220 0.1215 
0.0158 0.0875 
0.0104 0.0576 
0.0067 0.0371 
0.0036 0.0200 
0.0020 0.0121 
0.0010 0.0055 
o.cNM3 0.0018 
0.0001 0.0010 

small, obviously increasing, though, as T grows large. As T grows larger, the perfu- 
sion rates, K’, drop, and diffusive terms affect calculations. At any rate, since the 
standard set, T, is arbitrary, another set, p, K, E, Sti and 0 can always be interfitted as 
far as predicting the same tensions, p. In passing, it should also be noted that the 
calculations, particularly the overlapping structures of the half-life spectra, are sen- 
sitive to o and cp. Values of a < 0.6 K and cp < 0.7 do not recover the standard set, T, 
in the bootstrap. With equivalenced tissue functions, we next turn to the decompres- 
sion criteria, A4, and x. 

Each compartment, T, has a critical surfacing tension, M,, corresponding to near 
saturation exposure at depth, d,,, according to Eqns. (2-7) and (2-8). For bounce 
exposures, time limits, to, can be estimated from Eqn. (4-5). Using Eqn. (2-2) to pre- 
dict the multi-tissue tensions at the bounce limits, t,,, and Eqn. (3-13) to estimate the 
worse-case free phase pressures, PN,, Eqn. (3-6) can then be employed to extract the 
separated fractions, x, implicit to the critical tensions, M,. Table VII lists M,, do, to, 
and x for both aqueous (S, = 0.0125 atm-I) and lipid (S, = 0.069 atm-*) cases. 
Aqueous compartments slower than 20 min satisfy the criteria, Eqn. (3-12), but only 
lipid compartments slower than 120 min are compatible. Given the arbitrariness of 
the M-value construction, this not too surprising. Yet, broad overlap is seen. A simi- 
lar equivalence between the separated fraction, x, and the decompression data over a 
much broader exposure range, including altitude, has been described by Hills 
[lO,ll]. The fact that the faster compartments, T, with larger critical tensions corre- 
sponding to deeper exposures, do not agree with the phase criteria, Eqn. (3-12), is to 
be expected. Elimination gradients in the supersaturation and phase models are 
fundamentally different [ 11,171, and such differences are reflected in M and x. 

In closing, we give a simpler representation for Eqns. (3-26) and (3-31) which can 
be employed numerically for small exponential arguments. The tissue function, 
Eqn. (3-26), can be approximated, 

(4-6) 
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by equating expressions and their first derivatives at t = 0, 

[(P - P‘,)l,=o = c 
n=l 

W?n-I =(Pv-Pa) C Gn-l(O)+(pi-pa) fj H2n-l(0), 
ll=l ll=l 

Performing the indicated operations and equating like terms of order (2n 
yields, 

8 
W2n-1 = 7T2(2n _ I)2 

h2,,-, = K - a;,,-, DI++, 

with, 

+ = Pi - PO 
Pi - Pu ’ 

(4-7) 

- 1) 

(4-8) 

(4-9) 

Both Eqns. (3-26) and (4-6) have the same limits for large and small t, and the same 
derivative at t = 0. 

Summary 

Computational algorithms enjoy varying degrees of success and failure in decom- 
pression applications. More complex phase models address a greater number of 
issues, but are harder to program for general use. And the opposite is true for sim- 
pler supersaturation models. Exchange equations and decompression criteria are 
two distinct, but related, considerations. Exchange equations provide the vehicle to 
estimate tensions, apart from criticality. Decompression criteria set limits on levels 
of dissolved or separated gas in tissue, effectively dictating staging procedures. Both 
equations and criteria can be subjective in the absence of definitive data, the acquisi- 
tion of which is tedious, sometimes controversial, and often ambiguous. Such sub- 
jectivity and leeway in parameter space can impart some commonality to 
computational algorithms, as seen, yet the range is not all inclusive. The bootstrap 
of Haldane half-lives to perfusion-diffusion parameters worked best for fast tissue 
compartments, while slow compartment M-values exhibited greater consistency with 
the phase criteria. 
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