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Preface

Wayne A. Gerth

Undersea and Hyperbaric Medical Society

In 1984, Dr. Paul Weathersby, Dr. Lou Homer and Dr. Edward Flynn published a seminal paper in which they
introduced survival analysis into the study of decompression sickness (DeS). The approach they outlined, and continued to
develop with colleagues Shalini Survanshi, Erich Parker and others at the Naval Medical Research Institute (NMRI) in a
subsequent series of published papers and reports, gave new direction to the way we reconcile theory with experience in this
field. First, it explicitly recognizes that a given physiological outcome is not an inevitable result of a particular
environmental history, but instead is only a probabilistic function of that history. Second, the approach includes rigorous
means to make one or more candidate expressions of that probabilistic function each provide its best possible, or optimum,
correlation of observed outcomes in actual experience. The optimized models that emerge from such work are consequently
quantitative generalizations of that experience, which renew the analyst's focus on the data he or she has in hand. Finally, the
approach allows quantitative assessments to be made of how well a given model accounts for observed behavior in specific
sets of data, so that the best of a collection of candidate models can be selected. This selection process allows models that are
more complex than the data warrants to be identified and deselected, helping to separate necessary theoretical complexity
from speculation.

Workers interested in other undersea and aerospace physiological problems soon recognized the analytic advantages
of survival modeling. Adoption of the techniques in these areas has lead to development of application-specific functions
describing responses to ever more complex patterns in the independent variables, and to use of meta-analytic approaches to
build data sets with analytically tractable numbers of occurrences of the adverse events of interest. As these applications
have ventured farther from those described in standard statistical tests, there has been a growing need to pause and distill
their underlying principles, critically evaluate their merits, and outline directions for further development and application.
The present Proceedings of the Workshop on Survival Analysis and Maximum Likelihood Techniques as Applied to
Physiological Modeling is both an attempt to meet that need, and a salute to the NMRI workers who originally introduced us
to this promising line of inquiry.
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Welcoming Remarks

Paul K. Weathersby

Welcome.

Within the professional interests of this Society, there are a number of environmental stressors that carry risks to
humans. The study of those stressors, and how people survive them, has been subject to an increasing amount of analysis.

iii

The conduct of these analyses is not something that any of us had the benefit of reading a good textbook about. That
book probably is yet to be written. But the scope of endeavors in this direction have become widespread enough, that the
Society thought that taking a day for some degree of review of the subject would be valuable.

The program is quite full. You see that it is structured to start with an original presentation by Dr. Gerth, who will
try to cram all of what we did not learn in school into a mere 30 minutes. There will then be a number ofpresentations up
through mid-afternoon by people that I would refer to as "practitioners" in this area. We practitioners have been usually
driven by an application that we needed to fix. When you are committed to taking care ofan applied problem, sometimes
you lose sight of the rigor in the techniques that are available to you. We have asked the practitioners to follow an outline of:
what is your data?, how do you fit your data?, and how do you assure success?

We are hoping that during the prolonged critique session this afternoon, Dr. Harrell and Dr. Homer will be able to
help us get re-oriented if we have lost our way somewhat. Following that, they have each graciously agreed to make a short
presentation on something that may be useful to us in the future.

I would note that because of the structure of the Workshop, we will not have time for any extensive question session
along with each paper. There should be a little time for discussion following all the presentations.
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Workshop Origin

Edward D. Thalmann, MD.
Captain, Medical Corps, U.S. Navy (Retired)

Undersea and Hyperbaric Medical Society

This workshop started out as an idea that I had after coming to NMRI (Naval Medical Research Institute) from
NEDU (Navy Experimental Diving Unit) and learning about something they were doing called probabilistic modeling. I
spent the next seven years immersed in the technique to model decompression sickness occurrence, and discovered that I
didn't understand it as well as I would have liked. There were some standard texts to which one could refer (many very
heavy going), but they really did not cover the methods that we were using -- especially the design of risk functions.

I also began to notice that there were a lot of papers appearing in which the technique of maximum likelihood was
used. In reading some of them, it began to occur to me that there wasn't any good way to tell if the technique was being
applied correctly or not, mainly because the published work appeared to be beyond the scope of the standard texts.

Talking with Wayne Gerth and Paul Weathersby, it seemed like the idea of a workshop was the way to go. So, I
took it upon myself to make some phone calls and see if anybody was interested in actually funding this thing. Sure enough,
we did get some funding, and I'd like to mention those organizations and their points of contact, without whose support this
workshop would not have taken place.

Captain Marie Knafelc, the Senior Medical Officer at the Navy Experimental Diving Unit in Panama City, FL,
convinced her Commanding Officer to provide some funding. Dr. Andy Pilmanis convinced his boss at Brooks Air Force
Base in San Antonio, TX, to participate. Dr. Mike Powell managed to get the folks at NASA-JSC (Johnson Space Center,
Houston, TX) to contribute some funding, and then Dr. Peter Bennett at the Divers Alert Network (DAN, Durham, NC) also
graciously decided to provide funding. These four organizations provided enough funding to have what I expect will be a
first class Workshop.

It is notable that although this workshop is occurring in conjunction with an annual scientific meeting of the UHMS,
two of our sponsors are in the aerospace community and two are in the diving community. This reflects the balance that we
sought. Ifyou look at the program, while it's heavily weighted towards diving, you'll also notice we're going to be talking
about applying this technique to altitude exposure, hypothermia, to some respiratory problems, and oxygen toxicity.

One of the first things I did after getting this funding was to fall back on my training in the Navy and completely
delegate all responsibility to Paul and Wayne. They have really been working very hard to put this together, and I think that
any kudos about this workshop should go to them.

One note. It was the intent of the workshop to focus on the methodology ofmaximum likelihood and not focus on
the actual physiological models themselves. What is of interest is how the technique can be used to take a model that
somebody has conceived and "fit it to data". I hope everybody will stick with the spirit of that. There are plenty of other
sessions in the upcoming meeting where we can discuss the actual models themselves, but here we're concerned with
application of this technique to whatever model you have come up with.
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Overview of Survival Functions and Methodology

Wayne A. Gerth
F.G. Hall Laboratory

Center for Hyperbaric Medicine and Environmental Physiology
Duke University Medical Center

Durham, NC 27710
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1. Introduction

I want to join Dr. Weathersby and Dr. Thalmann in thanking our sponsors and all of you for making possible this
workshop on "Survival Analysis and Maximum Likelihood Techniques as Applied to Physiological Modeling." My overall
objective here is to review the basic principles of survival analysis and how maximum likelihood techniques are used in such
analyses. If successful, this overview will provide a background for the presentations that follow, and give the environmental
physiologist with a strong background in mathematics and a limited background in statistics information sufficient to develop
an intuitive and quantitative understanding of how survival analysis might be applied in his or her own work.

What is survival analysis? Survival analysis is the study of the time courses of responses to a provocation in a
population of individuals. The outcome variable is the time until occurrence of a particular event of interest, or the time until
observation of an individual is terminated without occurrence of the event. This variable is defmed as the survival time, T.
The term "failure time" is used synonymously with "survival time." Survival time is a continuous, positive-valued random
variable, any particular value of which is denoted by t (PO).

The response in survival analysis is categorical; occurrence or non-occurrence of an event of interest; and can be one of
two types. The first type is the univariate response (also called a dichotomous or binary response), which consists of a single,
nonrepetitive, all-or-nothing event that occurs or does not occur in anyone individual. An individual is typically considered
to either fail or survive, but the event marking failure can be as innocuous as a change in position or as fmal as death.
Competing risk problems involve a subset of this class of responses in which an individual may experience one of two or
more events. In these problems, an individual may still fail only once, but in more than one way or by more than one
mechanism. In problems involving univariate responses, the probability of an observation at any time when an individual is
under study is unity, consisting of the sum of the probabilities of the two mutually exclusive outcomes; that an event has
occurred (E) or not occurred (0):

P(O) + P(E) = 1 (1)

The other type of categorical response in survival analysis is the multivariate response (also called a polychotomous or
multinomial response) in which each of two or more events can occur or not occur in anyone individual. With this type of
response, it is possible to observe more than one failure time on an individual, so that Eq. (1) does not apply. Problems
involving multivariate responses are beyond the scope of this Workshop and will not be considered further here.

The goals of survival analysis are to develop and evaluate quantitative descriptions of survival experience in a population
and identify the important risk factors. In the work we will review today we also wish to emerge with a generalization of that
experience that can be used to manage individual risk in future exposures. We consequently seek to transcend simple
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description of the data to develop tools by which future behavior can be prescribed, recognizing that such applications are
controversial and require great care [21].

The overall approach is schematized in Figure 1. At the outset of the process, we have on one hand a collection of
experience or data that consists of actual observations of survival experience in an exposed population, including all
information required to describe each exposure and its corresponding outcome. On the other hand, we have a collection of
theories or models that we think explain in some sort of abstract fashion the relationships between independent variables1 that
describe the exposures and occurrences of the response of interest. The problem is that we seek a theory that provides the
best-possible representation of that experience. Likelihood maximization is a tool that helps this to be achieved. Using this
tool, each model or theory among the collection of candidates is optimized about the available data, meaning that it is made
to provide its own best representation of that data. Optimized models are then evaluated so that the best among them can be
selected. This evaluation is undertaken using byproducts of the optimization processes that allow the correlation provided by
each model to be directly and indirectly compared to the correlations provided by other models. If none of the optimized
models is found to provide a satisfactory representation of the available experience, the models are refmed by correcting
identified theoretical weaknesses, reoptimized about the data and re-evaluated until a satisfactory model is obtained.

Improved < D
Understanding

~;-------{}----------------------------------------------,
/ / . "I : Theory/Models Experlence/Data :

I
I
!
I
I
I
I
I
I
I

I,

n

Optimized Models
Refinement <:=J (Evaluation)

User/Operational
Considerations

'? :
\. :

I

\ I
I'I
~-\

" .. ----- ----- --- -- ----( ~~ ---- --- ----Lab-or-at~ry or
! I

: Working Model I Field Trials,
: or Algorithm ,: Monitored

, ..,4

Operations
/',
~ ,:.
: j

Behavior prescribed to ! j
c::::::::::::::::::.:===:::::::.~/...

control individual risk

Figure 1. Schematic of the probabilistic modeling enterprise. Elements within the dashed line are the focus
of this Workshop. Experience/Data includes all independent variables (covariates) required to describe each
exposure and its corresponding outcome.

The model that fmally emerges from this loop becomes a working model that can be used to prescribe future exposures
in which individual risk is allowed to reach but not exceed specific target or acceptable risks. These prescriptions can then be
taken into the laboratory and tested in controlled trials or forwarded into the field for operational use under carefully

1 Also called covariates
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monitored conditions. Such testing or usage yields more experience that feeds back into the whole process, so that the
models can learn from experience as it continues to accumulate.

The aspects of this process that are the focus of this Workshop are indicated within the dashed line in Figure 1. My
purpose in what follows is to review these particular aspects with rigor sufficient to illuminate the quantitative relationships
that are most widely used in this work. At risk of being overly pedantic for some, I have specifically sought to avoid planting
important equations at the end of abbreviated derivations that can be difficult if not impossible to follow.

2. Properties of Survival Data

Modeling survival experience requires careful consideration of the properties of survival data that distinguish it from
data obtained in other types of study.

2.1. Censoring

A data point or observation in survival analysis is the survival time from a well-defmed time of origin until the
occurrence of a particular event or end-point. Survival times recorded for individuals in which the event of interest occurs
are called uncensored observations. These are exact if the observed failure times are singular and distinct. If the event is
observed in all individuals under study, the set of observed survival times for those individuals is said to be complete. Most
often, however, particularly in the applications that are the focus of this Workshop, the event is not observed in all
individuals under study. Survival times of individuals in which the event is not observed are said to be right censored. As
illustrated in Figure 2, a right-censored observation occurs when a subject withdraws from the study or is lost to follow-up
during the study period (L). A right-censored observation also occurs when the subject simply does not experience the event
before the study ends (C).

• == Time of exposure or
Time of exposure start

••~--~----- .... E

......---~.....-DL

••~!--------1 c

Exact observation: Event is observed

Right-censored observation

Right-censored observation

End of Recruitment

Study Time

End of Study

Figure 2. Illustration of an uncensored, exact observation (E), a right-censored observation in which the subject
withdraws from study or is lost to follow-up during the study period (L), and a right-censored observation in which
the subject does not experience the event before the study ends (C). An exposure may be an event that is complete
at essentially one point in time or the start of a process that continues for some period.

Subjects in Figure 2 are shown to be recruited into the study at different times, and right-censored at the same time if
they are not accidentally lost and do not suffer occurrence of the event. This is Type III or progressive censoring. The
relevant survival time for each subject is then the time-on-study, or "subject time," obtained by arithmetically adjusting the
study time for the individual to begin at t=0. Subject times for the examples in Figure 2 are shown in Figure 3.
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• == Time of exposure or
Time of exposure start

5

-Tt----------t•. E

_,---~DL

-1-------- C
,

o
Subject Time

Exact observation: Event is observed

Right-censored observation

Right-censored observation

Figure 3. Observations in Figure 2 shifted to give survival times with reference to a common 1=0 start time.

In contrast to the case illustrated in Figure 2, many studies are conducted by placing all subjects under study at the same
time, 1=0, In such studies, Type I censored observations are obtained by right-censoring all surviving individuals at a pre­
specified time, yielding equal survival times for those individuals. Alternatively, the study may continue until a pre-specified
portion of the individuals have failed, at which time all surviving individuals are censored (Type II censoring), or pre­
specified fractions of surviving individuals may be right-censored at various ordered failure times as the study progresses
(progressive Type II censoring). More complex censoring schemes may also be used that depend arbitrarily on various
aspects of the study as it unfolds. Regardless of which censoring mechanism is used, however, care must be taken to ensure
that it remains independent of the failure mechanism that governs the survival time of any individual. In other words, an
individual in a group of individuals who have the same values of all relevant independent variables, but who is censored at
time t, must remain representative of all other individuals that survive to that time.

2.2. Failure Time Distributions

Failure time is a random variable, the statistical properties of which become clear as its value is observed on an
increasing number of individuals drawn at random from a population. These properties are established by arranging the
observations into, or by assuming that the observations follow one of four different but interrelated distributions.

2.2.1. Probability Density Distribution

IfN individuals from a homogeneous population are exposed to a given provocation beginning at time 1=0, the number
of individuals that experience the event of interest in any time interval t to t+l1t, t>0, can be determined. The probability
density distribution of failure times,j(t), is then given by:

( #events in (t~+ t.t) interval)

J(t) = lim N ;
M~O

0::; t < 00. (2)

Note that the domain of the distribution includes all positive values of t. Because the incidence of an event divided by the
sample size is the probability of the event, Eq. (2) becomes
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f( )
. probability of event in (t, t + I1t) interval

t = Inn ,
Llt~O I1t

which is expressed as:

f( )
. pet ~ T < t + I1t)

t = hm .
Llt~O I1t

Undersea and Hyperbaric Medical Society

(3.a)

The probability of the event in the numerator is dimensionless, so that.f{t) has units of inverse time (t-1) and can be considered
as the instantaneous event rate at t.

In some studies, observations can be made on an individual only at discrete times, ~,j=l, ... ; t1 < t2 < , ... , < 00.

Conversely, any finite set of survival data, and therefore any set of survival data in actual practice, can be considered to be a
sample of discrete observations from a continuous distribution. The associated discrete probability density distribution is
then discontinuous, given by the probability of the event at each ~:

(3.b)

Under these conditions,.f{tj ) is a dimensionless quantity. The means by which a continuous distribution defmed by Eq. (3.a)
can give rise to a discrete distribution defmed by Eq. (3.b) is considered in Appendix B. Unless otherwise noted, all
distributions considered in the remainder of this overview are continuous on t.

• ~I
Exposure Time, t

Figure 4. Hypothetical probability density function,.f{t), of failure (or event) times in a large
number of individuals exposed to a given set of failure-provoking conditions during the period
indicated.

If the sample size is large, a plot of.f{t) vs. time might appear as illustrated in Figure 4. As illustrated in this example,.f{t)
is typically right-skewed. This is in contrast to the distributions typical of other types of data, which tend to be symmetric
about their mean values.

2.2.2. Cumulative Distribution and Survivor Functions

The probability density function provides the basis for the defmition of two other important functions in survival
analysis, the cumulative distribution function and the survivor function. The value of the cumulative distribution function at
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each t, F(t), is the probability that the survival time T is less than t; i.e., that the event will be observed in the interval between
oand t (0 ~ T < t):

F(t) = peT < t) ,

or in terms of the probability density function2
,

t
F(t) = Jj(u)du .

o

(4)

(5)

The value of the survivor function at each t, Set), is the probability that the survival time is greater than or equal to t:

Set) = peT ~ t) ,

which in terms of the probability density function is:

00

Set) = Jj(u)du .
t

(6)

(7)

Through application ofEqs. (5) and (7), the cumulative distribution and survivor functions are readily visualized in terms
of areas under the probability density function,j{t), as shown in Figure 5.

~;:;:-

~
'iii
c
Q)

C

~:c
ns.ce S(t ')
0.. ~------------------

t' Time, t

Figure 5. The cumulative distribution function, F(t), and survivor function, Set), as areas under the
probability density function of survival times,j{t). The value of F(t) at time t = t ' is the darkly shaded
area under the probability density function to the left of t'. The value ofSet) at time t = t ' is the lightly
shaded area under the probability density function to the right of t'.

The value of the cumulative probability distribution function at time t, F(t), is the area under the probability density function
to the left of t. Similarly, the value of the survivor function at time t, Set), is the area under the probability density function to
the right of t. Note that F(t) and S(t) are dimensionless because they are both probabilities.

Because P(O) and peE) in Eq. (1) are simply S(t) and F(t), respectively, Eq. (1) can be rewritten and rearranged to obtain:

2 Throughout this overview, u is used as a dummy variable of integration.
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S(t) = 1- F(t) .

Undersea and Hyperbaric Medical Society

(8)

Figure 6 illustrates how Eq. (8) and the relationships illustrated in Figure 5 are used to construct F(t) and S(t):

-F(t)

S(t)=1-F(t)

o.......~---------------------.;...
I'

Time, t

Figure 6. Determination ofF(t) by integration off{t) and determination ofS(t) by difference. Area under fit) to
the left of the arrow at t' in the upper panel equals the value of the cumulative distribution function at t', F(t'), in
the lower panel. The value of the survivor function at t' is then I-F(t,).

Because no one can yet have failed at time (=0, F(O)=O. It then follows from Eq. (8) that S(O)=I; i.e., the probability of
survival at (=0 must be unity. We consequently have from Eq. (7) that

00

jf(u)du =1.

t=O

(9)

Referring to Eq. (5), Eq. (9) implies that the probability of failure at infinite time, F(oo), must be unity. In other words, the
event must be assumed to eventually occur in all individuals under study. This is not a troublesome requirement if the event
is death. However, other events that we wish to model do not inevitably occur in all individuals under study. An example of
such an event is decompression sickness, which usually does not occur in many individuals regardless ofhow long they are
observed after decompression. Fortunately, the analytical requirement for eventual occurrence of the event of interest is no
problem because of the vitally important role played by right-censoring. We will see that the form of the distribution
function after the highest right-censored time in any data set does not affect the results and is hence arbitrary. We are only
interested in the form of the distribution function up to the highest right-censored time, and can allow the function thereafter
to assume whatever form might be necessary to satisfy Eq. (9). In effect, then, the density distribution is considered to
consist of two parts,!a(t) andJb(t), defmed with respect to an arbitrarily high time, Tr, at which all possible events have
occurred:

f(t) = fa (t) + fb (t) , (10)
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where

fa (t) = 0 ; t> T,

fb (t) = 0; t < T,.

We are thus ordinarily concerned only with determination offa(t), for which the following holds:

9

0< {}fQ(U)dU} S 1. (11)

Because faCt) does not conform to Eq. (9), it is called an improper density distribution. As shown in Appendix A, this
problem can also be addressed using proper distribution functions that conform to Eq. (9).

2.2.3. Hazard Function

The above density and distribution functions are defmed with respect to the total number of individuals at experiment
start. However, the number of individuals at risk in a given experiment decreases over time through action of the failure
mechanism. A fourth function, the hazard (or risk) function, incorporates this information to make it particularly useful in
the analysis of survival data. The hazard function h(t) is defmed as the instantaneous event rate at time t, given that the
individual has survived up to that time:

h( )
. pet 5: T < t + L1tlT ~ t)

t = hm .
L1t~O L1t

The hazard is thus a conditionalfailure rate.

(12)

The hazard function is intimately related to the survivor function, Set), based on the defmition of conditional probability
[2]. Ifwe have two events, denoted A and B, with respective probabilities peA) and PCB), the conditional probability of event
B given occurrence of event A, PCB IA) , is:

PCB IA) = P(AnB)
peA) ,

(13)

where P(AnB) is the probability ofjoint occurrence of events A and B. Thus, if we let peA) = peT ~ t) and

PCB) = pet 5: T < t +L1t), the numerator in Eq. (12) becomes:

pet 5: T < t + L1 tl T ~ t) = _P_(t_5:_T_<_t_+_L1_t_)
peT ~ t) ,

(14)

where we have made use of fact that the sample space for event B consists wholly of individuals in which event A has
occurred, so that P(A n B) = P(B). We also have from Eq. (1) that the total probability of any given observation is unity.

We therefore have

pet 5: T < t + t1t) = 1- pet + t1t 5: T) - peT < t) , (15)
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which, because 1- P(t + Llt ~ T) = P(T < t + Llt) , can be re-written

P(t ~ T < t + IJ.t) = P(T < t + IJ.t) - P(T < t) .

Undersea and Hyperbaric Medical Society

(16)

Using the defmition of the cumulative distribution function, F(t), given in Eq. (4), Eq. (16) becomes:

P(t ~ T < t + Llt) = F(t + Llt) - F(t) .

Substituting this result into Eq. (14) and using Eq. (6) yields

P(t ~ T < t + Lltl T "? t) = F(t + Llt) - F(t)
S(t) ,

so that Eq. (12) becomes

h(t) = lim {F(t + Llt)-F(t)}_l_.
M~O Llt S(t)

(17)

(18)

(19)

The fIrst factor on the right of this equation is the defmition of the derivative ofF(t) with respect to t. When Eq. (17) is
substituted into Eq. (3.a), this factor is also seen to equalj{t). Substitution of this latter equality yields an important
intermediate result:

h(t) = f(t) = instantaneous event rate at t
Set) probability of surviving to t or longer

(20)

The hazard has units rt, unlessj{t) is discrete as defmed by Eq. (3.b). In the latter case, Eq. (20) still applies, but h(t) is then
also discrete and dimensionless (Appendix B). In either case, it should be evident that the hazard is not a probability, but
ranges over all positive real numbers between 0 and infmity (0 ~ h(t) < (0).

Ifwe multiply both the numerator and denominator ofEq. (20) by the sample size; i.e., by the number of individuals that
entered the experiment at (=0; we get

h(t) = # individuals that fail in (t, t + /).t) interval.

(# individuals that survive to t). /).t
(21)

This defmition also follows directly from the statement preceding Eq. (12), where the numerator is the number of individuals
that fail in the infmitesimally small time interval between t and t+IJ.t and the denominator is the number of individuals that
remain of those that entered the experiment to be at risk of failing in that interval.

We proceed by re-writing the numerator in Eq. (20) using the derivative of F(t) from Eq. (5):

dF(t)/
h(t) = f(t) = I dt ,

S(t) S(t)

and then use Eq. (8) to obtain:

d(l- S(t))/
h(t) = I dt

Set)
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Simplification yields:

{

dS(%}
h(t) = - dt = -~{InS(t)},

Set) dt

from which our fmal, desired result follows:

8(1) =exp[-lh(u)du] =exp!:- H(I») ,

where the cumulative hazard, H(t), is defmed:

t
H(t) = fh(u)du = -InS(t).

o

(22)

(23)
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Note that Eq. (22) provides an expression for the survivor function in terms of the hazard function in the [0;t]3 interval, the
only interval in survival analysis where observations can be made.

Proper and improper hazard functions

It follows from Eq. (22) that the hazard function must diverge for the survivor function to equal 0 at (=oo [S(oo)=O] in
accord with Eq. (9). This requirement is quantitatively expressed as follows:

t
lim fh(u) du = 00 •

t~aoo

(24)

Hazard functions that meet this requirement are proper hazard functions that correspond to proper survival functions. As
discussed following Eq. (9), however, survival analyses in the context of the present Workshop often involve events that do
not occur in all individuals under study. Such analyses entail specification of a hazard function only for the density
distributionfa(t) in Eq. (10). Such hazard functions do not comply with Eq. (24) and are called improper, corresponding to
improper survival functions.

2.2.4. Inter-Relationships: Example

It should now be clear that the functional form of any one of the above distribution functions;j{t), F(t), Set) or h(t);
completely determines the forms of all others. This is readily illustrated for the simplest of cases in which the hazard is
constant and equal to A:

h(t) =}., .

The survivor function is then readily obtained from Eq. (22):

Set) =exp(-At).

3 In interval notation, [a;b] denotes a closed interval consisting of all x such that a ::; x ::; b.

(25)

(26)
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The form of this function suggests its name, the exponential distribution. Because of its simplicity, this distribution is often
used as a null model against which more complex distributions are compared. The corresponding probability density and
cumulative distribution functions are, from Eq. (20):

J(t) = Aexp(-At),

and from Eq. (8):

F(t) = I-S(t) = I-exp(-At).

(27)

(28)

These functions for the exponential distribution are illustrated in Figure 7 for an example case in which h(t)=A=5.

4.0

3.0

2.0

1.0

0.0 .fll!!~--'="--!!L..J""'=-:~~iii==~~+-' - - - - +
0.0 0.5 1.0 1.5

Time, t

--h(t)

--f(t)

--F(t)

- - S(t)

Figure 7. The hazard h(t), probability density j{t), cumulative probability F(t) and survivor Set) functions for
the exponential distribution.

3. Strategies for Model Development: Specification of the Hazard Function

Except for our illustration using the exponential distribution in Section 2.2.4, we have so far described the relationships
between the various distribution functions in only general terms. Explicit specification of one of the distribution functions is
a required step in the development of any model. This can be undertaken in one of two fundamentally different ways: by a
non-parametric or by a parametric approach.

3.1. Non-Parametric Procedures

In non-parametric approaches, the form of the survivor function is estimated directly from the data, with no specific
assumptions about the distribution of survival times. Life table and Kaplan Meier estimates of the survivor function are
examples of this approach covered in standard texts. This type of approach is taken primarily for data description and factor
identification, and can thus help choose an appropriate parametric model for subsequent parametric analysis.
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3.2. Parametric Procedures
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In parametric approaches, infonnation is available to motivate specification of the mathematical fonn of the hazard
function. The survivor, failure and probability density functions are then obtained from this hazard function. Parametric
approaches are usually taken in modeling adverse responses to environmental stress. Candidates for the hazard function can
be considered to fall into one of two categories:

1) functions that are based on well-characterized statistical distributions such as the exponential, Weibull, log-logistic
and gamma distributions (These are all special cases of the generalized F-distribution), or;

2) functions with shape presumed to be representative of, or explicitly defmed as, the output of modeled
physiological/etiological processes. Such "mechanistic" (or "scientific" [14]) functions are particularly useful in
modeling responses governed by independent variables that vary over time in complex patterns. The motivation for
use of such functions in modeling the incidence and time of occurrence of decompression sickness (DCS) in man is
the focus of another presentation in this Workshop [10].

3.3. Parameters in the Hazard Function

In general, the shape of the hazard function is governed by the values of a collection of p parameters, Pk (k= 1, 2, ... , p)
that may serve a variety of purposes:

• Set location and shape properties of the function for a reference population characterized by zero values for all
explanatory variables. The hazard, h(t), in our illustration of the exponential distribution in Eqs. (25) - (28) and
Figure 7 serves this purpose in describing the distribution of survival times for a homogeneous population.

• Scale the influences of explanatory variables that accommodate heterogeneity in the population of interest.
Accommodation of heterogeneity in the population requires generalization of the hazard to be a function of a vector
of independent explanatory variables, or covariates, z. For example, for our hypothetical example in Figure 4, it was
stipulated that all individuals in the sampled population were exposed to the same provocation. However, models are
usually constructed to examine how the distribution of survival times varies as particular aspects of the provocation,
or individual involved, are varied. Samples in such cases are consequently drawn from populations that include
groups of individuals distinguished from others by having characteristic values of particular independent variables;
e.g., dive depth, dive bottom time, gender, etc. The hazard for a given group in the population is then a function of
the values of the independent variables, or covariates, for that group. In order to generalize the exponential
distribution, for example, h(t) is replaced by h(t;z), which remains constant for any given z but depends on z. The
h(t;z) function can be fonnulated in any fashion, but additional parameters are almost inevitably required to scale the
influences of added elements in z.

• Serve as required constants in a "mechanistic" hazard function. Parameters of this type perfonn the same functions
as the two types of parameters described above. However, such parameters are associated with specific biophysical
properties, such as gas solubilities and diffusivities, which govern how the hazard varies with changes in the
independent variables.

4. Calibrating the Hazard Function

The hazard function is fit to a data set of observed survival times by adjusting, or calibrating, the parameter values, Pk,
(k=1,2, ... , p). The model's best fit to the data, and the optimum values of the Ph are obtained by maximizing L(J3), a
likelihood function of the parameter vector, J3. This function is defmed as the joint probability of the observed data, given the
specified hazard model, specific values for the parameters of the hazard model, and action of the censoring mechanism. An
understanding of how the likelihood function is defmed clarifies how its maximization optimizes model fit to the data.
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4.1. Likelihood Definition

Undersea and Hyperbaric Medical Society

With dichotomous responses, one can make only one of two possible observations on anyone exposure, i:

a) the event (E;) is observed by or at failure time t;, with a corresponding probability peE;), or;
b) the event is not observed (0;) by right-censored survival time t; with probability P(O;).

The likelihood, 1;(13), or probability of the outcome actually observed on the I-th exposure, is thus either peE;) or P(O;):

(29)

where

0; = 1 if t; is the time at which an event occurred (t; is a failure time),4 and;
0; = 0 if t; is a right-censored time (the event was not observed).

1;(13) = peE;) if t; is a failure time, or 1;(13) = P(O;) if t; is a right-censored time.

The outcome of each exposure is assumed to be independent of the outcomes of other exposures. The joint probability
of the observations in a data set ofN exposures is thus the product of the N individual likelihoods:

N N
L(P) = Ill;(P) = IlP(0;)1-0; P(E;)o; .

i=1 ;=1
(30)

We can now consider how each of the factors on the right ofEq. (29) contributes to the overall likelihood, L(I3), in Eq. (30).

4.1.1. Definition of R:OJ in the Likelihood

If the event was not observed, the recorded survival time t; for the exposure is a right-censored time. The likelihood for
the exposure 1; = P(O;) is the probability of surviving to t;. This probability is given in terms of the hazard function by Eq.
(22):

(31)

The importance of the P(O;) value for an observed right-censored time t; is readily envisioned in terms of areas under
candidate probability density functions, using the defmition ofSet;) given by Eq. (7). Two candidate density functions are
illustrated in Figure 8 for an observed t;, differing only in the values of their respective parameters. The function with the
higher likelihood, 1;, in Case 1 is in better accord with the observed t;.

P(O;), and the contribution of a given right-censored observation at t; to the overall likelihood L, increase as the area
under the probability density distribution to the right of t; increases. Thus, when maximizing the likelihood of right-censored
observations, parameter values in the hazard function are favored that cause risk to manifest to the right of the censoring
times. Note, however, that the distribution of that risk beyond the censoring time is unimportant and, in fact, can be of any
arbitrary form. Only the area under the density function to the right of t; is important, not the shape of the function. As a

4In some applications, the contributions of "marginal" outcomes to the likelihood are weighted by assigning such outcomes a
fractional 8; value, such as 0.1. A marginal event is the observation of an intrinsically graded response that is just sufficiently
severe to be diagnosed as an "event" versus a "no-event".
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result, a right-censored observation tells us nothing about the shape of the distribution of survival times. It only provides
location information, indicating that the risk is beyond the right-censored time where observations were not made.

Case 1

Probability
Density, ((t)

S(tj)

Time, t

Case 2

Probability
Density, f(t)

S(tj)

Time, t
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Figure 8. Probabilities of a right-censored observation at t; as areas under different probability density
distributions. Case 1: The area under the probability density function to the right of the right-censored time, t;, is
high, leading to a high S(t;)=P(O;) and high 1;. Hazard function parameterizations that lead to such cases are favored
in likelihood maximization over parameterizations such as those in Case 2, below. In Case 2, the area under the
probability density function to the right of tj is low, leading to a low P(Oj) and low 1; for the same right-censored t;.
Note that only the area under fit) to the right of t; is important, not the shape off{t) in this region.

4.1.2. Definition of ~E;) in the Likelihood

Three defInitions ofP(Ej) have been used for dichotomous outcomes depending on the nature of the observed failure
time:

1) Failure time is exact;
2) Failure time is interval-censored; i.e., only known to have occurred within some time interval between t1 and t2;

o< tl ~ T < t2, or;
3) Failure time is unknown or not used, leading to "incidence-only" or binary quantal response assays.

In the following, we consider each of these defInitions in some detail.
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4.1.2.1. peE;) for an Exact Failure Time

Undersea and Hyperbaric Medical Society

If we assume the probability density function to be discrete, the probability of failure at a particular time t; is given by
Eq. (3.b):

peE; ) = J(t; ) . (32)

However, we generally assume the distribution functions to be continuous. Strictly speaking, the probability of any exact
observation on a continuous random variable is always zero. In order to overcome this difficulty, such a probability is
evaluated over an arbitrarily small interval of the variable and understood to have meaning only with respect to that interval.
The probability of failure at a particular t; can thus be written [17]: F(t; + O)-F(t;); where F(t; +0) == lim F(t; + I1.t). This

l1t-+O+

probability is equal to that given by Eq. (32), but implicitly incorporates the inverse of the limiting I1.t. 5 Eqs. (20) and (22)
then hold, so that Eq. (32) becomes:

P(E; )=h(t; )S(t; )=h(t; )exp[ - Ih(U)dUl (33)

This probability is very sensitive to the shape of the probability density or hazard function. When maximizing the likelihood,
hazard functions are favored that maximize risk when failure was actually observed. The expression for the likelihood ofN
observations is obtained by combining Eqs. (30), (31) and (33):

N
L(~) = np(0;)1-8; P(E;)8;

;=1

(34)

where 0; is as defmed in Eq. (29). Note that Eq. (34) simplifies to:

(35)

4.1.2.2. P(E.) for Interval-Censored Failure Time

An event known to occur only between two times, 0 < tli S T < t2;, is actually the composite of two sub-events:
• Sub-event A;: individual i remains event-free to tli, with probability P(A;)=P('P-tli), and;
• Sub-event B;: individual i experiences the event in the ensuing [tlih;) interval6

, with probability
P(B;)=P(tliST<t2;)'

peE;) is thus the probability ofjoint occurrence of these two sub-events:

peE;) =P(A/.....,BJ (36)

5 This is shown in Appendix B using a discrete distribution with interval probabilities at t; given by the continuous
distribution.

6In interval notation, [a;b) denotes a half-open interval consisting of all x such that a ~x < b.



Survival Analysis and Maximum Likelihood Techniques

However, because sub-event Bi can only occur with sub-event Ai, we have, as before, that

Therefore, P(Ei ) is the unconditional probability of sub-event Bi :

By reasoning analogous to that used to obtain Eq. (17), we obtain:

P(Ei ) =P(tli ~ T < t2i) = F(t2i) - F(tli)'

Applying the defInition ofF(t) given in Eq. (5):

t2; tli
P(Ei ) = f f(t)dt - f f(t)dt ,

o 0

which simplifIes to:

t2;

P(Ei ) = f f(t)dt .

(37)

(38)

(39)

(40)

(41)
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The probability P(Ei ) can thus be considered directly in terms of the area under the probability density function,j{t), between
the tIi and t2i times, as illustrated in Figure 9.

Probability
Density, ((t)

p(Aj) = probability of survival past tIi;
=total shaded area

p(Ej ) = p(Bj); probability of failure in [t1i;tu);
= darkly shaded area

Time, t

Figure 9. P(Ei) for an event in the [tIi;t2i) interval as area under the probability density function between tIi and t2i.
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peE;) is high only when the darkly shaded area is high. Figure 10 illustrates the sensitivity of peE;) to the shape of the hazard
function when the [tli;t2;) intervaC is not too long. As a result, functions that maximize risk in the [tli;t2;) interval are favored
in likelihood maximization.

Case1

Probability
Density, ((t)

Time, t

Case 2

Probability
Density, ((t)

Time, t

Figure 10. Illustration of peE;) sensitivity to shape of the probability density function and hence to shape ofh(t).
Case 1: Area under fit) between tli and t2; is high giving a high peE;) and high 1; for an event observed between tli
and t2;. Case 2: Area underf{t) between tli and t2; is low giving a low peE;) and low 1; for the same event but
different probability density function. Parameter values in the hazard function that drive the underlyingf{t)
towards the shape in Case 1 are thus favored during likelihood maximization.

In order to express peE;) in terms of the hazard function, F(t)=I-S(t) is substituted from Eq. (8) into Eq. (39), yielding:

P(Ei ) = S(tli) - S(t2i) '

which, using Eq. (22), yields:

[~. ] [~. ]P(Ei ) = exp - ~h(u)du - exp - !h(U)dU .

The right side of Eq. (43) is factored to obtain our fmal result:

(42)

(43)

7 The interval is written here as a half-open interval to remain consistent with the defmition of the probability in Eq. (39).
The distinction between half-open and closed has no effect on evaluation of the integral in Eq. (41).
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(44)

19

Eq. (44) can also be obtained using the definition of conditional probability, which allows these analyses to be generalized to
accommodate an arbitrarily large number of time intervals (See Appendix B).

The expression for the likelihood of N independent observations is obtained by combining Eqs. (30), (31) and (44):

N
L(P) =nP(Oi )1-0; peE; )0;

;=1

(45)

=II{exp[ -1h(u)du]}1-0, . {{ exp[ - 'rh(u)du]} . {1- ex{- l.:h(U )du]}} 0,

where 8; is as defmed in Eq. (29). Note that t i is the right-censored time"* tIi.

The mechanism by which tIi and t2i times are determined in any given study must be undertaken mindful of additional
terms that are induced in the likelihood to account for dependence of the observations on the censoring mechanism. These
terms cancel out of likelihood comparisons between models only if they are equal in the different likelihoods; Le., only if the
censoring remains noninformative (eJ, Section 4.2).

4.1.2.3. R..Ei) in Absence or Neglect of Failure Time Information: "Incidence-Only" Assay

Incidence-only assay can be viewed as a specialization of the interval-censored form of analysis in which there is only a
single interval. In these analyses, the event is only known to have occurred or not between t=0 and an arbitrary observation
time tj. Analyses based on incidence-only probabilities can be important in the evaluation of a fitted model, even if the
model was fit using survival time information.

The probability of failure between t=0 and an arbitrary time tj is given by Eq. (5) as the integral of the probability
density function over this period:

"C;

P(E;) = Jj(u)du ,
o

or, from Eqs. (8) and (22):

peE;) =I-S(T;)

=l-exp[ -1h(u)dul

(46)

(47)

The expression for the likelihood ofN observations is obtained by combining Equations (30), (31) and (47):
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N
L(P) = TIP(O;)I-J; P(E;)J;

;=1

Undersea and Hyperbaric Medical Society

(48)

where 8; is as defmed in Eq. (29). Note that this expression is identical to Eq. (45) with ti=Tj for right-censored observations,

and tli=O and t2FT; for exact observations. Thus, Eq. (48) is a special case ofEq. (45).

As illustrated in Figure 11, incidence-only analyses are relatively insensitive to the shape of the probability density
function (or hazard function) when Tj is so high that the area under any candidate function to the right of T; is low. Areas
under the probability density functions to the left of the indicated Ti in the illustration are very nearly equal, despite different
function shapes. Thus, both probability density functions give a similar P(Ei) value so that neither is favored in likelihood
maximization.

Case 1

((t)

((t)

Time, t

Case 2

Time, t

Figure 11. illustration ofP(Ei) insensitivity to shape of the probability density function in "incidence-only" assays
when the observation time, T;, is high.

However, the situation is much different if Tj is low. Areas under candidate probability density functions to the left of Ti'

and hence results from optimization, can become dependent on the value of Ti' The extreme example in the Figure 12 shows
areas under the same probability density functions in the previous figure, but to the left of a much lower Ti. The areas in the
two illustrated cases, which were nearly the same at higher T;, are now very different.
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f(t)

Time, t

Case 1
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f(t)

Time, t

Case 2

Figure 12. Illustration of peE;) sensitivity to shape of the probability density function in "incidence-only" assays
when the observation time, T;, is low.

Kalbfleisch and Prentice [17] show that this type of analysis is equivalent to classical quantal response assay under
certain conditions. Note that in Eq. (46), the distribution of survival times,j{t), with domain 0:::.; t < 00, is integrated from 0
to T; in order to obtain the probability of failure between 0 and T;. More generally, the distribution of a response is given by a
functionj{w) over the domain -00 :::.; w:::'; 00. Integration of this function over the range -00 to w then yields the probability of
failure at w [7]:8

w

P(E;) = Jj(u)du .

-00

(49)

Several of the classical distributions in survival analysis are based on a log-linear model of the survival time in which it is
presumed that the response, y, is the logarithm of the survival time given by:

y =Int = J1+zy+aw, (50)

where J1 and cr are linear parameters, z is a vector of time-invariant independent variables (covariates), 'Y is a vector of
parameters associated with z, and as before w is a variable associated with the error distribution ofy. Note that f.1. + zy gives

8 The probability density function ofsurvival times,j{t), is readily obtained fromj{w): [(t) =[(w{ ~;).
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the deterministic component ofy, while the ow term gives the random component ofy. If a logistic distribution is assumed
forw;

!(w) =( \2;
l+e

w
J

Eq. (49) is solved to yield:

This expression is the familiar logistic model for P(Ej), where

w - In[ P(E;) ]
- 1-P(E;)

is the logit of P(Ej ). Solving Eq. (50) for w at t = Tj yields

lnr·-fl zy
W= I

a a

(51)

(52)

(53)

(54)

Ifwe defme a' = In T; - fl and p=_1-, then w =(a' + zp), which when substituted into Eqs. (49) and (52) yields:
a a

a'+zp (' R)
P(E;) = I!(w)dw = exp a + ZIJ •

-00 1+ exp(a' +zp)
(55)

When Tj values for all observations are the same or are so high that occurrence of the event beyond even the lowest Tj has
only negligible probability, P(Ej ) is independent of Tj. Either time is omitted from the analysis altogether, or a' is a constant
that folds into a constant term in zJ3. The outcome of interest is then simply whether the event occurs or does not occur in
any given individual. This outcome y for a given z is either 0 (no event) or 1 (event), so that the expression for yin Eq. (50)
is replaced by y=n(z)+w, where n(z) is the probability ofy=l at z. Because w can then assume only one of two possible
values; -n(z) ify=O or 1-7t(z) ify=l; w follows a binomial distribution with mean zero and variance equal to n(z)[l-n(z)], and
the analysis is simply a binary quantal response assay [16].

However, when the above conditions on the Tj do not hold, results are dependent on the distribution of Tj values in the
data. If the analysis is pursued as a quantal response assay, Tj emerges as an independent variable or factor in w = (a' + zp).
At the same time, if we let -fl = inA. and p = a-I, Eq. (55) becomes:

(56)

This is the expression for the cumulative log-logistic distribution of survival time at a particular time Tj. We therefore see
that the analysis under these conditions is equivalent to a single-interval censored survival analysis (tli=O, t2j=r;) in which
each Tj serves as an effective survival time.

This type of analysis has been used to model occurrence ofDes during altitude exposure, with the factor Tj taken as the
planned time at altitude [3,24]. In these applications, r; is not a fixed observation time for all subjects under study and is
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usually low enough for many observations that substantial Des risk remains at t > T;. Such analysis is survival analysis with
a likelihood biased by the distribution of T; in the data.

It should be clear that, although illustrated using a log-linear model for T with a particular error distribution, the above
conclusions are general. No assumptions were made that violate the fundamental presumption that event occurrence is
arbitrarily distributed in time.

4.1.2.4. p(Ej) with Competing Risks

In some survival problems, anyone individual is able to fail only once, but in more than one way or by more than one
mechanism. These problems are special cases of more general "competing risk" problems, and are analyzed using
generalizations of the expressions presented above for problems in which only a single failure type is considered. Following
a theoretical development presented by Kalbfleisch and Prentice [17], the overall hazard function, h(t), or instantaneous
conditional rate of failure by any type at time t is given as before by Eq. (20), which we reproduce following:

h( )
. pet ~ T < t + L1tl T '? t)

t = hm .
M~O L1t

The instantaneous conditional rate of failure by a specific type j at time t in the presence of the other failure types is similarly
defmed:

h ( )
. pet ~ T < t + L1t, J = j IT'? t)

j t = hm ,
M~O L1t

(57)

where J is a random variable for failure type and pet ~ T < t + L1t, J = j IT'? t) is the probability of failure by type j in the

[t;t+i1t) interval, given survival to time t while at risk for all types of possible failures. Invoking the defmition of conditional
probability in Eq. (13), with peA) = peT '? t) and PCB) equal to the unconditional probability of failure by type j in the [t;t+i1t)
interval, Eq. (57) becomes

lim pet ~ T < t + L1t, J =j)

ho(t) = M~O L1t
J peT '? t)

(58)

The limit in the numerator of this expression is seen by reference to Eq. (3.a) to be the defmition offi(t), the partial
probability function for failure type j. Eq. (58) can therefore be rewritten as:

k(t) = Jj(t) .
J Set)

(59)

Because any individual can fail only once and by only one of the possible failure types, the failure types are mutually
exclusive. The overall (unconditional) instantaneous failure rate is therefore the sum of the type-specific failure rates:

m
J(t) = L Jj (t) ,

j=l
(60)

where m is the number of different possible failure types. It then follows with substitution ofEq. (59) that
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m
f(t) = S(t)· L hj (t) ,

j=1

and from Eq. (20) that the overall hazard is the sum of the type-specific hazards:

m
h(t) = Lh/t).

j=1

We then have from Eq. (22) that the overall survivor function at time t is

S(t) = exp[- f ~h/U)dU]
OJ=1

= ~ exp[- fh/U)dU]
J=1 0
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(61)

(62)

(63)

It also follows from Eq. (60) that the overall cumulative probability of failure by all failure types at time t is the sum of the
type-specific cumulative incidences, ~(t), at time t:

(64)

The individualjj(t) are thus seen to be improper distributions because the overall probability of failure cannot exceed unity.

If the I-th individual in a study fails by failure type J=ji at time ti, P(Ei) for the individual is given by an analogue ofEq.
(33):

(65)

which, after substitution ofEq. (63), becomes:

(66)

Using Eqs. (30), (31), (63) and (66), the likelihood for the I-th individual is seen to be given by an analog of the likelihood for
the I-th individual in Eq. (35):

(67)

where the censoring indicator, 0; , is as defmed in Eq. (29); 1 for failure at ti by any type and 0 for no failure through ti. Thus,

when failure occurs, 6; = 1 is singularly associated with the type of failure that occurs, j;, while observations on the other

failure types are effectively right-censored at ti. When failure does not occur, observations on all failure types are right­
censored and ji does not enter the likelihood.

This type of analysis in its incidence-only form has been used in decompression sickness studies to examine the
relationship between simulated gas bubble size and the observed profusion of ultrasonically-detectable central venous gas
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bubbles [9]. As above, peE;) for the zth individual in these cases is governed by the partial density function for the type of
failure that occurs, and is given by an analog ofEq. (46):
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T;

P(Ei ) = Jfj; (u)du = I j;('i)'
o

The corresponding likelihood is

where, again, the censoring indicator, lSi' is as defmed in Eq. (29).

4.1.3. Combination of data with different definitions of R..EJ) under a single model

(68)

(69)

Data may consist of individual exposures with different types of failure times. It is not uncommon, for example, to lack
information about the times of occurrence of the event of interest for some exposures in which the event is known to have
occurred, while having time of occurrence information for other such exposures. Provided that the same event constitutes
failure in all of the exposures, and that appropriate information is available to defme the covariates, these different data can
be combined and analyzed under a single model. The overall likelihood for the "pooled" data, L(J3), is calculated in such
cases by using Eq. (30) with the appropriate defmition of the likelihood, 1;, for each of the individual exposures. Note that
competing risk data generally cannot be combined with simpler binary response data because different events may constitute
failure in competing risk data.

4.2. Fitting the Hazard Function: Likelihood Maximization

Likelihood maximization yields the highest probability of the observed data according to the specified hazard function

and its parameters, J3k; k=1,2, ... , p. Parameter values ~k that maximize the likelihood are the so-called maximum likelihood
" "estimates of the true parameter values, J3k. The vector, ~,ofthese J3k is called the maximum likelihood estimator (m.l.e.). In

order to avoid numerical difficulties associated with extremely small numbers, it is convenient to work with the logarithm of
L, or the log-likelihood (LL), rather than L. Because LL is a monotonically increasing function ofL, maximizing LL

maximizes L and yields the same values for the J3 k' Parameter values are systematically adjusted to maximize the log­

likelihood of a model (hazard function) about a data set of exposures and observed survival times by solving the following p
equations simultaneously:

U(A ) = dlnL(~) = 0
pk dJ3k '

for k=1, 2 , ... , p. (70)

The solutions are usually obtained using well-described numerical techniques, such as the Newton-Raphson procedure [19]
or a modified Marquardt algorithm [15,20].

p
The sum of the U(J3 k ), L U(J3k) , is called the total efficient score statistic. The p-by-p matrix of second partial

k=l
derivatives ofthe log-likelihood function is the Hessian matrix, H(~). When evaluated at the maximum likelihood

estimator, the (j,k)th element of the Hessian matrix is given by:
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(71)

forj=I,2, ... , p, and IFI, 2, ... , p. The observed information matrix, I(IJ) , is

(72)

The variance-covariance matrix of the maximum likelihood estimator, written cov(~), is then approximated by the inverse of

I(IJ) ;

(73)

It was noted earlier that the complete likelihood of a model on a data set containing right-censored observations includes
factors that account for action of the censoring mechanism. These factors are omitted from the likelihood expressions in this
overview. If the censoring scheme is deterministic, given the complete history of the study up to each censoring time, these
factors equal unity and the total likelihoods equal those expressed here. The Type I and Type II censoring schemes outlined
in Section 2.1 are in this category. However, if the censoring scheme is random, these factors contribute to the total
likelihood. The likelihoods in the present expressions are then partial likelihoods that are proportional, not equal, to the total
likelihoods. In such cases, the total likelihood is still maximized by solution ofEq. (70), and ensuing results still apply, as
long as the censoring scheme, and hence its contributions to the total likelihood, does not depend on f3. Censoring schemes
that meet this condition are independent of the failure mechanism, and like deterministic schemes, are said to be
noninformative. Contributions of censoring mechanism to the complete likelihood are discussed in detail by Kalbfleisch and
Prentice [17].

Under certain relatively mild conditions, the maximum likelihood estimates approach the true values of the parameters as

the number of observations in the data set become infmitely large. ~ is then the asymptotically unique solution to Eq. (70),

and is multivariate normal with mean ~ and variance-covariance matrix r 1(~). These asymptotic results form the basis for

statistical inference about ~. Conditions for their applicability include absence of isolated and extreme values of the model

covariates in the data; i.e., as N~oo, the influence of any observation i on ~ should vanish. Also, the components of f3

should not have unnecessary range restrictions that cause the likelihood to be maximized by parameter value(s) that are at the
boundaries of their allowed ranges.

The likelihood surface is usually not concave over the ranges of the parameters, so that care must be taken to ensure that
a likelihood maximum found by any given iterative procedure is in fact the global maximum, not a local maximum. This
care is usually exercised by running the parameter optimization algorithm to completion from as many different combinations
of initial parameter values selected from within the domains of the parameters as practicable. The time and tedium required
by this process ultimately limit both the data set size and the numerical complexity of hazard functions that can be
considered. In the end, one can only declare, not prove, that the global maximum has been achieved.

Finally, it should be noted from Eq. (30) that a model fails with a given f3 when, for any observation i in the calibration
data, either P(E;)=O and 8;=1, or P(O;)=O and 8; =0. In such an instance, the likelihood of the observation, 1;, is zero, which
propagates through the product of individual likelihoods to yield an overall likelihood, L(f3), of zero. (When working with
the log likelihood, In Ii is undefmed in such a case.) Special provisions must be taken in the parameter estimation algorithm

to trap and handle such instances to avoid frustrating and time-consuming run-time crashes. In the Marquardt or Newton­
Raphson methods, such provisions include assigning them arbitrarily low non-zero likelihoods, which allows the algorithm to
proceed to test an improved set of parameter values that may resolve the problem, or restarting the parameter estimation
process from a new starting set of parameter values. Unresolved instances must be flagged for later assessment.
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In summary, likelihood maximization yields the following analytic products:

• Maximum log lil<:elihood achieved by the model on the data, LLmax.

• Vector of maximum likelihood estimates of the parameters, p.
• Variance-covariance matrix of the parameters, cov(Il).

4.3. Required Data Set Size: Meta-Analysis
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Recall that right-censored observations provide no information about the shape of the distribution of survival times. It
follows that determination of anyone of the survival distribution functions depends only on the number of observed failures
in the data. Such determination requires more failures as the complexity of the distribution increases. On the other hand,
available data usually have low incidences of failure or relatively few events because hazardous exposures that would
produce higher failure rates cannot usually be tested. All of these factors motivate a meta-analytic approach, which entails
combination of data from many sources under a given model in order to accumulate a workable number of exposures in
which the event of interest occurred.

Such pooling of available data requires careful consideration of biases that can arise due to sampling from different study
populations and use of potentially different procedures, event/no-event criteria, censoring mechanisms, etc., in the different
studies. These issues are covered in more detail by Dr. Paul Weathersby in a separate presentation in this Workshop [25].

5. Statistical Inference

All of these analyses are ultimately undertaken to reach conclusions about the population from which the model
~ ~

calibration data were drawn. Under the (usually assumed) asymptotic properties of Pb a given value of Pk determined from

a sample ofN observations is an estimate of the mean for the population. The precision of this determination would then be
given by the standard deviation of means estimated from a large number of independent random samples ofN individuals
from the population. This standard deviation of means for a given parameter is the standard error of the parameter.
However, we usually have only one sample to work with. The essence of statistical inference is to estimate standard errors
and confidence intervals on the estimated parameters and model-estimated probabilities from properties of this single sample.
Such inferences are made using the variance-covariance matrix of the maximum likelihood estimators.

5.1. Parameter Standard Errors

The square root of the (k,k)th diagonal element of cov(P) approximates the standard error of the maximum likelihood

estimate, s.e. (~k)' of the ~ adjustable parameter, ~k:

5.2. Confidence Intervals on the Parameters

k=1, 2, ... , p. (74)

A confidence interval on an estimated parameter is the interval about the estimate in which there is a prescribed
probability (I-a) of including the true value ofthe parameter. If it is assumed that the estimate of interest is normally
distributed with a mean value equal to the estimate, confidence intervals can be computed using the estimated standard error
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of the estimate and percentage points of the standard normal distribution. The ±100(I-a)% confidence limits on ~k are then

given by:

(75)

where za/2 is the upper al2 point of the standard normal distribution. At za/2' the probability is al2 that the standard

normal variable9
, Z, will have a value greater than za/2; i.e., P(Z> za/2 )=al2. Similarly, the probability is al2 that Z will

have a value less than - za/2 ; i.e., P(Z<- za/2 )=al2. As shown in Figure 13, these probabilities are the areas under the

standard normal distribution to the right of za/2 and to the left of - za/2 ,respectively. For a=O.05, for example,
A A A

Z a/2 = 1.96, so the ±95% confidence interval on ~ k is ~ k ± 1.96 . s.e.(~ k ) .

al2

z

al2

Figure 13. Position of the za/2 percentage points in the distribution of the standard normal variate Z. Hatched

area under the distribution to the right of +za/2 is the probability al2 that Z will have a value greater than za/2 .

Hatched area under the distribution to the left of -za/2 is the probability al2 that Z will have a value less than

-za/2. Because the total area under the distribution is unity, the probability that Z will have a value between

-za/2 and +Za/2 is the remaining area under the distribution, I-a.

5.3. Standard errors and confidence intervals on estimated probabilities, fret) and set) 10

Standard errors and confidence intervals on model-estimated probabilities are obtained through consideration of how
errors in the parameters propagate through the model to influence model-estimated quantities. The propagation of errors
formula is obtained from the multivariate Taylor series approximation to the variance ofa function ofp random variables.
Elandt-Johnson and Johnson [4] show that ifg(X) is a twice-differentiable function ofp continuous random variables, X = Xl,
X2, ... , xp, the variance ofg(X) is approximately

var[g(X)] = ff[8g (X). 8g(X) .cov(xi,Xj)l.
i j ax i ax j J (76)

9 The standard normal variable follows a normal distribution with mean=O and standard deviation=l.

10 Because fret) and Set) only differ by a constant, their variances and standard errors are equal.
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This expression was also presented by Ku [18]. After substitution of fret) for g(X), X= p, and the standard error of fret) is

s.e.[fr(t)] = ~var[F(t)] . (77)

If it is assumed that fret) is normally distributed about a mean equal to fret) , the ±100(l-a)% confidence limits for fret) are

given by:

fret) ± lZa/2 .s.e.[F(t)]j, (78)

where, as above, za/2 is the upper a/2 point of the standard normal distribution.

Values of fret) near 0 or 1 may not be normally distributed, so that incorrect assumption of normality in such cases can

yield impossible values outside the permissible range [0;1]. Such values are avoided by transforming fret) to a value in the

unrestricted range (-00, (0), obtaining a confidence interval on the transform under the assumption that the transform is

normally distributed over that range, and back-transforming the result to obtain the confidence interval on fr(t). A

convenient transform for these purposes is obtained from Eq. (76), which simplifies to the following if p=l:

var[g(x)] ={d~X)}
2

. var[x].

Substituting g(X)=In x and x = S(t), we then obtain

var[In S(t)] =+. var[S(t)],
S (t)

where var [S(t)] is given by Eq. (76). Eq. (80) is rearranged to obtain:

" "Another substitution of -In S(t) for Set) in Eq. (81) yields

Noting that var[-ln S(t)]= var[In S(t)], Eq. (82) rearranges to:

Substituting the expression for var[ln S(t)] from Eq. (80) then yields:

(79)

(80)

(81)

(82)

(83)
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This fmal result gives the estimated variance of v(t) , the log-log transform of Set) :

vet) = [In~ In S(t)}].

Undersea and Hyperbaric Medical Society

(84)

(85)

Note from Eq. (23) that v(t) is the logarithm of the maximum likelihood estimate of the cumulative hazard function, H(t).

Assuming that the distribution of vet) is normal with mean equal to v(t), the ±100(1-a)% confidence limits on vet) are

obtained in the usual fashion from the upper al2 point of the standard normal distribution. Thus, Eq. (85) is rewritten as:

vet) ± Za/2 . aCt) = [In{-InS(t)}]± za/2 . a(t) , (86)

where the standard error of v(t), B(t) , is the square root of the variance of vet) given by Eq. (84):

1

B(t)={var[v(t)n~ ={~}2
S2 (t)· [In Set)r (87)

The confidence limits on set) are then obtained by back-transforming Eq. (86). Exponentiating, we obtain

the right side of which is rearranged using the identity a ·In b = In ba to obtain:

["( ) + "()] I (s"( )exP(±za/2 08(t)))- exp v t _ za/2 . a t = n t

and

[
v(t)±Za/208(t) ] _ S"( )exP(±Za/2 08(t))exp - exp - t .

The ± 95% confidence limits on Set) are thus given by:

S(t)exp[±1.9608(t)] .

(88)

(89)

Distributions of the log-log transform of selected values of Set) are illustrated in Figure 14 for two different values of the

standard error of the transform, B(t) .
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A) aCt) = 0.5
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Figure 14. Distributions of the log-log transform of various values of Set) for aCt) =0.5 (top panel) and aCt) = 0.1 (lower

panel). The upper 95% confidence limit on Set) = 0.05 is indicated by the arrow in the top panel. The corresponding lower

95% confidence limit, 0.0003, is graphically indistinguishable from O. Note that the distribution for a value of Set) < 0.5 is

not the mirror image of the distribution for 1-S(t). All distributions approach the normal distribution as aCt) decreases,

except at the limiting probabilities, set) =0 and Set) =1, where the log-log transform of set) is undefmed.

6. Goodness-of-Fit Assessment and Model Selection

The optimized parameter values, taken with the form of the hazard function, constitute the most important product of
likelihood maximization. This product must be evaluated for its ability to actually reproduce the data to which it was fit.
Such evaluation is undertaken by comparing different models, both informally and formally through tests of parameter
significance, by comparing estimated and observed probability density functions, and by comparing incidence-only model
predictions to observed incidences. Results of this evaluation are then used to select the "best-fitting" model from a
collection of competing models. Although the selected model is considered to provide the best correlation of the calibration
data, or to be most consistent with that data, its superiority in this regard cannot be construed as indication that it is the most
correct ofthe models compared. For thorough discussions of this issue, see Oreskes, et al. [21] and Hilborn and Mangel
[14].
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6.1. Comparing different models.

6.1.1. Informal comparisons

Undersea and Hyperbaric Medical Society

How different models perform about the same data is often informally assessed by direct comparisons ofmodel LLmax

values. Such comparisons require that the likelihood defmition for each exposure in the data be the same under the different
models, except for different defmitions of h(t). The model with highest LLmax (or lowest -LLmax) is then concluded to
provide the best correlation of the data.

6.1.2. Formal tests of parameter significance

Other formal statistical tests allow models with parameters that contribute insignificantly to goodness-of-fit to be
rejected as "over-parameterized" in favor of more parsimonious models; i.e. models with fewer adjustable parameters, ~k'

6.1.2.1. Wald test

The Wald test is analogous to a t-test in analysis of variance, and is perhaps the simplest test of parameter significance.

The Wald test is based on the Wald statistic, Zw(~k ), which is defmed for the maximium likelihood estimate of parameter

~k as:

" " "
ZW(~k) =~k / s.e,Wk)· (90)

ZW(~k) has an asymptotic standard normal distribution under the null hypothesis that ~k =0. Thus, for example,

ZW(~k) >1.96 rejects the null hypothesis of ~k = 0 at p < 0.05. Alternatively, Zij,(~k) is chi-square with one degree of

freedom under the null hypothesis.

6.1.2.2. Likelihood Ratio Tests

The ratios of the likelihoods of model pairs are used to formally test significance of parameters added to one model to
obtain another; e.g., to test significance ofparameters added to a Null model.

6.1.2.2.1. Nested models, Likelihood ratio test

If Model (A) can be expressed as a reduced form of Model (B) by assigning zero values to r~l parameters in Model (B),
Model (A) is said to be "nested" in Model (B). The significance of the r added parameters in Model (B); i.e. whether the r
parameters in Model (B) afford significant improvement over Model (A), can be formally tested using a likelihood ratio test:

x2 =-2ln L max (Model (A)) =-2ln L max (l3) ; d.f.=r,
L max (Model (B)) L max (13; a)

(91)

where a is the vector of r parameters in Model (B) assigned zero values to obtain Model (A). The null hypothesis for this
test, Ho, is that the r added parameters in Model (B) afford no significant improvement over Model (A), and that the
elaboration ofModel (A) obtained by addition of the r tested parameters is not statistically warranted. A high X2 motivates
rejection of Ho; i.e., indicates that at least one nonzero component in a provides a significantly improved model fit.

6.1.2.2.2. Nearly nested models, Approximate likelihood ratio test

IfModel (A) is a form ofModel (B) obtained by fixing r~l parameters in Model (B) at particular values, Model (A) is
said to be "nearly nested" in Model (B). The null hypothesis, Ho, that the estimated values of the r parameters in Model Bare
not significantly different from their fixed Ho values in Model A is tested using an approximate likelihood ratio test [4]:
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2 _ L max (Model (A)) _ -2 In L max (p;a) . d f _
X =-2In Lmax(Model(B)) - Lmax(p;a)' . . -r,

(92)
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where a is the vector of r parameters in Model (B) assigned fixed values to obtain Model (A). A high X2 motivates rejection

of l!o; i.e., indicates that at least one component ofa is significantly different from its fixed value in a.

6.1.3. Akaike Information Criterion (AIC)

Likelihood ratio tests allow discrimination between only two candidate models at a time, and require that one of the
models in each pair be nested or nearly nested in the other. Selection among multiple models requires successive evaluations
of the likelihood ratio in multiple hypothesis tests. Use of the Akaike information criterion, or AIC, reduces this process to a
single statistical decision, and does not require that the candidate models be nested or nearly nested.[l]

The AIC for a given model is a measure of the discrepancy between the probability distribution estimated by that model
and the true distribution, given by:

AIC = -2LLmax + 2p, (93)

where LLmax is the log-likelihood of the model with its p optimized parameters. Note that by inclusion of the 2p term, the
AIC contains an intrinsic penalization for increasing model complexity. The model with minimum AIC among a collection
of candidate models is the model of choice.

6.2. Comparing estimated and observed probability density distributions

Construction of observed and model-estimated occurrence density distributions for relatively complex models of large
and heterogeneous data has been well-described [12,23]. These distributions give the total observed and estimated numbers
of failures per interval of time, allowing graphical assessment of a model's ability to correlate observed failure times as well
as overall observed incidences of failure.

It is first ensured that subject times for all individual exposures in the data are defmed with respect to a common
reference zero time. In analyses of decompression sickness incidence and time of occurrence, for example, this reference
time is conveniently chosen as the time at which the last decompression in an exposure is completed. The subject time is
then arbitrarily divided into discrete time intervals on either side of this reference time, and the interval-censored form of
P(E) [Eq. (44)] is used to obtain an estimated probability offailure in each interval for each individual exposure in the data.
The overall estimated number of failures in each interval is then the sum of the individual probabilities of failure in the
interval. Comparison with the observed distribution provides a visual indication of model performance that illuminates the
temporal properties of model predictions. Such comparisons can be made on the training data as a whole, on subsets of the
training data to illuminate areas where model performance is weak, and on various validation data sets that were not included
in the training data.

An example assessment of this type is given in Figure 15. While only failures appear in this example, division of each
ordinate value by the total number of subjects in the data transforms each value into a probability, allowing examination of
the temporal distributions of observed and estimated incidences of failure.



,,----------------------------~---------------~------~~---~ ~-~--

34 Undersea and Hyperbaric Medical Society

BIG29250

45

40

50

45

OBS 40

'i:" 35 -D-BVM(3) 35
.c
~ 30 30
~ -'-LE1-MOD1(Duke)
~ 25 25
o
~ 20 20
o
c 15 15

10 10

5 5
O........~~H-+-+++-+-H~... O

~ ~ N ~ ~ ~ ~ ~ ~ M ~ ~ m ~ ~ ~ ~ ~ ~ ~

Time Since End Last Decompression (hr)

Figure 15. DCS occurrence-density distributions estimated by two models ofDCS occurrence compared to the
observed distribution for the NMRI BIG292 data set of3322 air and nitrox man-dives [11]. Lines between model­
estimated points are drawn for clarity only.

6.3. Comparing incidence-only model predictions to observed incidences

Several forms of incidence-only analysis involve comparisons of observed incidences in various data sets to model­
estimated incidences for the same data.

6.3.1. Quantitative: Chi-Square Tests

Chi-square tests can be used to provide both group-specific and global measures of fit.

6.3.1.1. Group-specific Chi-Square Tests

The observed number of events in a binomial experiment ofN trials is N7t, where 7t is the proportion of events observed

in the N trials (11 = # e;nts). Ifn, is the model-estimated or expected proportion of events in the experiment, the expected

number of events is N7te- Under the null hypothesis that 7te = 7t, the random variable Z, given by

z = observed mean - expected mean = (N7t - N7te )

standard error of the mean JN7te (1-7te) ,
(94)

is distributed according to the standard normal distribution.
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h ·th f' d"d I' d h b d . f . # events in group j d hFor t e J group 0 nj m IVI ua sma ata set, teo serve proportIon 0 events IS 1t j = ,an t e
n·J

expected proportion of events is 1tej. The Pearson residual (PRj) for the group is then the square ofthe Z statistic for the
group, which follows a chi-square distribution with one degree of freedom under the null hypothesis that 1tej = 1tj [16]:
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(95)

In terms ofthe censoring indices, 8;. , for the individuals in group j,
J

n· n· 1

nj = f(I-~\)+f<\ = 11 OJ +111j = L11~j'
~~ ~~ ~~

where ij is the index for the loth individual in the group, 110j is the observed number of right-censored observations in the

group, and 111j is the observed number of event occurrences in the group. The index ,1. is used here to represent binary

outcome class 0 or 1. Omitting the group designation subscript for clarity, it follows from Eq. (95) that:

(96)

where TJel =n j7l"ej is the expected number of event occurrences in the group, and 11eo =njV-1tej) is the expected number of

right-censored observations in the group. PRj thus includes consideration of observed and expected numbers of both events
and right-censored observations in the group.

The null hypothesis, Ho, that the estimated group incidence equals the observed group incidence can be tested using the
Pearson residual as a chi-square (X2

) statistic:

High X2 => rejection of Ho; estimate not consistent with observation;
model estimate for the group is unsatisfactory.

Low X2 => cannot reject Ho; estimate consistent with observation;
model estimate for the group is acceptable.

Examination of group-specific residuals is useful to identify areas in a data set over which a model performs well from
those over which it performs poorly. Table 1, for example, shows the behavior of a model of altitude DCS incidence about its
training data set of 1514 individual altitude exposures grouped according to the maximum altitude attained in each exposure.
Note that the data are pooled from two different laboratory sources, and that some groups are defmed with respect to single
discrete maximum altitudes, while others are defmed with respect to various ranges of maximum altitude. Pearson residuals
for three groups in this data (enclosed in dotted lines in Table 1) stand out with particularly high values, identifying these
groups as being only poorly handled by the model. Comparison of observed and estimated numbers of DCS cases indicates
that the model underestimates the number ofDCS cases in each of these groups.
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Table 1. Residuals of a model of hypobaric DCS about its calibration data grouped according to
maximum exposure altitude.

ALTmax # Exposures # DCS Cases
(thousand ft) (nj) ass EST Pearson Residual

nj1tj nj 7tej 95% C.1. (nj 7tj - nj 7tej)2/nj 7tei1-7tej)

30.3* 291 52 _n§§_~_4.~Q____ {~_1 ~~?_~ __-__ ~~.:~_~?)_ nn 0.264:- -- -- 36~6-- ------------,,-,----- - -_._-.- --- --- --------27.-346--------------:
74 ___~~·l~!L ___ {~_~~~~_~ __-__ ~~':~_~?)nn_------------------------------- ------------ --------------~---------~------

29.5 322 149 _l~?_·_~§]____(1 ~A ~~~~ __-___1_§]_,_4.~~l ___ 0.414--------------_._.__ .__ .__ .__._----- ------------ ------------------------------
27.5-27.6 98 72 39.049 (36.663 - 41.379) 46.223
25.5-25.0 176 74 ___§~._Q?~ ____ {~_~~? ~_~ __-___~§J_~?) _____ 13.172------------------------------ ------------ -----------------------------

22.8* 29 1 0.304 (0.277 - 0.334) 1.610
22.5 70 25 16.092 (15.012 - 17.192) 6.403

19.8-20.6 12 0 2.932 (2.709 - 3.162) 3.880
18.0-18.1 19 1 2.371 (2.124 - 2.621) 0.906

16.5 196 4 5.024 (4.243 - 5.959) 0.214
16.0 25 0 0.373 (0.329 - 0.404) 0.379
15.0 41 1 0.473 (0.437 - 0.529) 0.594
14.4 10 0 0.110 (0.101 - 0.122) 0.111
13.0 23 0 0.160 (0.147 - 0.178) 0.161
11.6 38 0 0.222 (0.197 - 0.240) 0.223
11.5 42 0 0.132 (0.123 - 0.154) 0.132

9.0-10.3 11 0 0.027 (0.022 - 0.027) 0.027

1514 453 364.793 102.060
p«0.0001

With highlighted groups omitted:

1129 233 226.921 15.319
p=0.2244

* Profiles from Laboratory A. (All others from Laboratory B.)

6.3.1.2. Global Chi-Square Tests

The sum of the Pearson Residuals over J groups in a data set is the summary chi-square statistic for the data set, with (J­
2) degrees of freedom:

2 J
X = 2: PR j ,

j=l
(97)

where the PRj are given by Eq. (95) or (96). In this case, the null hypothesis, Ho, is that the overall estimated incidence
equals the overall observed incidence:

High X2~ rejection of Ho; estimate not consistent with observation;
model correlation of the entire data set is unsatisfactory.

Low X2~ cannot reject Ho; estimate consistent with observation;
model correlation of the entire data set is acceptable.
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The global chi-square for our example correlation ofhypobaric Des data is shown in Table 1 for all of the groups. A
global chi-square is also shown as obtained by omission of the three groups that are poorly fit by this model. The high global
chi-square for all the groups corresponds to a p-value much less than 0.0001, motivating rejection of the null hypothesis that
estimated and observed group incidences are the same. However, when the three poorly fit groups are omitted, the chi-square
decreases to a corresponding p-value of0.22. Model correlation of the restricted data would thus appear to be satisfactory.

The operation of grouping the data can significantly affect results of X2 tests, whether group-specific or global in type.
Rather than attempt a quantitative illustration, a grouping effect for the above altitude DeS data is readily illustrated
graphically. The illustration also provides an example of the last means of model evaluation that we will review here, namely
graphical comparison of observed and estimated group incidences.

6.3.2. Qualitative: Graphical Comparisons

Observed vs. model-estimated group DeS incidences obtained from data in Table 1 are illustrated graphically in Figure
16. With the exception ofthe groups identified by Pearson Residual to be poorly fit by the model (indicated by arrows), the
data visually conform well to the dashed identity line.
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Figure 16. Graphical comparison of observed and estimated grouped DeS incidences, grouped
by altitude. The dashed line is the observed = estimated identity line. Bubble area is proportional
to group size. Altitude groups identified by Pearson Residual to be poorly fit by the model are
indicated by arrows.
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This satisfying situation deteriorates if the data are regrouped according to different criteria and redrawn, as shown in
Figure 17. Here, the data are grouped by quintiles of estimated incidence. With estimated incidences in the data ranging
from 0 to 70%, 14 groups emerge from the data under this grouping scheme.
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Figure 17. Graphical Comparisons: Observed vs. Estimated Group Incidences: Example Grouped
by Quintiles (increments of 5% estimated incidence). The dashed line is the observed = estimated
identity line. Bubble area is proportional to group size.

Notwithstanding difficulties arising from grouping effects, Parsons, et al. [22] have shown that the utility of these
comparisons is limited once confidence limits on both the observations and the model-estimated incidences are considered.

7. Model Validation

All of the preceding work is descriptive. At best, it simply establishes that a model provides a good description of
experience in a sample taken from a broader population. In order to use the model to manage risk in future exposures of
individuals from that broader population, it must be shown that inferences about behavior in that population are validly made
from model behavior in the sample. Such model "validation" is accomplished by using the above techniques to evaluate
model goodness-of-fit to data other than that to which the model was fit, and by experimental trials, all involving samples
from the same broad population of interest.
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Appendix A. Surviving Fraction and Improper Distributions

Some individuals in a population under study may not experience the event of interest regardless of how long they are
observed. The existence of such a "surviving fraction" is accommodated by adoption of an improper density distribution. A
surviving fraction in the population can also be accommodated explicitly by presuming that the population under study is a
mixture of two subpopulations; one subject to failure according to a given failure time distribution,f'(t), and the other not
subject to such failure. In such a mixture model, there is a probability peS) that a given individual is a member of the
susceptible subpopulation (in state S), and a probability pel) that the individual is a member of the other immune
subpopulation (in state l) [5,6,13]. Thus,

peS) + P(I) =1 . (A.l)

It is important to note that the presence of an immune subpopulation cannot be observed. It can only be inferred if many
of the largest observations are right-censored. Under the supposition of Eq. (A.1), only individuals in the susceptible
subpopulation can experience occurrence of the event. The probabilities in Eq. (1) thus become conditional on membership
in the susceptible subpopulation:

P(O IS) + peE IS) = 1 , (A.2)

where P(OIS) is the probability of no-event given membership in the susceptible subpopulation, andP(EIS) is the probability
of an event given membership in the susceptible subpopulation. These conditional probabilities also replace their
unconditional counterparts in Eqs. (4)-(8), whilej{t) in Eq. (9) is replaced by f'(t), the probability density distribution of
P(EIS). Note now thatf'(t) applies only to the susceptible subpopulation, all members of which will experience occurrence
of the event if observed for a sufficiently long time. In general, the underlying density distribution get) that determines peS)
may be different from the distribution governing failure time,f'(t), in the susceptible sub-population. Here, however, we
assume that the processes governing occurrence of immunes are the same as those that govern occurrence of susceptibles in
the population, and use the failure time density distribution as defmed by Eq. (10) to determine peS) and pel) associated with
the two sub-populations. Thus,

and

00

peS) = f fa (u)du ,
o

00

P(I) = f fb (u)du .
o

(A.3)

(AA)

which are constants for a given set of covariate values. Note that g(t) = faCt) in this "degenerate" case.

We can now use the defmition of conditional probability in Eq. (13) to show thatf'(t) in the mixture model is
completely specified by faCt) in the non-mixture model. We have for P(EIS):

peE IS) = peE (IS) = peE)
peS) peS) ,

(A.6)
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where we have noted that P(EnS)=P(E) because the event can only occur in individuals that are members of the susceptible
subpopulation. The unconditional probability peE) is obtained by rearranging Eq. (A.6):

peE) =peS) . peE IS) (A.7)

The unconditional probability P(O) is obtained by eliminating P(EIS) and peE) in Eq. (A.7) using Eqs. (1) and (A.2):

1- P(O) = P(S)· [1- P(O IS)] ,

which rearranges to:

P(O) = P(S)· P(O IS) + [1- peS)] . (A.8)

Finally, peE) and P(O) must be the same for the mixture model as for the non-mixture model. Thus, for t<Tr, application
ofEqs. (A.6) and (5) yields

t t
peE IS) = J!'(x)dx = KJ !a(u)du,

o 0
(A.9)

where K = l/P(S). For t ~ Tr, P(EIS) = 1 and PCE) = peS). The mixture model explicitly accounts for a "surviving fraction"
of the population that never experiences occurrence of the event, and does so without having to divide the density function at
an arbitrary Tr as in the non-mixture model. However, Eq. (A.9) shows that the density function,!'(t), in the mixture model
differs from the improper or "truncated" density function,fa(t), in the non-mixture model only by a proportionality factor K
that is seen from Eq. (A.3) to be also completely specified by faCt). Therefore, in the degenerate case with g(t) = faCt), the
mixture model provides no insights into the problem beyond those illuminated by the non-mixture model.

A mixture model may be useful when it is relatively certain that immune individuals actually exist in a population and
that the processes governing the distribution of individuals between immune and susceptible groups differ from those
governing failure in the susceptible individuals; i.e., when get) '* faCt). This is not generally the case in applications reviewed
in this Workshop, where as a result, problems are handled usingfa(t) in Eq. (10). The latter approach affords the added
advantage that separate solutions for peS) need not be made as they must to use Eqs. (A.7) - (A.9) in mixture models.

Appendix B. Likelihood Construction

The likelihood for interval-censored failure times in Section 4.1.2.2. can be generalized to accommodate an arbitrary
number of time intervals. As the intervals become infmitesimally small, the analysis becomes identical to one using Eq. (35)
in which discrete failure times are used, illustrating that the latter is a special case of the interval-censored type of analysis.

We fITst stipulate that observations can be made on an individual only at discrete times; ~,j=l, ... , m; separated by
intervals b.tr~-tj-h although the distribution that gives rise to the observations is presumed to be continuous. When there are
both censored survival times and failures at a particular ~, censorings are assumed to occur after failures in order to avoid
ambiguity about which individuals remain subject to failure at!j. We then note that an individual's progress through time in a
survival study is a Markov process. As a result, the probability of an outcome in the jth interval ending at tj is dependent on
the complete history of the individual up to time !j-h but only through the individual's status at time !j-b independent ofhis or
her status at !j-z, ... , to. In the present context, the probability of an outcome in theJ-th interval is thus conditional only on
survival of the individual up to time ~-l' The contribution of the I-th individual to the overall likelihood can thus be
constructed as the product of the conditional probabilities of an outcome in each of the intervals [8,17]:
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(B.l)

where it is usually assumed that P(to)=I, and the censoring index alj is defmed such that:

aij = 1 ifoutcomeij is failure in the jth interval, and;

aij =0 ifoutcomeij is survival through the jth interval.

The upper index, G;, in Eq. (B.l) is the interval (1::; G; ::; m) in which the individual is either observed to failor, having

survived through intervals 1 through G;, the interval in which the individual is last subject to failure while under study.

If the individual fails in thejth interval, alj=l, and we have that:

P(outcomeij IT; ~ t j-I) =P~j-I ::; T; < t j IT; ~ t j-I), (B.2)

Note that this expression is the defmition of the hazard at fj-b h(tj_I), for a discrete distribution. Using the definition of
conditional probability, Eq. (B.2) becomes:

(B.3)

Because failure in the jth interval cannot occur without survival to time ~-h the numerator in Eq. (B.3) is
the unconditional probability of failure in the jth interval, P(Eij), given by:

(B.4)

Thus, using Eq. (42), we have:

(B.5)

The denominator in Eq. (B.3) is also recognized as the probability of survival to tj-I or longer, S(~_I)' Eq. (B.3) can thus be
rewritten:

p(t._ ::;T:<t'IT:~f. )=S(tj - I )-S(tj)=I_ S(tj ) .
J I 1 J 1 J-I S(t.) S(t. )

J-I J-I
(B.6)

Recalling that the data have arisen from a continuous distribution, expressions for S(tj_I) and S(tj) from Eq. (22) can be
substituted to yield the following, after rearrangement:

(B.7)

If the individual survives through the jth interval, agO, and we have that:



Survival Analysis and Maximum Likelihood Techniques

Using Eqs. (B.7) and (B.8), Eq. (B. 1) is expressed:

8;

1; = nlij ,
}=1

where

(B.8)

(B.9.a)

(B.9.b)
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If the ith individual fails in the xth interval (x ~ m ), the censoring index aij is zero for all intervals j=1, ... , x-I, and unity for
x

interval x (aix=I). Thus, 8; = x, L aij = c5; =1, and Eq. (B.9.a) becomes:
}=1

8;= 1. (B.IO)

However, if the l-th individual is right-censored in all intervals through the yth interval (y ~ m ) and is then removed from the

y
study, the censoring index uij is zero for all intervalsj=l, ... , y. In these cases, 8; = y, L aij = c5; = 0, and Eq. (B.9.a)

}=1

becomes:

8;=0. (B.II)

An expression essentially identical to Eq. (45) in Section 4.1.2.2. is obtained for the overall likelihood ofN independent
interval censored observations when Eqs. (B.IO) and (B.II) are combined using Eq. (30).

It should be clear from Eq. (BA) and Eq. (3.b) in Section 2.2.1 that as the intervals Ilt} are arbitrarily shortened with
concomitant increases in the number of observation times, m, tx-l ~ tx and

P(E;x) = lim P(tx-l ~ T; < t x )= peT; = tx ) = l(tx) , where!J.t = tx - tx-l .
M---+O

Thus, referring to Eqs. (B.5) through (B.7), Eq. (B.lO) approaches

(B.12a)
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Ix

If the I1t interval is sufficiently small so that fh(u)du ~ h(tx )l1t << 1 in the underlying continuous distribution, then by

Ix _!

expansion, 1- exp[- If h(u)dU] ~ h(tx )l1t , which equals the dimensionless h(tx) in the discrete approximation of the
Ix_1

continuous distribution. Therefore, Eq. (B. 10) also approaches

(B.12b)

(Note that the same result is obtained if we consider the interval from tx-l = tto tx = t+l1t as I1t ~ O. Also, the I1t factor
remains with h(tx) in the strictly continuous case, but is omitted with no loss of rigor because an arbitrarily close discrete
approximation can always be made.) Finally, Eq. (B.ll) becomes

(B. 13)

Eqs. (B.12) and (B.13) are then combined using Eq. (30) to yield Eq. (35) of Section 4.1.2.1, the expression for the overall
likelihood ofN exact and right-censored observations. Discrete failure time data are thus seen to arise from a continuous
distribution as a special case of interval censoring. Indeed, any set of observations arising from a continuous distribution will
be discrete due to the limited precision of observation and yield a discrete distribution of survival times due to the inevitably
finite size of the sample.

10. Glossary of Symbols

a

a'

a

a

AIC

~k

~k

P

P

covCP)

significance level or "p-value" in a significance test, equal to probability of committing a Type I error in the test

transform of In r; in the logistic model for P(Ej )

vector of r parameters tested for significance in a likelihood ratio or approximate likelihood ratio test

Vector of null hypothesis values of parameters in a tested in an approximate likelihood ratio test

censoring index for the loth individual at end of the10th interval of a multiple interval-censored problem

Akaike Information Criterion

J(h parameter in the hazard function, h(t)

maximum likelihood estimate of kth parameter in the hazard function, h(t)

vector of p parameters in the hazard function, h(t)

maximum likelihood estimators; vector ofp maximum likelihood estimates of parameters in P

variance-covariance matrix of ~ , the maximum likelihood estimators

covCPJ' Pk) (j,k)th element in the variance-covariance matrix of ~

11 index for binary outcome class, 0 or 1

81 censoring or outcome variable for individual i

Gi interval in which the lh individual is either observed to fail or last subject to failure while under study

JCt) probability density distribution of survival times
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fj(t)

F(t)

ft(t)

y

Ho

H(~)

H(t)

h(t)

h(t;z)

hj(t)

Ij(t)

I(~)

J

j

j

k

L

LLmax

m

m

Jl

N

1t

partial probability density function for outcome j in a competing risks problem

cumulative distribution function

maximum likelihood estimate of the cumulative distribution function

vector of parameters associated with z

null hypothesis in a significance test

Hessian matrix

cumulative hazard function

hazard function

hazard function written to express explicit dependence on independent variables in vector z

partial hazard function for outcome j in a competing risks problem

partial cumulative distribution function for outcome j in a competing risks problem

observed information matrix

index for the l~ individual in the overall sample ofN individuals

index for the l~ individual in group j

variable for outcome type in a competing risks problem, or
variable for group in an incidence-only analysis (usage clear from context)

value of J for a particular outcome in a competing risks problem, or
value of J for a particular group in an incidence-only analysis (usage clear from context)

index for possible failure time in discrete failure time or multiple interval-censored problems

index for parameters

likelihood of an observation made on individual i

likelihood of an observed outcome on individual i in intervalj of a multiple interval-censored problem

likelihood ofN independent observations

logarithm of the maximum likelihood ofN independent observations

constant hazard in the exponential distribution, or transform of Jl in the log-logistic distribution

number of possible failure types in a competing risks problem

number of discrete times at which an observation can be made on an individual

linear parameter in log-linear model ofy = logarithm of the survival time

number of individuals in sample

number of individuals in group j

observed number of observations in a group with outcome ~

expected number of observations in a group with outcome ~

observed proportion of events in a binomial experiment
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1te

1t(z)

p

p

P(Oi)

P(E i)

P(AIB)

PRj

r

Set)

Set)

cr

B(t)

t

t1

t2

T

T,

T

D(Pk)

u

var[g(x)]

vet)

w

x2

X

Y

y

z

ZW(Pk)

Z

Za/2
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expected proportion of events in a binomial experiment

probability ofa response for the covariates in z

exponent in the log-logistic distribution equal to the inverse of cr

number of elements in the Pparameter vector

probability of a right-censored observation (i.e., No-Event) on individual i

probability of failure (i.e., of event E) in individual i

conditional probability of event A given occurrence of event B

Pearson Residual for group j

number of parameters tested in a likelihood ratio or approximate likelihood ratio test

survivor function

maximum likelihood estimate of the survivor function

linear parameter in log-linear model ofy = logarithm of the survival time

standard error of v(t)

particular value of the survival time, T

interval start time for single interval-censored survival time

interval end time for single interval-censored survival time

survival time variable

arbitrarily high value of the survival time, above which no individual under study will fail

arbitrary time at which outcome is assessed in an incidence-only problem

efficient score statistic for parameter Pk

dummy variable of integration

variance of the estimate ofg(x)

log-log transform of Set)
variable for the error distribution ofy

Chi-square variate

interval in which an individual is observed to fail in a multiple interval-censored problem

last right-censored interval for observations on an individual in which the event of interest is never observed in
a multiple interval-censored problem

transformed value of a response in a survival experiment

standard normal variate

Wald statistic for maximum likelihood estimate of parameter Pk

vector of independent variables or covariates

upper a/2 point of the standard normal distribution
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QUESTION: I have a question about meta-analysis. When data from different sources are used, you have to assume
that the model describes the data sets in the same way. In other words, you must assume that only one model is valid for all
data sets, is that true?

DR. GERTH: Yes.
QUESTION: Is there any way of discerning whether the separate data sets may really require their own separate

models?
DR. GERTH: Yes, there is. One can put categorical dummy variables in the model that indicate to which subset of

the overall fitted data a given model prediction applies. Any group- or site-specific dependence of the response is thus
extracted into the coefficients of these dummy variables. The statistical significance of such dependence is then assessed by
evaluating the significance of these coefficients.

The trouble with this approach is that the resultant model cannot then be used to make a general prediction except
for a particular group or site.

But the question you raise is very important because decisions about data combinability under a single model are
central to any meta-analytic undertaking. Inserting dummy variables to examine whether or not there are significant inter­
group or inter-site differences is one way of examining whether or not the data are combinable under a single model.

DR. WEATHERSBY: There will be a presentation this afternoon that will address some of these issues in more
detail.

Another question?
QUESTION: John Simms from the Submarine Research Lab. Could you briefly comment on the benefits, or the

advantages and disadvantages, of using likelihood models versus other probabilistic models, such as Kaplan-Meier and Cox
models?

DR. GERTH: Let me take up the models you mention in reverse order. In speaking of "Cox" models, I'll presume
you mean the Cox proportional hazards model. This model is a so-called non-parametric model that can indeed be used to
examine the influences of a large number of independent variables on the response.

A Cox model presumes some sort ofbaseline hazard that we don't always know. So, we don't have that in hand
when we want to make predictions. A Cox proportional hazards model is great ifyour principal objectives are to describe
data that you have in hand and identify important factors. However, after having fmished the descriptive and factor
identification aspects ofthe work, you don't emerge with a model that can be used to make predictions to prescribe future
behavior. That requirement of our enterprise conditions a lot of what we do. It forces us to use parametric models.

Now to take up your other question about advantages or disadvantages ofKaplan-Meier survival curves and, I
presume, why we do not use them. A Kaplan-Meier curve is another non-parametric approach to survival data that provides
a way to view the response to only a single kind of exposure at a time. For example, we can take a population of individuals,
hit them with one kind of exposure, and then record their subsequent survival experience. That experience can be viewed in
terms of one Kaplan-Meier survival curve. Ifwe then change the nature of the exposure by altering the values of the
independent variables in some way, survival experience after this exposure would be viewed in terms of another Kaplan­
Meier survival curve. The data in our work consists of survival experience after a large variety of different exposures. No
single Kaplan-Meier curve can be used to describe all of this data.

In the approach we take, we can get values of the probability density function and derive the other functions, as I
illustrated for the exponential distribution early on. The shape of anyone of these distributions observed in a given data set
can be illustrated and compared to the model-estimated shape for the same data set. In this fashion, illustrations of model
behavior over a broad range of independent variable values can be obtained similar to those provided for only a single set of
independent variable values by the Kaplan-Meier procedure.

QUESTION: Dr. Flook, Great Britain. Model parameter values determined using maximum likelihood techniques
are sometimes quite different from those that have been measured in cases where we can measure the parameters. How does
the model deal with that? Is it telling us that these parameters are unimportant?

DR. GERTH: The issue of whether a parameter is statistically important in a model; in other words, that its
inclusion in the model provides a significant improvement of fit over the case when it is not included; is tested with a
likelihood ratio test. The importance of a parameter in this sense, its statistical significance, is a separate issue from whether
or not the value of the parameter makes sense in terms of the mechanistic or physiological model that might have motivated
the form of the hazard function.

In a very real sense, likelihood maximization turns a mechanistic model into something else. The conformance of
that "something else" to the original concept informs us about whether or not the original concept was correct. A parameter
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may be statistically significant, but its value may differ considerably from that expected in the context of the model itself.
For example, I might have a parameter for gas solubility in a mechanistic model that emerges from fitting to data with a value
that does not make sense. No known substance may have a gas solubility of value even near the value we get from fitting.
Such a result tells us that our concept of the hazard function is not correct. However, as nonsensical as the value might be, a
fmding that the parameter is statistically significant indicates that it is required in the hazard function -- with its nonsensical
value -- in order for the function to fit the data well.

It is important to note that a fitted mechanistic model remains useful for making predictions even if it contains one
or more parameters with values that do not make sense. The nonsensical parameter values simply indicate that the theory
which motivated formulation of the hazard function needs to be further refined in order be a more complete and correct
representation of the actual risk-governing processes.

Oh yeah. Rule Number 1 for modelers is that when the model doesn't work, it's never the model's fault. It must be
some fault in the data.
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This presentation contains previously published material of Dr. Andrea Harabin of the Naval Medical Research Institute,
NMRI. The organization of the presentation follows the list of questions circulated among the speakers before the
Workshop.

Data

The full data set consists of 688 human exposures performed at the Navy Experimental Diving Unit. A number of
smaller studies, mostly published by Butler and colleagues from 1979-86, were combined, since no single study was large
enough for much of an analysis. Subjects were all immersed and exercising. That feature needs mentioning, since a prior
analysis demonstrated that both immersion and exercise are significant risk factors for oxygen toxicity (I).

Only 23 different profiles were studied: about half were with a single continuous level ofPOz, while the others employed
a sequence of2 to 5 different levels. Subjects were breathing nearly 100% oxygen, so the independent variable used was
actual ambient pressure.

What constitutes oxygen toxicity? The most dangerous - and unmistakable - effect ofhigh-Oz breathing is a grand mal
seizure. Other less specific signs and symptoms occur, as shown in the following table:

Symptoms

1. Nausea
2. Irritability, dyspnea,

sleepiness, dysphoria
3. Headache
4. Numbness, tingling
5. Dizziness, vertigo

6. Twitch
7. Hearing disturbance
8. Visual disturbance
9. Unconsciousness,

aphasia
10. Convulsion

Various authors have attempted to defme toxicity based on "any" symptom, or on "severe types of symptoms" - with less
than fully satisfactory results. The present study used the sign and symptom criteria displayed real-time by the original
investigators: exposure-stopping severity. There were 42 such cases among the 688 exposures.

Models

All models considered were hazard/risk rate formulations:

P(OxToXCNS)= 1-ex{-!riSk(U)dUJ

As shown in Gerth's review in this volume, these risk functions have a number of excellent mathematical properties, and
are especially useful when some amount ofbiological or other mechanistic information is available to guide the analysis.
Three specific models will be described:

Model 0 applied a constant hazard. It has a single parameter, k, which ignores oxygen levels entirely. Its utility here is
simply to provide a statistical reference: ifwe cannot fmd a another model that offers a substantial improvement in fitting
success, we should quit.

risk = k
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Model I is more descriptive, but not very physiological.

risk = a (P02 - Thr) b

Undersea and Hyperbaric Medical Society

This formulation has 3 empirical parameters: a scale factor, a, -roughly equivalent to the single parameter in Model 0; a
threshold oxygen level, Thr, below which no risk whatsoever is encountered; and an exponent, b, allowing cumulative risk to
build faster (or slower) than linear in oxygen.

Model 2 is considerably more complicated. We refer to it as an "autocatalytic model", since it embodies a positive­
feedback feature. The model is conceived as following a putative toxic substance, X:

risk = X(t) - Thrx ,where

ax/ dt = a PQ2 + k (PQ2- Peril) X(t)

The model has 4 estimated parameters: a scale factor, a; a baseline rate constant, k; an oxygen level that overwhelms
natural de-toxicification of~ Perit; and a "safety limit" on substance X, Thrx. Note that once the exposure oxygen rises

above the critical pressure, the rate constant for the toxic substance X actually reverses sign; so that the toxicant's level can
rise quickly to extremely high values. This feature was necessary to describe a set of laboratory animal oxygen exposures
designed to test different types of intermittent exposures (2). Simple first-order kinetics do not lead to a prediction that
intermittency can provide any benefit.

Model Fitting

All models were fit using the Marquart algorithm to achieve a maximum likelihood solution. As with other complicated
environmental modeling cases, multiple local maxima in the likelihood surface were found. Numerous sets of starting
parameter values were needed to assure fmding a global maximum. The fmal parameter covariance matrix was used to
propagate error of all subsequent predictions, in keeping with standard methods.

Results

Parameters from all models are presented in the original paper (3). To keep the focus on methodology, only the log
likelihood values are presented below:

O.
1.
2.

Constant hazard
risk = a (P02 - Thr) b

autocatalytic

1 parameter
3 parameters
4 parameters

-LL = 327.0
-LL = 301.4
-LL =299.6

Both Models 1 and 2 performed better than constant hazard rate (no oxygen dependence) by a likelihood ratio test
(p<.001 for both). Improvement by 25 or so LL units with only a couple of parameters is a big deal in likelihood modeling.
Therefore, both models have a noteworthy ability to fit the data. The apparent improvement of 1.8 LL units by the
autocatalytic Model 2 vs Modell would be borderline for significance if the two models were in a subset relationship.
However, they are not, and we have no direct statistically useful means of comparing the two successful models.

Both Models I and 2 appeared to describe individual exposure profile safety. For example, on the 90-min exposure at
30 fsw depth, the observed outcome was 1 bad event in 40 subjects. That raw rate is 2.5%, with 95% binomial sampling
confidence limits covering 0.1 to 5%. Model2's prediction for this profile (propagated 95% confidence) was an incidence of
2 to 5%. Model I had a very similar prediction range. Such an overlap of prediction and observed confidence limits
occurred throughout the 23 profiles in the data. So there is little internal evidence of model failure.

Both models also performed with comparable success in separating exposures by level of risk, that is, in capturing the
dose-response relationship. All predictions were ranked, then split into three groups by predicted risk. Predictions in each
group were totaled, as were the total number of observed symptoms per group. The results for Model 2 are presented here:
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Risk level
0-5 %
5.1 - 8 %
8.3 - 15 %

Ntotal
272
208
208

N symptoms Obs.
5

15
22

N symptoms Pred.
7.2

15.5
20.8 Chi-square = 0.78 (p>.5)

Do we have any reason for choosing between the two "successful" models?

Application

Models 1 and 2 both appeared to describe the data well. Are they equal? We have a strong external reason for making a
choice. The autocatalytic model fits an important animal data set better than the type of simple empirical function ofModel
1 (2). That animal experiment is important because it had carefully selected intermittent exposures that provided a major
challenge in fmding useful descriptive kinetics.

Models 1 and 2 differ in a specific testable way in exposures like those shown in Figure 1. In both of the exposures
shown (solid lines in upper and lower panels) the "simple" oxygen exposure is the same. That is, both have the same total
time at 50 fsw and at 20 fsw. But note in the top panel that the 50 fsw time is in a single block of time, while in the bottom
panel the 50 fsw time is interrupted by a 20 fsw interval. (Parameter Pcrit for Model 2 is between 20 and 50 fsw ofpure O2,)

Note from the cumulative risk plots (dotted lines) that the interrupted profile only encounters half the total risk of the un­
interrupted profile. On the other hand, similar calculations with Modell predict an identical total risk for these two profiles.

20

80

eo

Figure 1. Effect of intermittent exposure on predicted CNS
O2 toxicity. (A) Predicted failure rate, ret), and cumulative
probability, P, for an exposure to 50 fsw for 14 min followed
by 25 min at 20 fsw. (B) Predicted failure rate and
cumulative probability for the same exposure as in A, but
with the 50 fsw portion interrupted half-way by a 5 min
excursion to 20 fsw. In each panel, ret) was multiplied by 3
to appear on the same axis as P. [from ref (3)]
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Conclusion

Undersea and Hyperbaric Medical Society

eNS oxygen toxicity can be modelled, successfully with survival functions. More than one formulation is capable of
describing a large modem human data set. The autocatalytic model (Model 2) is recommended for further use, since it is
capable of explaining the known benefit of intermittent exposure. Indeed, it could be used to optimize intermittency
schedules - but they should be tested against actual data of intermittent human exposures.
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Human work performance is often limited by human tolerance to the impedances found in respiratory protective
equipment such as fITe-fighters' and miners' breathing apparatus and gas masks. Soldiers and sailors in a battle environment
will inevitably face heavy exertion, potentially in a contaminated environment while wearing respiratory protective
equipment. Unfortunately, any equipment that protects the respiratory system must also encumber it.

The primary concern of this presentation is the tolerance of divers to underwater breathing apparatus CUBA). Figure 1
(from reference 1) shows a diver attached to a chest-mounted, closed-circuit underwater breathing apparatus, otherwise known
as a rebreather.

f
E"astance

Resistance

\"""'""~-""""I~',"_ ....

7?t~
Inertia

Figure 1. A closed-circuit underwater breathing apparatus provides various respiratory
impedances to a swimming diver.

The combination of the diver and the UBA comprises, in an engineering sense, a system. The UBA or external portion
of the system provides three respiratory impedances that the diver must overcome while breathing. Those impedances are
resistance, inertance, and elastance. Static lung-loading (SLL) is a pressure off-set that strongly impacts elastance, and may
affect resistance.

The combined man-UBA system can be modeled by an electrical circuit (Figure 2). Electrical analogs are frequently
used in analyzing respiratory mechanics (2,3) because of the mathematical similarities between the various respiratory
impedances and their electrical counterparts. Only the terminology and some symbols may differ. For instance, respiratory
inertance (1) is analogous to electrical inductance (L), and respiratory compliance (C) is analogous to capacitance (C). To a fITst
approximation, flow resistance (R) is identical to electrical resistance (R).
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Ruba

Figure 2. Electrical schematic of the combined system of diver and UBA.

An alternating current source representing the diver's gas flow-generator, the muscular diaphragm, is on the far left of
the electrical diagram in Figure 2. The diaphragm forces air (current) through the diver's internal respiratory impedances;
namely, inertance (Lman), resistance (Rman), and capacitance (Cman). The DBA's impedances are on the right half of the figure,
labeled Luba, Ruba and Cuba'

A key point about this analog that will be reemphasized later, is that we assume that the diaphragm and accessory
musculature can tolerate a fmite amount of total impedance (4). If internal impedance increases due to increases in respiratory
resistance, as happens during dense gas breathing, then the tolerated external (UBA) impedance must decrease.

A diver's tolerance to combined internal and external impedances is controlled by probabilistic phenomena. In 1973,
Bentley et al (5) tested the tolerance of miners to their respiratory protective equipment, and found that the probability of
encountering respiratory discomfort increased in a sigmoidal fashion as peak mouth pressure increased with exercise. Figure
3 shows Bentley's best estimate of that sigmoidal function (solid curve) along with upper and lower 95 percent confidence
limits (broken curves).
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Figure 3. Probability of respiratory discomfort in use of mining respirators. From Bentley et at, 1973.
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We have applied Bentley's approach to divers' tolerance to UBA. However, unlike Bentley, we focused on events
that cause a diver to cease performing his mission. By defmition, these events are binary, just as is decompression sickness.
Either the diver stops work or he does not. The types of physiological events that can jeopardize a diver's safety, or cause a
mission to be aborted, are shown in Figure 4, taken from reference (6). Various impedances (Z), are found on the bottom of
the figure, just to the right of center. Ze is external impedance contributed by a UBA. Zi is internal impedance generated
within the diver's airways and chest cage. Ztot is total impedance, internal plus external. Collectively, these impedances
impede the diver's ability to ventilate (Ve).



56 Undersea and Hyperbaric Medical Society

Figure 4. Sources of dive events (work stoppages). From the Lung at Depth, 1999.

Military and commercial divers go underwater to perform work (W). Work results in COz production, which
depending on the resulting ventilation, can modulate the arterial partial pressure of COz (PaCOz). PaCOz can in tum affect the
central nervous system, the cerebral cortex and the portions of the central nervous system that generate the debilitating
sensations of dyspnea or breathlessness. There is a stop sign associated with a level of dyspnea that is not "OK", meaning a
diver who is feeling severely dyspneic or breathless will stop work. We classify the cessation of work due to dyspnea as an
event; an untoward event.

There are a number of different event producers in Figure 4. If the diver does not stop work because of dyspnea, he
may continue working with a reduced ventilation rate to minimize the sensations accompanying respiratory impedance. Such
ventilatory depression can reach a point where arterial COz reaches a very high level and produces COz narcosis and loss of
consciousness. That obviously would also be an event. If a diver neither becomes dyspneic nor loses consciousness, he could
still fatigue his diaphragm. This would be a rare occasion, but would certainly be eventful since it would force the diver to
stop work. Of course a diver's legs could fatigue, which would force work cessation. However, we do not consider leg
fatigue to be a primary respiratory event.

We now apply our defmition of a respiratory event to data generated at the Navy Experimental Diving Unit during
the 1980s. The NEDU literature contains 240 man dives using a fixed exercise protocol. The data described in various NEDU
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reports was comprised of dive depth, the type of gas being breathed, the exercise level in watts, values for peak-to-peak
mouth pressure and gas density.

The particular exercise protocol used was graded exercise where a diver worked on a cycle ergometer for six
minutes at 50 watts, and rested for four minutes, whereupon the exercise level increased by 50 watts. This work-rest cycle
was repeated until 150 watts were successfully maintained for six minutes, or the diver stopped work (an event) due to
respiratory insufficiency.

The details of the following analysis have been presented in references 7-9. I will present only a brief summary
meant to illustrate the methods and challenges of parameter estimation in this application.

Table 1 shows the data organized for analysis. The fIrst column contains a code for an event or non-event. A non­
event is indicated by a zero, an event by the number one. The second column contains the differential peak-to-peak mouth
pressures (M» in cmH20. The third column was for gas density (P) in gram·litef1

• The fourth column identifIed the major
inert gas constituent; either one for helium or zero for nitrogen.

Table 1. Individual dive data organized for analysis by the parameter estimating software

event ~p p gas

0.00000, 23.000, 3.2000, 1.000
0.00000, 22.000, 3.2000, 1.000
0.00000, 25.000, 3.2000, 1.000
0.00000, 23.000, 6.2000, 1.000
0.00000, 37.000, 6.2000, 1.000
0.00000, 19.000, 7.7000, 1.000

1.0000, 21 .000, 7.7000, 1.000
1.0000, 24.000, 7.7000, 1.000
1 .0000, 23.000, 7.7000, 1.000
1 .0000, 29.000, 7.7000, 1.000

0.00000, 26.000, 7.7000, 1.000
1 .0000, 23.000, 7.7000, 1.000

0.00000, 18.000, 7.7000, 1.000
1 .0000, 18.000, 7.7000, 1.000

0.00000, 19.000, 7.7000, 1.000

57
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Figure 5 shows summary statistics for the total data set plotting peak-to-peak mouth pressures against gas densities,
showing the mean, with 1 standard deviation bars. For comparison, a gas density of 10 grams per liter is what would be
expected at a temperature of 37°C for air at 255 feet, or a helium-oxygen gas mixture at 2,000 feet.
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Figure 5. Summary statistics for the NEDU diver tolerance data set.
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Figure 6 divides the data into those with nitrogen or helium as the inert gas. We see that the data were fairly evenly
matched in terms of number of data points, mean ~p and p.
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Figure 6. NEDU data set divided into nitrogen and helium based dives.
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Figure 7 separates the eventful dives from the non-eventful dives. Eventful dives seem to correlate with somewhat
higher gas densities and peak-to-peak mouth pressures.
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Figure 7. NEDU data set divided into eventful and non-eventful dives.

Our goal is to improve our statistical insight into diver tolerance ofUBA by performing a more complete analysis
using models of the data, and fitting the models to the data by the method ofmaximum likelihood.
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Figure 8. NEDU dives as a function of gas density and peak-to-peak mouth pressure. Black filled
circles were uneventful, open circles were eventful.

Figure 8 shows one of the first analyses that suggested that maximum likelihood techniques might be useful. Gas
density is on the X axis, with LlP on the vertical axis. The dives marked by black filled circles were all non-eventful dives,
while the dives with open circles were those where some respiratory event occurred. Multiple events on a dive could not be
shown on this plot, but that data was nevertheless available for parameter estimation.

Figure 8 also shows a line fit by eye which approximately divides a region of eventful and uneventful dives. The
eventful dives had either high gas density and low LlPs or high ~Ps and low gas densities, or both. Our intent was to
incorporate that threshold line in a model, and to use parameter estimation techniques based on maximum likelihood to fmd
the best fit for that threshold line. The model would also defme how event probability increased with distance above the
threshold.

One of the best models was based on the Hill equation, a sigmoidal dose response curve commonly encountered in
pharmacology (Figure 9). We are thus assuming that event probability is non-linearly related to respiratory impedance, and
that impedance in general increases with ~p and gas density.
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Figure 9. Two curves described by the Hill equation, differing only by the power of the power of the equation (or n).

Ifwe·define U as a respiratory "dose", then according to the Hill equation the probability of an event (P) is related to
dose in the following manner:

un
p=----

un + U50
n

We further defme the dose (U) as follows:

(1)

(2)
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There are four parameters in this model that must be estimated. One is the power of the dose relationship (n), which
determines how quickly event probability rises with increasing dose. Another is the mid-point of the sigmoidal curve (Uso).
These two parameters are largely empirical. The last two parameters (B I and B2) have a physiological source, where the
respiratory dose, a function of respiratory impedance, is dependent upon L\P and gas density (P). Ifwe set Uto zero and
rearrange Eq. (2) for U, we obtain the following equation for the threshold line seen in Figure 9:

(3)

where B 1 is the slope of that line, and B2 is the Y-axis intercept.

The Hill equation is often considered to represent a sigmoidal response. Indeed, it will have a sigmoidal shape if
"n", the power of U in the previous equation, is greater than one. It will not have a sigmoidal shape if n equals unity. The
implications of this distinction will become apparent later.

Table 2 shows a few of the other models we examined. The first six are various forms of the Hill equation. Models 7
through 10 are based on the Gaussian probability distribution function:

[
1 ] [[ [[U'-J.JJ

2

J] [ [[U'-rJ.J/+60JfJ]]PDF(U)= a~2'J( . WTe- 2'0' + [l-WT]'e- 2.0'

The simple Hill equation provided the best fit, and thus will be discussed below.

(4)

There were 42 events and 198 non-events out ofa total of240 man dives based on the NEDU data set. From this
information we derived the so-called "null" model, a model that involves no mathematical model. To fmd the log-likelihood
(LL) of the null model we found the fraction of events, which was 42/240 = 0.175. The fraction ofnon-events was 198/240 or
0.825.

LLnull = In(0.17542 .0.825198
) = -111.29

An alternative model should provide a log-likelihood significantly smaller than -111 to be considered a worthwhile
improvement over the null model.
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Table 2. Some of the models tested

Undersea and Hyperbaric Medical Society

Model No. No. Estimated Model
Parameters

1 1 PI = constant Null model

2 3 PHe = U,n/(U,n + U'son), U' = Pm + B(1)-p

PN2 = PHe
3 4 PHe = U,n/(U,n + U'son), U' = Pm + B(1)·p

PN2= (1 + k) . PHe
4 5 PHe = U,n/(U,n + U'son), U' = Pm + B(I)·p + B(2)

PN2 = PHe
5 5 PHe = U,n/(U,n + U'son), U' = Pm + B(I)-p + B(2)

PN2= (1 + k) . PHe

6 5 PHe = U,n/(U,n + U'son), U' = Pm + B(1 ).p + B(2)He

PN2 = U,n/(U,n + U'son), U' = Pm + B(1).p + B(2)N2

7 3 PHe = (l/cr)·fpDF dx, PDF = Eq. 4, WT = 1

PN2 = PHe
8 4 PHe = (l/cr)·fpDF dx, PDF = Eq. 4, WT = 1

PN2= (1 + k) . PHe
9 4 PHe = (l/cr)·fpDF dx, PDF = Eq. 4

PN2 = PHe
10 5 PHe = (l/cr)-fPDF dx, PDF = Eq. 4

PN2 = (1 + k) . PHe

The computer program used for the parameter estimation involved a modified Marquardt algorithm developed at the
Naval Medical Research Institute, primarily by Bailey and Homer (10), and run on DEC machines until it was rewritten in
1989 using Microsoft Fortran on a PC. All of the following analyses were based on the 1989 PC version of the software.

Below are typical inputs (Table 3) and outputs (Table 4) from one of the parameter estimation runs. Out of 5
potential parameters, 2 were fixed, leaving us with a three-parameter model based on the Hill equation. The best estimate for
the slope of the density dependence was 7.6, with a fairly small standard error (1.3) for the estimate. The estimate for the
threshold was 59, with a standard error of 4.6. The slope of the mid-portion of the Hill equation was about 27, with a standard
error of about 10. The first fixed parameter, the power of the Hill equation, was fixed at one, resulting in a negative log­
likelihood of -69, a considerable improvement over the null model's log-likelihood of -111.
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Table 3. Input to the Hill model, fIXing two of the five parameters

FITTING PROGRAM = NLI.FOR, DATA FILE = UBATOTGA.DAT

/
NDAT NVAR NPRM ITER NFXD Name of the data set

240. 4 5 40 2

65

number of data "points", man dives
INITIAL PARAMETERS

7.00000 0.00000 31 .0000 1.0000 0.0000

FIXED PARAMETERS
4 5 +1lI----- Power of the Hill eqn, and gas effect multiplier fixed

LAMD DELB EPS
0.100000 0.100000E-05 0.250000E-02

FORMAT OF THE INPUT DATA FILE
(10F20.0)

IPRT M2 IPV ICP 1ST ILIK
2 000 0 1

CONVERGENCE, PRINT LAST DELB
.16E-Ol -.93E-Ol .13 .00 .00

Table 4. Result of the parameter estimation

slope of density dependence

PARAMET~ AND STANDARD ERRORS

7. 6180 1~ threshold
59.485 ~5928
26.972 ~ 10.261 slope of mid-portion of Hill equation

.1000000E+01 PARAMETER FIXED

.OOOOOOOE+OO PARAMETER FIXED

LOGLIK= 69.26724

\
LAMBDA= 2.94 DET= .577E-01

log-likelihood, a measure of fit
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Figure 10 is a replot of Figure 8, but with the threshold line determined by parameter estimation rather than by eye.
In addition, we have now added iso-probability lines. These delineate combinations of~p and gas density that yield equal
probabilities of an event. The highest event probability shown (top most oblique line) is 50%.

80

60

40

20

• uneventful
o eventful

-p=O
c =0.1

- P=O.3
-P=O~5

o
§
9
o
o
o
o•

-0 2 4 6

Denstty (gIL)
8 10

Figure 10. Replot ofFigure 8 using a threshold line and isoprobability lines as determined
by the maximum likelihood parameter estimation.

Next we added an additional parameter (Table 5), allowing us to test whether the background gas had an effect on
event probability. The power of the Hill equation was again fIxed at 1. This time the log-likelihood decreased from 69 down
to 60 (Table 6). The additional parameter was -0.6 with a standard error of 0.1. That is, for a given gas density and M, a
nitrogen background gas reduced event probability compared to helium.
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Table 5. Same Hill model, but adding one parameter (one less parameter fixed.)

FITTING PROGRAM = NLI.FOR, DATA FILE = UBATOTGA.DAT

0.00001.000031 .0000
INITIAL PARAMETERS

7.00000 0.00000

NDAT NVAR NPRM ITER NFXD
240 4 5 40 11+--- 1 parameter fixed, power of the Hill

equation

FIXED PARAMETERS
4

LAMD DELB EPS
0.100000 0.100000E-05 0.250000E-02

FORMAT OF THE INPUT DATA FILE
(10F20.0)

IPRT M2 IPV ICP 1ST ILIK
2 0 0 0 0 1

CONVERGENCE, PRINT LAST DELB
-.13E-01 .28E-01 -.14 .00 -.98E-03

Table 6. Output of the 4 parameter estimation run

PARAMETERS AND STANDARD ERRORS

7.2127 .66246
60.777 2.0442
8.3253 3.7123

. 1000000E+01 PARAMETER FIXED
- .61957 ~ .10280 gas effect multiplier

LOGLIK= 60.33887 LAMBDA= .591E-03DET=

1

.849E-01

Improved log-likelihood
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Are the differences between a log-likelihood of 69 and 60 significant enough to warrant the additional parameter?
The log-likelihood ratio test measures the improvement in the likelihood of one model over another. The likelihood ratio (LR)
is distributed as a Chi Square variable whose degrees of freedom (df) correspond to the numbers of constrained variables.

We compare a four-parameter model to a three-parameter model by the log-likelihood ratio test as follows:

LR = 2· (LLgeneral - LLspeci/iJ

LR= 2.[(-69.267)- (-60.339)]

LR= -17.857

For a difference of one degree of freedom (2 constrained parameters - 1 constrained parameter (Table 5)) we would only need
aLR of -3.84 to accept the more specific, i.e. the four-parameter model. So, according to the log-likelihood ratio test, we
should accept the improvement in model fit to the data based on four parameters. That is, the background gas does make a
difference in event probability, all else being equal.

Let's see if we can estimate the fifth parameter, the exponent in the Hill equation. So far we have fixed it at unity.
However, as Figure 9 shows, the typical sigmoidal shape of the Hill equation occurs only at higher values of"n". We let the
parameter estimation algorithm search for this additional parameter by not constraining any of the parameters (Table 7.)

Table 7. Input for a 5 parameter estimation.

FITTING PROGRAM = NLI.FOR. DATA FILE UBATOTGA.DAT

5 parameter model

NDAT NVAR NPRM ITER NFXD
240 4 5.. 50 0

INITIAL PARAMETERS
7.00000 0.00000 31 .0000 3.0000 o

LAMD DELB EPS
0.100000 0.100000E-05 0.250000E-02

FORMAT OF THE INPUT DATA FILE
(10F20.0)

IPRT M2 IPV ICP 1ST ILIK
2 0 0 0 0 1

CONVERGENCE, PRINT LAST DELB
.11E-Ol .98E-Ol .15E-01 .82E-02 .15E-03
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Table 8. Output for the five parameter estimation

5 parameter model

PARAMETERS AND STANDARD ERRORS

69

7.6896
59.700
13.024
1.6322

-.62286

1.1957
7.2098
12.465

...__...1_6.............1 5..u..8...L--__ Power of the Hill Equation
.10151

LOGLIK= 60. 11195

1

LAMBDA= .167 DET= .293E-02

No improvement in fit over the 4 parameter model

As shown in Table 8, the additional parameter was estimated as 1.6, but the standard error of the estimate was large,
also 1.6, and the log-likelihood was not improved over that of the four parameter model where n was fIxed at unity. So, at
least using the Hill equation, we cannot pull fIve parameters out of the data. We are limited to four.

In summary then, based on this particular model, the nitrogen background does seem to influence event probability,
but the addition of a non-unity power to the Hill equation does not improve the fIt.

Some of our newer work at NEDU has explored alternative parameter estimation methods. Logistic regression uses
generalized linear models, fItted by maximum likelihood techniques (11). This analytical method focuses on the log-odds
ratio or logit. The logit is sensitive to the probabilities of a binary event, or conversely, the probability is equivalent to the
exponentials of the logit.

Logit = In[1:P ]

elogil

p----
- e10git + 1

The last equation defmes the logit as a function of M>, p, their interaction, and the type of diluent gas. There were once again
5 parameters to be estimated. The estimation routine was based on the logistic regression routines in the S-Plus 4.0 (Mathsoft,
Inc.) statistical package.
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The fit parameters (mean ± standard error) were as follows:

B1 = -24.11 ± 4.57
B2 = 0.44 ± 0.09
B3 = 3.67 ± 0.73
B4 = -0.06 ± 0.01
Bs = -3.78 ±0.87

Undersea and Hyperbaric Medical Society

The standard errors were all relatively small compared to the best estimates. Figure 11 is a plot of predicted versus actual
logits on the X-axis, versus pressure or the partial of V2 on the Y-axis. The prediction line runs right among the individual
data points, and the distance of the data points from the line is a graphical representation of the residual fit. What is nice
about this is that the data points and the residuals are centered around the line. There is no curvilinearity in the residuals, and
the clustering of the data fit is relatively tight. So, at least at first blush, this looks like a reasonable logistic model.

'1'1'..........

Ium ~..;., 61' ~llm I UII! ~lWllil~-LL_-l.,.,IlJ~Iw,~\I.W!i'-'~-,;i.

H ~ ~ ~ ~

V2

Figure 11. Plot of actual versus predicted fit of the logistic when applied to the NEDU data set.
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A three-dimensional plot of the resulting fit is shown in Figure 12. It illustrates how event probability increases with
both increasing LW and p. What is newly revealed by this approach is an apparent curvilinearity of our previously assumed
linear threshold line marking the beginning of the rise in events.

20

dP (C.mH20)

Figure 12. Three-dimensional plot of the logistic fit to the helium based NEDU data.
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When plotting the effect of nitrogen atmospheres on event probabilities (Figure 13), we see an accentuation of the
threshold curvilinearity, and displacement of the threshold to higher values of L\P and p. The dip in event probability at both
high L\P and p is artifactual; it simply reflects the paucity of data obtained under those extreme conditions.

,"",",,~-r­
~i'

--II
!

o 0

10

Figure 13. Logistic fit to the nitrogen based NEDU data.
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Another alternative approach to parameter estimation is the use of neural networks to suggest more rigorous, albeit
empirical models. I view it as an exploratory data visualization tool not dependent upon model preconceptions. Figure 14
illustrates a three layer, back propagating network that was successfully applied to the same diver tolerance data used for the
previous maximum likelihood based parameter estimations.

LAYER 0 LAYER 1
Hidden

Figure 14. A three layer, back-propagating neural network applicable to the NEDU dive data.

The inputs to the neural net were, as usual, LlP, P, and type of diluent gas. The output of the network was the
probability of an event.
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ABSTRACT
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Decompression sickness (DCS) is a complex multivariable problem. A mathematical description or model of the
likelihood of DCS requires a large amount of quality research data, ideas on how to defme decompression dose using
physical and physiological variables, and an appropriate analytical approach. It is also proper to say that a high-performance
computer with specialized software is required since thousands of exposure records with tens of variables are now available.
Our DCS data from hypobaric decompressions of humans in altitude chambers come from published reports. Our
decompression doses are variants of equilibrium expressions for evolved gas plus other explanatory variables. Finally, our
analytical approach is survival analysis, where the time ofDCS occurrence is modeled. A log logistic survival analysis is a
powerful method to test competing hypotheses as well as to develop probability models about hypobaric DCS. Our
conclusions are applicable to simple hypobaric decompressions, ascents from five to 30 min, and after mins to hrs of
denitrogenation, called prebreathing. They are applicable to long or short exposures, and under conditions of rest or exercise
at altitude. The ultimate goal is to apply our models to astronauts to reduce the risk ofDCS during space walks, and
explorations on the moon and on Mars.

INTRODUCTION

Scientists have been challenged to understand and prevent hypobaric decompression sickness (DCS) ever since the
development of the jet engine, which took man high into the atmosphere. Decompression sickness in all its myriad forms and
manifestations is fundamentally linked to evolved gas in the body. A fundamental axiom about DCS is that a transient gas
supersaturation, also called over-pressure or pressure difference (LiP), exists in a region of tissue. The sum of all gas partial
pressures in that region is greater than the ambient pressure opposing the release of the gas. The metastable condition may
resolve with a phase transition (in the presence of micronuclei), and some of the excess mass (moles) of gas in the form of
bubbles may be accommodated by the tissue and cause no symptoms. The likelihood or probability ofDCS increases as the
evolved gas dose increases; this is a necessary but not sufficient condition in the mechanical view ofDCS. All of the
complex biophysical processes responsible for evolved gas in the tissue are not known. Even less is known about the linkage
between evolved gas and subsequent signs or symptoms of DCS.

Because of complex and dynamic biophysical, biochemical, and physiological processes associated with living
tissue, micronuclei and later bubbles mayor may not form given the same experimental conditions. Even when bubbles
grow, symptoms mayor may not develop under the same experimental conditions. Therefore it is better (or appropriate) to
consider DCS as a probabilistic rather than a deterministic event (1,21). By this I mean that the presence or absence of
symptoms for the same individual under identical experimental conditions mayor may not be observed from one day to the
next. A quantitative description ofDCS therefore requires a large number ofquality research data (3), ideas on how to define
a multivariable decompression dose, and analytical approaches that maximize the available information. A log logistic
survival analysis provided us a powerful method to test competing hypotheses about DCS as well as provide DCS probability
models (4-6,10).
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METHODS
Selecting The Appropriate Hazard Function
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Since the survival function Set), cumulative distribution function (cdt) F(t), hazard function h(t), cumulative hazard
function H(t), and probability density function (pdt) f(t) are different expressions of the same survival analysis, it is possible
to derive all by just knowing one (2,10,13). The survival function is defmed as Set) = 1 - F(t). Since the probability density
function, f(t) = dF(t) / dt, is related to the hazard function, h(t) = f(t) / Set), the functional form ofh(t) may be revealed given
Fn(t) from a plot ofDCS data, where Fn(t) is the empirical representation ofF(t). An equivalent defmition ofh(t) is dF(t) /

dt / (1 - F(t)). The mathematical relationship between h(t) and F(t) is clearer with this form. I will discuss our approach in
terms ofh(t) because an a priori rationale exists for determining h(t) for hypobaric decompression sickness.

The hazard function h(t) defines the instantaneous failure rate at a specific time, given that the subject survived to at

least that specified time point without a response. It is expressed in hr- 1 in our application. Lee (13) states, "h(t) gives the
conditional failure rate; the probability of failure during a small time interval, assuming that the individual has survived to the
beginning of the interval, or as the limit of the probability that an individual fails in a very short interval, t to t + ~t per unit
time, given that the individual has survived to time t". In our case, h(t) gives the probability of decompression sickness
P(DCS) per unit time during the altitude exposure given that the individual has survived to time T while at altitude. The
instantaneous failure rate for hypobaric DCS eventually goes to zero; some subjects never get DCS at a lower pressure,
assuming the lower pressure is greater than about 2.5 psia since hypoxia and ebulism prevents humans from going to a
vacuum. If they remain at the lower pressure long enough, say 48 hrs, then they will come into a new equilibrium with that
environment and are not at risk for DCS unless they once again ascend to an even lower ambient pressure. This situation is
different from the lifetime of light bulbs, for example. Eventually all light bulbs in a random sample will fail, so h(t) will
never be zero for light bulbs. A new type of survival analysis called "cure models" may improve our current methods; these
models properly address the reality that some subjects will never have DCS.

The function h(t) to describe DCS failure time might be selected based on a list of available functions, an
understanding of the underlying failure process, a study of the cumulative distribution of the failure time Fn(t), or

combinations of all three. The function may increase, decrease, remain constant, or have a complex form due to an
underlying complex process (13). Many variables interact to defme the failure time (or survival time depending on your
preference). The distribution of failure time for hypobaric DCS in a large data set from different tests is skewed to the right.
Figure 1 shows 1574 cases ofDCS in the Hypobaric Decompression Sickness Databank (HDSD, 3) partitioned into 0.2 hr
intervals; it is a histogram representation of f(t), and the symbol fn(t) is used to signify the empirical representation of f(t).

The solid curve is the histogram smoothed with the normal density function. The inset shows the same information replotted
after a natural log transformation of failure time, and this distribution appears normal. There were some severe tests, and
symptoms were reported prior to or immediately on arrival at the test altitude. The symptoms actually developed during
ascent to altitude and these few cases were assigned a one min failure time in the HDSD since the convention was to start the
exposure time upon arrival at the test altitude. This convention accounts for the few cases seen at the left of the otherwise
normal log distribution. Figure 2 shows the cumulative DCS failure distribution of the 1574 cases ofDCS described in Fig.
1. The inset shows an expanded view of the failure time over the first hr to better visualize the shape ofF(t) near time = O.
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Clme(bn)

Figure 1. The histogram shows the proportion of 1574 cases ofDCS as a function of time at altitude.
The histogram is the empirical probability density function fn(t). The inset shows the natural log

transformation of the skewed distribution into a normal distribution.
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These data show that DCS under a variety of different test conditions is manifested early, within the first two hrs of exposure.
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Figure 2. The empirical cumulative distribution Fn(t) for 1574 cases ofDCS out of3895 exposures.

F(t) is the cumulative distribution of failure time divided by the total number of records in the tests.
The inset shows the same data but the time axis is limited to the fIrst hr after reaching the test altitudes.
The changing slope is easier to see on this expanded time scale, and this slope is important to select an
appropriate survival model.

There are several observations about DCS that help to defme an appropriate h(t). First, the rate at which DCS
occurs is a function of time so the exponential distribution of failure time is not considered here. The exponential distribution
defmes h(t) as a constant so the time at altitude has no relation to the failure rate. Ifh(t) were constant, then the cumulative
distribution of failure time, approximating the F(t), would be a increasing exponential defmed as: 1 - exp( - k * t), where k is

a constant. The function Set) would be a decreasing exponential defmed as: exp ( - k * t). The natural log transformation of

Set) yields In Set) = - k * t, which is a linear function of time. It is easy to reject that the failure times come from an

exponential distribution since a plot of In Set) against time in Fig. 2 is not a straight line, with the slope k being the constant
hazard rate. Second, observations of failure times and symptom intensity also help to defme h(t). The onset of a symptom is
not instantaneous, and the risk of having a symptom increases with time. But it is unlikely that a person will get a symptom
ifhe survives past some critical time since breathing 100% oxygen (02) (as is usually done at altitude) will ultimately reduce

the nitrogen (N2) pressure in the tissues. Also, some subjects with Type I (pain only) symptoms report that the intensity of

pain reaches a peak, then subsides, and in some cases is completely gone before the end of a test. Third, observations about
venous gas emboli (VGE) are helpful to defme h(t) for DCS since evolved gas is fundamentally linked to a subsequent report
of pain or other signs and symptoms (6,7). The two types of data share a common underlying etiology. Figure 3 shows the
cumulative VGE failure distribution for 536 of 1401 records in the HDSD, not all tests produced VGE.
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Figure 3. The empirical function Fn(t) for 536 cases ofVGE out of 1401 exposures. The inset shows

the data up to one hour. Venous gas emboli are detected noninvasively with Doppler ultrasound technology.
The pulmonary artery is insonated with the ultrasound beam and the presence of moving bubbles on the way
to the pulmonary circulation is noted. Figure 2 has a similar shape and suggests that VGE and DCS share
a common etiology.
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Therefore in hypobaric decompressions, the instantaneous risk of DCS may increase with time, but only up to a certain
point in time. The observed pattern of DCS and VGE failure time and intensity of symptoms leads us to conclude that the
incidence ofDCS from hypobaric decompressions would be described well with a h(t) that rises to a peak and then decreases
with time. The log normal or log logistic survival models are good candidates, both providing for a non-monotonic h(t).
Unfortunately, the functions F(t) and Set) for both models may be "S" shaped. It is at the level ofh(t) and f(t) that the two
distributions are distinguishable. The log logistic model does not provide a slow increase ofh(t) and f(t), but the log normal
model does. The log normal is slightly better in most cases due in part to its ability to describe this "lag" component ofh(t),
but the log logistic model is easier to implement. Details about the log logistic survival model are documented in Appendix
A.

DATA

The analyses presented here are based on results from documented hypobaric chamber tests and approaches (12) that
account for failure and censored times. Investigators in the Navy have also exploited information about DCS failure time in
divers (22). Failure time in our application is defmed as the elapsed time from the beginning of a test after the
decompression to the ftrst report of a DCS symptom. Censored time is the elapsed time from the beginning of a test after the
decompression to the scheduled end of the test, also called right censored time. We defme h(t) in terms of several variables:
PIN2, P2, the presence or absence of exercise at P2, time at P2, presence or absence ofVGE, etc., and use the notation: h(t;

z) = f(time, P2, PIN2, exercise, VGE, etc.) to denote the hazard function for a decompression dose model, where t is time

and z represents various combinations of variables and constants. Appendix B lists some of the variables and their
defmitions in the HDSD used to model DCS.
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The HDSD is a computerized repository of information about DCS experienced in hypobaric chambers that was
reported in the literature (3). The literature represents a sample of the DCS research done from 1940 to present. The HDSD
currently contains information from 456 altitude tests. A test is a collection of altitude exposures where one or more subjects
were used to evaluate a particular test condition. The total number of exposures in 456 tests is 131,399. However 27 tests
had 117,422 exposures, and none of the results reported here contain information from these 27 tests. A subset of the 456
tests provided detailed information for each subject in the test, such as height, weight, age, gender, failure time to fIrst
detection ofVGE, etc. There were 211 tests with 3895 exposures. These are the data used in this report. The outcome or
response variable is the presence (coded as 1) or absence (coded as 0) of any DCS sign or symptom, excluding paresthesia
when it was the only symptom, plus the failure time to the report of the fIrst symptom.

Management of 02 prebreathe

Prebreathing 100% 02 or 02-enriched mixtures prior to a hypobaric decompression is an effective and often used

technique to prevent DCS. Therefore it is necessary to account for the use of 02-enriched mixtures prior to decompression in

order to use the majority of information in the HDSD. The N2 partial pressure in a tissue is an important variable in any

mechanistic model about DCS. Equation 1 defmes how P1N2 is calculated; it approximates the more complex process of

dissolved N2 kinetics in living tissue by a fIrst-order kinetics. Following a step-change in N2 partial pressure in the breathing

medium, such as during a switch from ambient air to a mask connected to 100% 02, the N2 partial pressure that is reached in

a designated tissue compartment after a specifIc time is:

Eq.l

where P1N2 = the N2 partial pressure in the tissue after t mins, Po = initial N2 partial pressure in the compartment, Pa =

ambient N2 partial pressure in breathing medium, exp = base of natural logarithm, and t = time at the new Pa in mins. The

tissue rate constant k is related to the tissue N2 half-time (tl/2) for N2 pressure in a compartment, and is equal to 0.693 / tl/2'

where tl/2 is the 360 min tissue N2 partial pressure half-time, and 0.693 is the natural log of two. Half-time is the time taken

for N2 pressure to increase or decrease to one-half of the difference between the initial and fmal values. About 94% ofthis

difference is achieved within four half-time periods. A half-time of 360 min is used because Type I altitude DCS and VGE
have been shown to correlate well with long half-times, the use of 100% 02 in altitude chamber flights eliminates faster

compartments as potential contributors to DCS, and long half-times also govern the return of divers from saturation
exposures. The initial, equilibrium N2 pressure (PO) in the tissue at sea level is taken as 11.6 psia instead of an average

alveolar N2 pressure of 11.0 psia. The use of dry-gas, ambient N2 pressure as equilibrium tissue N2 pressure (PO)' and as the

N2 pressure in the breathing mixture cPa) makes the application ofEq. 1 simple. The ratio ofPIN2 to P2 is the Tissue Ratio

(TR), where P1N2 is the calculated N2 pressure just prior to ascent to altitude and P2 is the ambient pressure after ascent.

The importance and implication ofTR as an expression of evolved gas is developed elsewhere (6,19).

I have described the logic that led us to select an appropriate h(t), briefly described our source of response and
explanatory variables, and will now provide an example of the analytical steps that get us to a better understanding of
hypobaric DCS.

THE ANALYTICAL PROCESS

The hazard function h(t) for the log logistic survival model (10) is:

Eq.2

where Aand p are index (unitless) and scale (hr -1) parameters to be estimated, respectively, and t is time in hrs in this
application. When A> 1, h(t) has a maximum, and resembles a bell shape.
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The cumulative hazard function H(t) is obtained by integrating h(t). Thus:

t
H(t) = Jhex) dx,

o
Eq.3
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where x is the dummy variable of integration. Note that h(t) may not vary with time, as with the exponential model, but the
integral ofh(t) will give H(t) in terms of the starting and ending time at P2. A combination ofEq. 2 and Eq. 3 yields:

H(t) = In [1 + (t * p) A-],

where In is the natural logarithm. Since the survival function Set) is also defmed as:

Set) = e - H(t),

Eq.4

Eq.5

We obtain the following expression for Set) from Eq. 4 and Eq. 5 for the log logistic model:

The probability density function f(t) is:

f(t) = h(t) * e - H(t),

which may be expanded as follows from Eq. 2 and Eq. 4 for the log logistic model:

Eq.6

Eq.7

Now P(DCS) given failure time T ~ the exposure time t becomes:

P(DCS T ~ t) = 1 - e - H(t). Eq.9

In order to account for variables other than time that influence P(DCS), we expand the hazard function h(t) but
retain its functional form as given by Eq. 2. The gas phase contribution to h(t) could be as simple as 1 I P2, or as complex as

(((PlN2 + cl) I P2) - 1) c2, but the exercise contribution is always in the form (1 + (c3 * exercise)), where exercise at P2 is

one or zero, and cl, c2, and c3 are estimated parameters. The modified h(t; z) for the log logistic model that includes P2 and
exercise is:

h(t; z) = A- * (1 I P2) c2 * [1 + (c3 * exercise)] * (t A- - 1) * P A­

1[1 + (1 I P2) c2 * [1 + (c3 * exercise)] * (t * p) A-]. Eq. 10

The function H(t; z) from Eq. 3 and Eq. 10 becomes an expression of decompression dose as a function of three
variables associated with DCS plus the fitted parameters that maximize the agreement between dose and response:

Dose = H(t; z) = [In (1 + (1 I P2) c2 * [1 + (c3 * exercise)] * (t * p) A-)],

and P(DCS) given failure time T based on P2, exercise, and time t at P2 becomes:

Eq.ll
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P(DCS T ::;; t) = 1 - e - Dose.

PARAMETER ESTIMATION BY MAXIMUM LIKELmOOD
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Eq.12

Maximum likelihood is the preferred method to optimize unknown parameters in a probability model where the
response variable is dichotomous and the predicted value is a probability. The maximum likelihood method provides the
probability that y = 1 (the response) given a value for "x" (the dose), and has been clearly explained by others (2,18,21). The
likelihood function for a set of data containing (d + n) elements with some right censored times has two components, one for
the failure times (subset d) and the other for the censored times (subset n). Denoting the failure times by ti ' i = 1, 2, ... , d,

and the censored times by ti ' i = d + 1, d + 2, ... , n, the likelihood function (L) is (2):

d n
L = II f(ti) * II S(ti)'

i=l i=d+l

Eq.13

A subject with DCS contributes a term f(ti) to the likelihood, the density of failure at~. The contribution from a

subject whose survival time is censored at ti is S(ti), the probability of survival beyond ti'

The log likelihood (LL) is:

d n
LL = ~ In f(ti) + ~ In S(ti)'

i=l i=d+l

Eq.14

The SYSTAT (ver. 5.03) Nonlin module (23) was used to estimate unknown parameters in the models. Estimation
by maximum likelihood was accomplished by specifying the negative LL in the LOSS statement:

LOSS = - In (ESTIMATE), Eq.15

where ESTIMATE is a number from one to zero from the LL function, as explained below. The LL function structured in
SYSTAT for the log logistic model, as an example, is:

f(t) or f(t; z) S(t) or S(t; z)

The computer evaluates Eq. 16 for the fIrst row of hundreds of rows of data. The fITst row contains values for the
observed DCS (1 or 0), P1N2 (psia), P2 (psia), exercise (lor 0), and time (hrs): failure time when DCS = 1, or censored time

when DCS = O. When DCS is one, f(t; z) is evaluated, and when DCS is zero, S(t; z) is evaluated. The numerical result,
between zero and one in each case, is called ESTIMATE, evaluated with initial values of the unknown parameters in the
model, is used in Eq. 15. The LL calculation from Eq. 15 is repeated over all rows, and the LL is summed over all rows. The
summed LL is then minimized using the Quasi-Newton algorithm (23). Iterations continue for parameters in the model until
a predetermined convergence criterion is reached.

RESULTS

Table I is a compilation of a number of log logistic survival models for DCS, expressed as h(t; z), included in two of
our reports (4,5). The table shows a progression from simple to more complex models. The complexity comes as we attempt
to describe evolved gas with combinations of variables and constants associated with evolved gas, and with our notions of
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how pain is perceived as tissues are deformed by evolved gas (see Appendix in ref. 6). Also, some information in the
complex models is strictly correlative with DCS, such as the VGE information, which when added to the model improve the
description ofDCS failure time. Values and other details of the fitted constants are not reproduced here. Equation 17
identified prebreathe (P1N2), the fmal altitude pressure (P2), the presence of exercise at altitude, and the length of the

exposure as important variables to describe the DCS failure time in 1075 exposures. Figure 4 summarizes our main
conclusions: for a given calculated N2 pressure in the 360 min half-time compartment, DCS risk increases as P2 decreases

(any vertical line through the curves), as time at P2 increases (two filled circles along the 4.3 psia curve), and if exercise is
performed at P2 (two filled circles at 4 hrs exposure on the 4.3 psia solid and dashed curves).
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Figure 4. The P(DCS) at either 3.5,4.3, or 6.0 psia with (solid line) or without (dashed line) exercise at a
particular time after decompression. The ratio ofPIN2 to P2 (TR) in Eq. 17 was 1.65 for each curve, but

notice the P(DCS) increases as P2 decreases at any particular time after decompression. The 95% confidence
interval is provided for the curve specific to the 4.3 psia exposure that included exercise.

An important conclusion is that for the same TR, in this case 1.65, the risk ofDCS is greater at a lower P2 for a
given exposure time and exercise condition (two filled circles on the 4.3 psia and 6.0 psia curves at 4 hrs exposure). The
fitted constant c1 in the numerator ofEq. 17 is responsible for this result, and other ways of accommodating the constant did
not provide as good a fit of the model to the data. We suspect the importance of the constant is its linkage to metabolic gases
in the evolved gas (11,19).

Once the best model from a family of models is determined, it is still not clear if there is a good fit of the best model
to the data. The likelihood ratio test (8,13) defmes when no further improvement is possible by adding more degrees of
freedom (parameters to fit) to the model. However the test offers no absolute goodness-of-fit summary such as provided by

the coefficient of determination (p2) in least-squares regression. There are few available analytical tools, outside of a
Statistics Department, to assess goodness-of-fit of a survival model. We use graphical approaches to "visually" assess
goodness-of-fit. Figure 5 shows the predicted versus observed group incidence of DCS in 66 tests, the tests that provided the
1075 decompression records. A perfect description of the data by our model would require that all tests fall along the identity
line. We have also validated this model in a set of data not used to optimize the model (4). We conclude that Eq. 17
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(expressed through Eq. 12) describes reasonably well the DCS and no DCS cases in 1075 exposures, and could be used
prospectively.
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Figure 5. Predicted vs. observed DCS incidence in 66 groups used to fit Eq. 17. The area of a circle is
proportional to the number of subjects in a group. The three filled circles are results from NASA tests
at 4.3 psia with TRs between 1.60 and 1.65 where exercise is (two circles above identity line) and is not
(circle below identity line) part of the test. The model neither over or under estimates the entire data set,
but did over estimate the incidence of DCS in several small groups that reported no symptoms.

Figure 6 is a simulation based on Eq. 18 (expressed through Eq. 12) where data about VGE were available in 1322
records to improve the estimate ofDCS failure time. The figure shows that the presence of Grade IV VGE increases the risk
ofDCS compared to all lesser grades. Additional information about the simulation is provided in the description of the
figure. It can be argued that any information on VGE used to describe DCS is invalid since both DCS and VGE are
responses to decompression. However the intensity and time course ofVGE are information that relate (correlate) to a
subsequent DCS symptom (7).
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Figure 6. The P(DCS) versus time at altitude from Eq. 12, given by Eq. 18 in Table I, for a simulated
decompression at a TR of 1.65 (7.1 P1N2 /4.3 P2), all with exercise, with VGETM of one hr, and with the

presence ofVGE at Grades I and II, III or IV, and the absence ofVGE (Grade 0). Please review Appendix B
for the defmition of the variables used in this analysis.
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We conclude that the inclusion ofVGE information into our basic model (Eq. 17) was beneficial, and also improved
the goodness-of-fit. Figure 7 is a visual representation of goodness-of-fit for Eq. 18. This presentation differs from Fig. 5 in
that each subject in the 1322 exposures had a unique P(DCS) since no two subjects necessarily had identical VGE
information. As before, we conclude that Eq. 18 describes reasonably well the DCS and no DCS cases in 1322 exposures.
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Figure 7. A bar graph to show the observed incidence ofDCS in ten intervals compared to the predicted
P(DCS) from Eq. 12, given by Eq. 18 in Table 1. The 1322 records were fIrst divided into ten probability
intervals based on the P(DCS) from Eq. 12 for each record. The number ofDCS cases in the interval were
then divided by the total number of cases in the interval to give the incidence ofDCS. Equation 12 did not
systematically under or over predict the observed incidence. It did under predict the observed incidence in
intervals from 0.60 to 0.90.

Equations 17 and 18 were attempts to develop useful hypobaric DCS probability models. Like others (20), we
explored using survival analysis to test a specifIc hypothesis. We were curious about the linkage between evolved gas in a
tissue and the report of a DCS symptom. Often elegant and complex models about bubble growth in tissue neglect this aspect
of the problem. The published report (6) develops the rationale about how a power term fItted to our simple equations of
evolved gas may link evolved gas to the P(DCS). Conceptually, as the intensity of a symptom increases (as a power) the
P(DCS) increases to a certainty. Figures 8 and 9 show the dramatic improvement in describing the Des failure times in 1085
exposures simply by including a power term in a simple expression (M» of evolved gas.
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Figure 8. A scatter plot that shows the observed incidence ofDCS in a group and the calculated decompression dose

with Dose 1 = In [1 + (PINz - P2) ex * (t * 0.04728) 0.922], where ex = 1, and PINz is from the 360 min half-time,

plus a curve from Eq. 12. The position of each circle along the vertical axis depends on the value of Dose 1 for each
group. Superimposed on the circles is a solid curve from Eq. 12, given f(t; z) on the figure, that is the P(DCS) as a
function of Dose 1. The area of a circle is proportional to the number of subjects in a group; the smallest circle
represents a test with two subjects and the largest circle represents 77 subjects.
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Figure 9. A scatter plot that shows the observed incidence ofDCS in a group and the calculated decompression dose

with Dose 2 = In [1 + (PINz - P2) a * (t * 0.00001517) 1.491], where a = 8.44, and PIN2 is from the 91 min half­

time, plus a curve from Eq. 12. The horizontal position of the circles are the same as in Fig. 8 but the vertical
position has changed due to the recalculation of decompression dose. The goodness-of-fit was improved by
estimating the half-time but the greatest improvement came from estimating a. The circles are positioned more
symmetrically around the curve than in Fig. 8 and the LL improved from -1026 in Fig. 8 to -714 in this figure.

The solid curve on Fig. 8 from a model without a power term does not pass near the majority of group DCS
incidence data as compared to the curve on Fig. 9. We were motivated to evaluate this concept based on an earlier analysis
by Nims (15). Figure 10 shows that our survival model as a probability density function f(t; z) gave results similar to Nims,
but our methods (statistical) were much different from those ofNims (deterministic).
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Figure 10. The resulting f(t; z) for the average ~p of 6.0 psia from the f(t; z) equation on Fig. 9 where
a = 8.44, P = 0.00001517, A= 1.491, and tl/2 = 91 mins. The f(t; z) resembles the shape of the curve from
Nims (15, his Fig. 40) in a test with~ = 8.4 psia.

The shape, but not the magnitude, of the two curves are similar and yet Nims did not explicitly use a power term in the
expression ofDCS dose. Our observation that different methods lead to similar results reinforced our belief that conclusions
from hypothesis testing with incomplete models should be verified with experimental data.

CONCLUSION

We have used survival analysis with maximum likelihood optimization as the basis to describe the failure time for
DCS under a variety of decompression conditions tested in hypobaric chambers. Our first goal was to identify an appropriate
hazard function. This was based on a survey ofDCS and VGE data contained in a computerized databank and descriptions
and observations on how DCS symptoms progress through time (Figs 1-3). The exponential survival model was clearly
inappropriate, the log normal model was slightly better than the log logistic, but more difficult to implement. Other models
for failure time distribution were also evaluated, but the log logistic model proved to be the best overall for our applications.

Our efforts over the past few years were directed toward developing probability models for DCS that accounted for
major physical and physiological variables (Figs. 4-7). We have not completed the analysis of several variables known or
suspected to influence the risk ofDCS. Age and gender differences continue to be discussed as modifying factors for DCS.
While it is difficult to include age and gender in a deterministic (theoretical) model of DCS, it is simple to include these
variables in a statistical model. We are always surprised to fmd that one long half-time compartment (about six hrs) is
adequate to describe the results from a variety ofhypobaric tests at our disposal. We have brought empirical models into
better agreement with bubble models by including a term to account for the presence and consequence of metabolic gases in
total evolved gas.

Our second use of survival analysis was to test a hypothesis about the inclusion of a power term into simple
expressions of evolved gas (Figs. 8-10). The goal here was to understand a mechanism about the perception of pain. An
exciting area to explore with research and modeling is the biophysical linkage between evolved gas and perception ofpain.
The future for hypothesis testing and developing better predictive models for DCS is good because new and better data are
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being collected and shared. New variables like adynamia (9,16) and exercise during prebreathe (14) are now being tested.
Adynamia is a concept about how gravity is a variable in DCS, particularly how walking in a gravitational field influence
micronuclei that in turn influence the likelihood ofDCS. Future models that include these variables will have applications to
astronauts during space walks, or walking on planets with reduced gravity such as Mars.

Applications for DCS probability models will increase since these are available tools and, ifproperly applied, can
provide useful information. For example, it is possible to lose cabin pressurization in the T-38 aircraft. What is not known is
if an emergency landing is needed to avoid DCS. We applied Eq. 17 (expressed through Eq. 12) under two scenarios for the
T-38. The DCS risk for the loss of pressure during a normal flight is seen in Fig. 11, and during a high altitude flight seen in
Fig. 12.
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Figure 11. The approximate flight envelope (solid near vertical lines) of the T-38 and the resulting cabin pressure
(dashed line) under nominal flight conditions. Transposed over the flight envelope are twelve DCS isoincidence
isopleths for the condition where the crew is not physically active. The proper way to determine the risk is to select
a time of exposure and the altitude of the exposure and then interpolate between the isopleths. There is no risk of
DCS if cabin pressure is maintained. However a loss of cabin pressure for even brief periods of time can exposure
the crew to ahigh risk ofDCS. The likelihood of very serious DCS symptoms is greater as the risk of any DCS
symptom increases.
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Figure 12. The flight and cabin pressure envelope under extreme flight conditions. Notice that even at the
lowest cabin pressurization (22,000 feet) and 45 mins of exposure, the risk of any symptom of DCS is less
than 5%. The majority of the risk is between zero and 1% under extreme flight conditions.
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The aircraft can fly high but only for a shorter duration. Altitude, duration, prebreathe, and exercise at altitude are
variables in Eq. 17. We assumed a limited use of O2 during the flight (defined in ref. 17) and that the aviators were not
physically active during the flight. Figure 11 shows the P(DCS) given that the aviator was exposed to a certain
decompression for a certain time. Notice that below a normal cabin altitude of 18,000 feet, it is unlikely that DCS will occur.
However a one hr exposure to 30,000 feet puts the aviator on the 20% DCS isopleth (solid point). During high altitude flight
the cabin altitude can increase to 22,000 feet, but the flight time is limited to just over one hr. Figure 12 shows that the
lowest cabin pressure (22,000 feet) with the T-38 at the highest operating altitude (50,000 feet) is associated with a risk of
DCS between one and five percent. The information in Figs. 11 and 12 can help managers make flight rules that would
prevent the loss of cabin pressure in a T-38 leading to the loss of an aircraft and crew.
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TABLE I. VARIOUS LOG LOGISTIC SURVIVAL MODELS FOR DCS

Parameters

log logistic survival model (null model)

h(t) = A* (t A-I) * p A/ (1 + (t * p) A) 2 (A, p)

2

2

3

3

3

4

S

S Eq.I7

6

7

7

7

log logistic hazard function with additional variables and constants (accelerated model)

h(t; z) = [A * Zn * (t A-I) * p A] / [1 + Zn * (t * p) A]

zI = 1 / P2

z2 =PIN2/P2

z3 =(PIN2 / P2) - c

z4 =(PIN2 / (P2 + c1)) - 1.0

Zs = ((PIN2 + cI) / P2) - 1.0

z6 = (((PIN2 + c1) / P2) - 1.0) * (1 + (c3 * exercise))

z7 = ((PIN2 / (P2 + c1)) - 1.0) c2 * (1 + (c3 * exercise))

Zo = (((PIN2 + cI) / P2) - 1:0) c2 * (1 + (c3 * exercise))

z8 = zo * [1 + (c4 * vge)]

z9 = ZO * [1 + (c4 * vge)] * {1 + [cS * (1 / vgetm)]}

zIO = ZO * [1 + (c4 * mvge)] * {I + [cS * (1 / vgetm)]}

zII = zQ * [1 + (mvge c4)] * {I + [cS * (1 / vgetm)]}

zI2 = zQ * [1 + (c4 * vgeI,II)] * [1 + (cS * vgeIII)] * [1 + (c6 * vgeIV)] 8

z13 = zQ * [1 + (c4 * vgeI)] * [1 + (cS * vgeII)]

* [1 + (c6 * vgeIII)] * [1 + (c7 * vgeIV)] 9

zI4 = zQ * [1 + (c4 * vgeI,II)] * [1 + (cS * vgeIII)] * [1 + (c6 * vgeIV)]

* {I + [c7 * (1 /vgetm)]} 9 Eq.I8
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Appendix A: Two Forms of the Log Logistic Survival Model

A common form of the log logistic survival function S(t) is:

95

S(t) = 1- [1/( 1 +e(-ro))],

where ro = [In(t) - ~(2)] / ~(1).

Al

The distribution is specified as a two parameter distribution generalized to include the effects of covariates on
survival times. The generalized log logistic is called an accelerated life model where the logarithm of survival time is a linear
function of the covariates:

ro = [In(t) - ~(2) - ~xl * xl - ... - ~xn * xn] / ~(1).

Other functional expressions of the model are:

A2

h(t) = f(t) / S(t) A3

f(t) = e [-(In(t) - ~(2)) / ~(1)] / [(1 + e (-(In(t) - ~(2)) / ~(1)))2 * ~(1) * t] A4

h(t) = f(t) / [1 - ( 1 / ( 1 + e (-((In(t) - ~(2)) / ~(1)))))], A5
and the accelerated life model:

f(t; z) = e [-(m(t) - ~(2) - ~xl * xl - ... - ~xn * xn) / ~(1)] /

[(1 + e (-(In(t) - ~(2) - ~xl * xl - ... - ~xn * xn) / ~(1)))2 * ~(1) * t] A6

h(t; z) = f(t; z) / [1 - ( 1 / ( 1 + e (-((In(t) - ~(2) - ~xl * xl - ... - ~xn * xn) / ~(1)))))] A7

~(l) = scale parameter
~(2) = index or location parameter
~xn = parameter from regression for variable n
xn = value for the nth variable
t = time

An alternate form (10) of the log logistic survival model used in our analysis is:

S(t) = e [-m(l + (t * p) A)],

and expanded to include covariates as:

S(t; z) = e [- m(1 + (c1 * xl) * .., * (cn * xn) * (t * p) A)].

The h(t) expression of the log logistic model is:

and the accelerated h(t) is:

h(t; z) = A* (cl * xl) * ... * (cn * xn) * (t A-I) * p A/

[1 + (c1 * xl) * ... * (cn * xn) * (t * p) A]

p = scale parameter
A = index or location parameter

A8

A9

AIO

All
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cn = parameter from regression for variable n
xn = value for the nth variable
t = time

Appendix B: Some Variables in the IIDSD

Dependent Variables

Undersea and Hyperbaric Medical Society

DCS:

DCSTM:

PIN2:

P2:

presence (1) or absence (0) of any sign or symptom of decompression sickness, excluding paresthesia when it
was the only symptom.

failure time to the fIrst sign or symptom ofDes or censored time to the
end of the test in those without DCS (hrs).

Independent Variables

calculated nitrogen pressure (psia) from Eq. I to account for all
denitrogenation procedures.

ambient pressure after ascent (psia).

EXERCISE: presence (1) or absence (0) of repetitive exercise planned for the test.

VGE: presence (1) or absence (0) of any Grade ofVGE.

MVGE: maximum Grade ofVGE (0 - 4) detected during the exposure.

VGEI: presence (1) or absence (0) of Grade I VGE as the maximum Grade of
VGE recorded during a test.

VGEII: presence (1) or absence (0) of Grade II VGE as the maximum Grade ofVGE recorded during a test.

VGEIll: presence (1) or absence (0) of Grade III VGE as the maximum Grade ofVGE recorded during a test.

VGEIV: presence (1) or absence (0) of Grade IV VGE as the maximum Grade ofVGE recorded during a test.

VGETM: failure time to the fIrst VGE detected or censored time to the end of the
test in those without VGE (hrs).

ALTIM: scheduled duration of the test or the time t at P2 in a simulation (hrs).
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Testing of Hypotheses about Basic Mechanisms with Risk Functions

Hugh D. Van Liew, Ph.D
Navy Experimental Diving Unit
Panama City, Florida 32408
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Statistics for new insights. How sound is current understanding of the basic mechanisms that give rise to
decompression sickness (DCS)? In two recent publications (1,2), we have used the statistical modeling process to gain
insight into the underlying mechanisms. Note that when we use the word "mechanistic," we do not mean to imply that we
can provide a model that is based on fundamental principles; just the opposite -- we are trying to learn about the principles
from the models. The main purpose of my talk here is to encourage others to compare a range of models; the presumption is
that a model that gives a good fit to data is more in line with the basic mechanisms than models that give poorer fits.

One goal of a statistical analysis is simply to summarize and characterize the data. The more important matter is how
the results of an analysis are used. Statistical analyses are often used to to provide instructions, such as the public health
instructions about benefits of exercise and hazards ofhigh blood cholesterol. The type of instruction that interests people at
this workshop is decompression procedures to avoid DCS. However, my goal is different; my theme about developing
insights as to basic mechanisms can be illustrated with a simple analogy, a scatter ofpoints on an X-vs.-Y plot (Fig. 1).
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FIGURE 1. An investigator might be satisfied with fitting the points in the left-hand graph with a
straight line, but a better fit is obtained with a sigmoid function (right).

The points in Fig. 1 fit well with a sigmoid function. The reader can envision other curves instead of the S-shaped one.
The points would not fit as well to a straight line or some curve that does not have the inflection seen in the S-shaped curve.
Suppose the data represent amount of a gas in a liquid (Y axis) as a function of the partial pressure of the gas in the liquid (X
axis). An investigator who fit the points with a simple line would be missing two important insights: that the data may be
generated by a chemical binding of the gas to a substance in the solution that is saturable (manifested by the tendency to level
off at the top), and that the process involves interactions between binding sites (manifested by the sigmoid nature of the
curve). The well-known carriage of oxygen by hemoglobin in blood has these characteristics.

In this simple illustration, the equation that is used to fit the data is "the model." It is convenient to think in terms of
unexplained variability. With the points alone, all the scatter is unexplained. Fitting of a "model," a line or curve, provides
an explanation for some of the variability. Even with the sigmoid fit of Fig. 1, some unexplained variability remains, seen as
the deviations ofmany of the points from the curve. However, the unexplained variability is not as great as if the data had
been fit with a less-optimal model, such as a straight line.

Is this remaining variability caused by random processes or is it because of orderly behavior of something that isn't
accounted for by the model? The points in Fig. 1 may be influenced by a variable of secondary importance; call it variable Z.
If so, a model that accounted for variable Z should improve the fit of the data and further reduce the unexplained variability.
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The risk-function paradigm. In the paragraphs above, it was implied that 1) better models can be obtained by
accounting for as many variables as possible, 2) better models come from actively seeking models (equations) that enter the
variables in ways that give good fits to the data, and 3) the better models give better insights into the underlying phenomena
that give rise to a set of data. I will now give an example ofhow these issues interacted together in analyses (2) of data from
exposures of volunteers in altitude chambers (3). We purposely chose "forced descent" as our indicator ofDCS. That is, we
only counted a subject as positive for DCS when the exposure was terminated early for that subject; the supervisors of the
exposure decided that the subject's condition was serious enough to warrant bringing him immediately to ground level. We
believe that the forced descent criterion is more objective than simple reporting of symptoms by subjects.

Before proceeding, I will review the probability paradigm that we have used, which follows from early works about risk
functions (4,5). The curve labeled fi in Fig. 2 is instantaneous risk, which is related to the cases per time. We presume that ri
is a function of the pre-planned duration of the exposure to altitude. Use ofpre-planned duration is admittedly a crude way
of dealing with the timing ofDCS occurrence, made necessary because of the information available. Ifwe had data about the
time that symptoms first occurred, it would be desirable to use survival analysis or the failure time analysis.

The shape of the ri curve in Fig. 2 reflects one possibility for the relationship between risk and the preplanned exposure

time. The rise-and-fall shape implies that, for a given exposure, DCS is apt to occur early rather than late. If so, short­
duration exposures will have more cases per the total time than long exposures because the long exposures have innocuous
time added to the high-risk time, whereas the high-risk time stands alone in short exposures.

1.0

Risks and
probability

o
Exposure duration

FIGURE 2. Instantaneous risk, ri , is assumed to be a function of the pre planned duration of

the exposure. The cumulative risk, rc , is the integral ofri. Probability is defmed as an

exponential function of cumulative risk. The value 1.0 on the Y axis pertains only to the
probability curve; ordinate values for risk curves are not given.

The cumulative risk, rc , is defmed as the integral of the instantaneous risk, rio Our models (1,2) deal with two kinds of

risk: the risk that is due to duration of altitude exposure, and other possible kinds of risk. We multiply the one by the other.
An analogy for the second kind would be the risk ofbeing injured in a damaging automobile accident; cumulative risk will
increase as driving duration of the trip increases. However, other variables can impinge on the risk of being injured. If the
brakes are bad, then for any duration, there would be, say, double the chance of injury. The shape of the ri curve in Fig. 2
determines the shape of the rc curve as a matter of defmition but the rc curve's height is affected by the other, time­

independent sources of risk.

Finally, the probability is defmed as follows: P = 1 - e(-rd. The maximum-likelihood statistical analysis fits the
probability curve to the data. To test the hypothesis that instantaneous risk rises and falls, one would devise a model
containing an appropriate rise-and-fall mathematical formula, and one would compare that model with models having
alternative formuli. The comparison we decided upon was that instantaneous risk simply rises as duration lengthens.

Analyses ofaltitude chamber tests. In our first analysis of over 7,000 exposures (1), the variables included in the
analysis were atmospheric pressure at altitude, duration of altitude exposure, and duration of breathing of pure oxygen before
the exposure (imposed to lower the nitrogen partial pressure in the tissue before the decompression). We found that a model



Survival Analysis and Maximum Likelihood Techniques

which utilized the rise-and-fall possibility was indistinguishable from a model which used a simple rise. Apparently the
ability to distinguish between these two possibilities was masked by the magnitude of the unexplained variability.
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Ofthe original 7,000 exposures, 4,000 had information on rate of ascent to altitude. In analysis (2) of this subset of
data, we found, ftrst of all, that the ascent rate was an important variable; addition of ascent rate to the previous model made a
large improvement of log-likelihood. More interesting, when we retested the hypothesis about rise and fall of instantaneous
risk with increasing duration of exposure, we found that the rise-and-fall option was highly signiftcant this time (2). We
believe that we unmasked the true situation by eliminating the portion of the unexplained variability ascribable to ascent rate,
which is independent of the rise-and-fall variable, exposure duration.

Remarks about successful modeling. The data we have used (3) is clearly spotty; the altitude tests date from 1942 until
the present, and purposes of different tests differed. For example, tests to fmd the limits of safety from DCS would involve
exposures severe enough to elicit DCS occasionally, whereas training exposures would probably avoid risky exposures
altogether.

Regarding the ftt ofmodels, we relied mostly on just the likelihood number and the likelihood ratio test. When the
objective is development of insights into what is behind the data, we feel justifted in relaxing statistical rigor.

One useful graph is a plot ofDCS predicted by the statistical analysis versus DCS observed in the subjects. lithe
model were perfect, the points on Fig. 3 would all lie along the diagonal line; clearly there is much room for improvement of
the model by "explaining" the unexplained variability. It is helpful to use the size of the points on such graphs to show
information about one of the variables. For example, the point size on Fig. 3 is proportional to duration of prebreathing of
oxygen before altitude exposure, a variable that should be inversely related to DCS incidence; as expected, the big points
tend to fall at the lower left. However, Fig. 3 reveals that for small points (short prebreathing), the points are not well
balanced along the line. Clearly, the model under-predicts DCS for short prebreathing durations.

% DCSof
groups

1.0
Probability

FIGURE 3. Plot of observed DCS in groups of subjects plotted against probability estimated by
the statistical analysis. Size of the points is propor tional to duration ofprebreathing; long
prebreathing time is expected to be associated with low risk ofDCS, in accord with the lay of the
points.

Figure 4 continues the exploration of this problem. It shows isopleths of cumulative risk due to all variables except
prebreathing of oxygen. We divided the data points into categories of "high other", "intermediate other," and "low other."
When actual points were plotted on the Fig. 4 diagram, it was found that when "other" was high or low, the points ftt
reasonably well to the appropriate "other" curves. However, when "other" was intermediate and prebreathing time was low,
the ftt was terrible -- all points were above the curve, suggesting strongly that the poor fit of low-prebreathing, high-DeS
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points in Fig. 3 were associated with intermediate "other." We were unable to devise a model that corrected this defect, but
at least we had identified the problem for future attempts.

Risk
due to
"other"

Prebreathing time

FIGURE 4. Predicted risk ofDCS due to variables other than prebreathing time, categorized by
intensity.

Summary

1) Models that yield significantly better fits to the data are probably closer to reality. To obtain insight about the nature
of the processes that give rise to the data, one can compare alternative hypotheses, and the hypothesis which yields the better
fit to the data is thus supported by the results of the statistical analysis. [It is probably best to avoid the notion that the
hypothesis is proven by the analysis.]

2) Some so-called "unexplained variability" can be due to a sub-optimal model. One possibility for a sub-optimal
model is that the model may be sub-optimal in the ways the variables are entered into the model [ see 1) above ].

3) A second possibility for suboptimal models is in the number of variables that are accounted for. A model of course
improves if it accounts for as many of the important variables as possible. My example of this was the improvement of the
altitude data fit when we added the ascent rate.

4) A model that accounts for more variables [ 3) above] may give better results in the hypothesis testing [ 1) above ].
In our example, the advantage of the rise-and-fall possibility was not evident until the additional variable, ascent rate, was
accounted for. Apparently the unexplained variability due to failure to account for rate of ascent was masking the truth in the
original analysis.
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Survival time is the time to onset ofDCS symptoms. Again, you have certain functions which characterize the data.
The survival function, S(t), is the probability that the individual survives or, in other words, does not experience DCS,
beyond time 1.

S(t) =P(T > t)

The cumulative distribution function, F(t), is the probability that the individual is symptomatic by time 1.

F(t) =P(T ~ t) =1- S(t)

Finally, the risk (or hazard), r(t), is the instantaneous probability ofDCS in a small interval, [t,t+~t], given that the individual
has remained DCS free up to time 1.

r(t) =_ Sf (t)
S(t)

where the prime denotes differentiation with respect to time.

A distinguishing characteristic of DCS data is that it is heavily censored. DCS is simply not observed in many
individuals under study. While DCS might eventually develop in these individuals if the period of exposure were increased,
the time to onset ofDCS is unobservable for these individuals. The observed survival time on each of these individuals is
said to be "censored". In the Air Force data that has been the basis of our work, the censoring is Type 1 or fIxed. Every
individual enters the experiment at a fIxed time, and the time of exposure is pre-determined by the flight protocol.

Survival analysis consists ofmethods for identifying risk factors, also called "covariates", and assessing their effects
on survival time. There are two fundamental approaches. In the parametric approach, the survival time T is assumed to have
a known distribution with a particular functional form. Commonly used models are the exponential, Weibull, log-normal and
log-logistic distributions. Physical and physiological models for DCS provide insights into the appropriate distributional
model for T.

A feature of altitude DCS is that its incidence initially increases over time after decompression, but because of de­
nitrogenation, this risk tends to level off and then decrease. Such behavior restricts our attention to so-called inverted bathtub
models. Distributions that fall into this category include the log-normal, the log-logistic and the inverse Gaussian.

In the other non-parametric approach, no functional form for the underlying survival distribution is assumed. The
most popular non-parametric approach entails use of the Cox Proportional Hazards model, in which the ratio of hazard
functions of two individuals with covariate levels Xl and X2 is independent of time. The hazard in such cases is given by:

r(t Ix) = ro (t) . exp(x'~) ,

where ro(t) is the baseline hazard, x is the vector of covariates, and ~ is the vector of parameters to be estimated. Because the
argument of the exponent on the right side of this expression is independent of time, r(t)/ro(t) is also independent of time.
Subject and baseline hazards are consequently proportional. Specification of the baseline hazard can be a problem with this
model. One approach is to use the Kaplan-Meyer estimate which is the non-parametric estimate of the survival function.
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The advantages of the proportional hazards model include obviation ofneed to assume any particular form for the
survival function. Additionally, risk factors that vary over time, or so-called "time-dependent co-variates", are readily
incorporated, though the subject and baseline hazards are then no longer proportional. If the form of the survival function is
known, however, parametric methods are always more powerful and hence preferred.

I won't go into too much detail on the background. You've heard most of the speakers. One of the earliest attempts
at likelihood methods was -- were papers by Dr. Weathersby in '84 and '92, probabilistic models developed to predict the
occurrence ofDCS and likelihood methods used to fmd the estimates of the parameters. Then there were models based on
bubble growth and mechanistic principles described by VanLiew et al. Kumar et al in a series ofpapers, one of the earliest
attempts to actually use survival models to model the incidence ofDCS. Most of the models were based on dichotomous
response; you either observed or did not observe the symptoms, and different risk factors, such as tissue ratio, CMB, which is
circulating micro-bubble stages, and the effects of exercise were all incorporated into these logistic models. Finally, Dr.
Conkin has addressed this log-logistic model with tissue ratio and exercise, and also some models for bubble growth for the
combination of the statistical and some mechanistic models for bubble growth.

The data set is from the US Air Force Armstrong Laboratory, consisting of records from 975 flight exposures to
pressures below 314 mmHg. Data from additional exposures to pressure levels above 314 mmHg were omitted because the
DCS incidence at these low altitudes was minimal. The data for each exposure included the altitude or pressure to which the
individual was exposed (PRES), the planned time of the altitude exposure (TALT), the pre-oxygenation time (BR), and the
level of exercise performed while at altitude. This exercise was classified into three categories; rest, mild and heavy; based
on oxygen consumption. VGE data were also available for each exposure, collected at roughly 15-minute intervals. These
were condensed into two variables; MAXB, which is the maximum VGE score observed during the entire exposure, and
MAXD, which is the time at which the maximum VGE score was observed. Finally, the data for each exposure included the
survival time or the time of DCS symptom onset.

Simple contingency tables were constructed in preliminary analyses to assess which factors should be considered
and how such factors should be included in the models. The first of these is given in Table 1.

Table 1. Pre-Breathe Time (BR)

BR (min)
o

15
60
75
90

135
240

Total

o(%)
90
35
47
44
62
56

100

CENSOR
1 (%)

10
65
53
56
38
44
o

Total
535

23
610
127

13
116

2
1426

The censor variable of zero (0) indicates no DCS, while the censor variable of one (1) indicates the individual had symptoms.
We first looked at the O2 pre-breathing time in minutes ranging from zero to 240, and we examined the DCS incidence in
percent in the various categories. Conventional wisdom would indicate that the incidence of decompression should go down
as the pre-breathe time increases, and that trend is evident in the tabulated results. However, there are some problems evident
in these numbers. For zero minutes of pre-breathing, 90 percent of the individuals had no DCS, and 10 percent were
symptomatic. The trend is not really increasing all the way through.

One of the reasons for this problem is people who pre-breathe tended to go to lower altitude, and the people who
went up for longer, to higher altitudes, tended to have more pre-breathe time. So, that became a problem. You don't see the
trend that you expect. How do you deal with this? One way is to make some kind of transformation of these risk factors.



Survival Analysis and Maximum Likelihood Techniques

Table 2. Maximum Observed Bubble Grade (MAXB)

CENSOR
MAXB o(%) 1 (%) Total

0 84 16 608
1 76 24 71
2 54 46 96
3 56 44 209
4 39 61 439

Total 1425
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We also examined the relationship between bubble grade and DCS incidence in these preliminary analyses. The
maximum bubble grade is reported on the Spencer scale; zero for no bubbles and one through four for successively
increasing levels of bubble profusion, and again percentage ofDCS and no DCS for these different groups. We notice that
for people with no circulating micro-bubbles, 84 percent were asymptomatic. However, if they had Grade 4,39 percent of
them were asymptomatic as well. So, the question is: What do bubble grades really tell us about DCS symptoms? This is a
problem that we all have grappled with at some point or another.

The likelihood function for the parametric models we studied is given by:

where N is the total number ofobservations in the data set, e is a vector of unknown parameters, M is the number of
individuals with symptoms and for whom observed DCS onset times, lj, are known, f(t) is the probability density function,
and Set) is the survival function for the N-M censored observations with no symptoms observed during the exposures. The
density and survival functions are usually not of closed-form, and must be solved using iterative numerical techniques. So,
you get the maximum likelihood estimates of the parameters, and once you have those, you can use the model with these
predicted values to look at different profiles.

We used density and survival functions that give an inverted bathtub shape in their risk transforms. One such
function was the log-normal distribution for the survival function, given by:

Set) = 1- <D{ln(At/a»); A= exp(-x'~)

where <I> is the cumulative distribution function (edt) for the standard normal distribution, (j is the scale parameter for the
normal, and ~ is a vector ofunknown parameters associated with the covariate vector x.

We also used the log-logistic distribution for Set):

1
S(t)=---

1+ (At)Y
A= exp(-x'~)

where y is a scale parameter. The vector of risk factors enter into the model via Ain the exponential expression to the right.

We used three risk factors. The first, PRES, was simply the pressure in mmHg of the altitude exposure. The second
variable, BRTALT, accommodated the effects of both O2 pre-breathe time and time at altitude. BRTALT was defmed as the
ratio of one plus the pre-breathing time, BR, to time at altitude, TALT, or BRTALT=(l+BR)/TALT. This association of the
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BR and TALT factors dealt with the problem of zero pre-breathes for low altitude exposures versus long pre-breathes for
high altitude exposures. The last variable, EX, was a categorical variable with three levels to accommodate exercise effects.

We ran into some problems in the initial analysis. One of the problems arose from the large range of altitude
exposure time; from 120 to 480 minutes; in the data. There was a lot of variation in the DCS onset time. So, we put weights
into the likelihood function by breaking up the data into several categories. This is a relatively common way of dealing with
large variations in data.

Table 3. Estimated Parameter Values for the Weighted Log-Logistic Model

Variable DF Estimate Std.Err. Chi-sq. p-value
INT 1 -8.00 2.45 10.63 0.0011
PRES 1 2.53 0.44 32.57 0.0001
BRTALT 1 1.29 0.39 11.26 0.0008
EX 1 -0.53 0.14 13.68 0.0002
SCALE 1 0.60 0.03

Max. Loglikelihood = -560.84

Table 3 gives the parameter estimates based on the maximum likelihood for this weighted model. The p-values for
the three risk factors; pressure (PRES), the ratio of pre-breathe time to time at altitude (BRTALT), and exercise (EX); are all
highly significant at p-values less than 0.001.

The maximum log-likelihood value is again a measure of how well a model fits the data. It's a negative 560.84. The
fit ofa log-logistic model can also be assessed by nesting it into the generalized F distribution. We found that the log-normal
and log-logistic both provided satisfactory fits to the data, but we selected the log-logistic for further work because of its
simpler form.
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Figure 1. Cumulative DCS probability as observed (closed circles) and predicted by the weighted
model (solid line) for a 240 min exposure with mild exercise to 231 mmHg after a 75 min O2

pre-breathe.
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DCS probabilities predicted by this model for several different flight profiles were compared with empirical data for
those profiles. Figure 1 illustrates results for a 240 min exposure with mild exercise to 231 mmHg after a 75 min O2 pre­
breathe. The solid line is the predicted cumulative distribution function. The dots represent the empirical distribution or the
actual data. As you can see, the predicted line tends to overlay the observed points rather well.

We ran a chi-squared test which is something you can do. It's not the best test for goodness of fit, but it does work.
We broke up the data into several intervals and did an observed and expected test for this.
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Figure 2. Effect of exercise on probability ofDCS predicted by the weighted model during
a 240 min exposure to 282 mmHg after a 60 min O2 pre-breathe.

Figure 2 shows the effect of exercise on the probability ofDCS predicted by the weighted model during a 240 min
exposure to 282 mmHg after a 60 min O2 pre-breathe. Three cumulative distribution functions are shown; one each for heavy
exercise, mild exercise and rest. The probability ofDCS at any exposure time is highest for heavy exercise and the lowest for
rest, the sort of trend that is observed in the database.

In order to examine performance of a non-parametric model on these data, we also fit a proportional hazards model
with the same three risk factors. Results are summarized in Table 4. Consistent with results from the parametric models, the
p-va1ues for all three risk factors are very significant. This model also provides an additional value for each covariate called
the risk ratio, which has a useful practical interpretation. Considering the risk ratio for the EX parameter, for example, the
risk ofDCS for individuals who perform mild exercise is 100(2.066-1)% higher; i.e., almost double; the risk of individuals at
rest, all other factors being the same.
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Table 4. Estimated Parameters for the Proportional Hazards Model

Variable
PRES
BRTALT
EX

Estimate
-2.75
-2.22
0.72

Std. Err.
0.42
0.37
0.15

Chi-sq
42.61
36.67
24.66

p-value
0.0001
0.0001
0.0001

Risk ratio
0.064
0.109
2.066

Because the proportional hazards model is non-parametric, it provides a relatively unbiased description of the data.
So, we used this model to examine the effect of different pre-breathing times on the probability ofDCS in a particular profIle
for comparison to performance of the parametric log-logistic and log-normal models. Figure 3 shows the effect ofpre-breathe
time on DCS probabilities predicted by the proportional hazards model for a 240 min exposure with mild exercise to 282
mmHg. The model not only provides estimates of the DCS probability very close to the observed incidences, but yields
cumulative distributions with shapes similar to those evident in Figure 2, in support of the theory that the inverted bathtub
risk of the log-logistic model is appropriate. We concluded that the log-logistic is an appropriate model for DCS.

III
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Figure 3. Effects of O2 pre-breathe duration on DCS probabilities predicted by the
proportional hazards model for a 240 min exposure with mild exercise to 282 mmHg.

Model performance is not suffIciently evaluated by comparing observed and predicted probabilities alone.
ConfIdence bands for the cumulative distribution function must also be considered. This is not as easy as it sounds, however,
because the models are heavily non-linear. You don't have closed-form solutions, and most commercially available software
for survival analysis will give you confIdence intervals for the DCS probability only at specifIed time points. In contrast, we
wanted to get an overall band or envelope for the P(DCS), computation of which is more problematic. Most traditional
confIdence level bands are based on the Kolmogorov-Smimofftest for the empirical distribution function. For censored data,
we use the Kaplan-Meyer estimator, and again it becomes a huge problem. Not only can the bands fall below zero and
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exceed unity, they also tend to be of constant, rather large width. Among the techniques that have been suggested to avoid
these problems, the bootstrap technique is perhaps the better alternative.
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The bootstrap technique was introduced relatively recently by Ephron in a paper in the Journal of the Royal Society.
It's a resampling technique that allows you to use the data to generate a more efficient model or confidence band. Bickel and
Kreeger in '89 showed that these techniques provide the right coverage probability, and for small sample data, they tend to
also form the traditional methods based on the Kaplan-Meyer estimator. So while most techniques for calculating confidence
bands work well for large samples because of their asymptotic properties, the bootstrap is particulary well suited for small
samples. We decided to use the bootstrap to generate confidence bands. For a specific profile, we repeatedly generate
separate samples with replacement from the original data. For each such bootstrap sample, we re-estimated the parameters by
maximizing the likelihood function and then obtained the estimate of the cumulative distribution function (cdt) at several
time points. Finally, the 5th and 95th percentiles of the cdf estimates at each time point were used as the 90% confidence
bands. We processed 500 bootstrap samples for each profile in the dataset, and maximized the likelihood for each sample.
Needless to say, this was a very compute-intensive procedure.
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Figure 4. 90% upper (VCL) and lower (LCL) confidence bands obtained by the bootstrap
technique for DCS probabilities predicted by the log-logistic model (Predicted) for a 240 min
exposure with mild exercise to 231 mmHg after a 135 min O2 pre-breathe. Filled circles are the
observed DCS incidences for this profile.

Figure 4 illustrates results for one profile. The solid line is the predicted cumulative DCS probability, the points are
the actual data points from the database, and the dotted lines are the upper and lower 90-percent confidence bands for the
cumulative distribution function. Note that the confidence bands are not symmetric about the predicted line, a feature
common in bootstrap-derived confidence bands. As you can see, the bands tend to be narrow at low exposure times and
widen as exposure time increases. This behavior is expected as well, but it is clear that most of the observed DCS rates fall
within the 90-percent band. These results support the idea that the model was working all right.
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Figure 5. 90% upper (VCL) and lower (LCL) confidence bands obtained by the bootstrap
technique for DCS probabilities predicted by the log-logistic model (Predicted) for a 480 min
exposure with mild exercise to 253 mmHg after a 60 min O2 pre-breathe. Filled circles are the
observed DCS incidences for this profile.

Figure 5 illustrates results for another profile, consisting of an altitude exposure at 253 millimeters for 480 minutes,
and mild exercise. As before, the predicted and observed data almost all lie within the upper and lower 90-percent bands. The
model consequently captures nearly all of the empirical distribution function, and thus does well not just in goodness of fit
but also in prediction.

One problem with these models is their tendency to under-predict DCS incidence by about 15 to 20 percent for
profiles with zero or very low pre-breathing times. We have been attempting to address this problem by using VGE data in
the form of the time of occurrence of the maximum observed bubble grade. We noticed that people with early observed
Grade 4 VGE tended to have symptoms fairly early as well. We did a simple analysis using the time to observed maximum
VGE, or MAXT, as another risk factor in our log-logistic model. Results are summarized in Table 5.
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Table 5. Parameter Estimates for the Log-Logistic Model with MAXT
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Variable
!NT
PRES
BRTALT
MAXT
SCALE

DF
1
1
1
1
1

Est.
-3.66
1.34
0.96
0.01
0.37

Std. Err.
1.80
0.31
0.30
0.00
0.02

Chi-sq.
4.12
17.37
10.21
183.58

p-value
0.0424
0.0001
0.0014
0.0001

Looking at the chi-squares, the MAXT variable tends to dominate all of the other risk factors. This is not surprising
because MAXT is also affected by the exposure altitude, pre-breathing time and exercise level; i.e. MAXT covaries with
these other factors. We hoped that including VGE data would alleviate model underprediction ofDCS probability for
profiles with low pre-breathing times.

MAXT can alternatively be defmed as a deterministic variable obtained from solution of an appropriate bubble
growth model for each exposure. One such model, for example, is being developed at the Armstrong Laboratory to predict
the time at which bubbles reach their maximum radius. As with observed times to maximum VGE grade, using MAXT
values from this bubble growth model also yields a dramatically improved model over that without a MAXT factor.
However, the one concern I have is that the time to maximum bubble size is really random. Because it is not realistically
considered as a deterministic factor, it should be incorporated as a time-dependent co-variate, which considerably
complicates the analyses. But that's something to think about for the future.

In conclusion, log-logistic models seem to be most appropriate for DCS data. They have the right shape for the risk
function, and predictions from these models agree closely with empirical data. The confidence bands contain observed DCS
rates for most profiles. We hope the VGE data will improve the predictions for zero and low pre-breathe times, but that's
going to be a difficult exercise, and how we incorporate it is still debatable. I believe that both statistical and mathematical
models together, so we talk about mechanistic and non-mechanistic approaches, need to be used in conjunction to provide an
overall better model to predict DCS. A validation study is currently underway at Brooks Air Force Base which will help us
further fme-tune the model.

DR. GERTH: I think we do have one question. Dr. Southerland?
QUESTION: Dr. Southerland, NEDD. I thought that one of the requirements for boot-strapping was that the

resampled data had to be independent and randomly selected from the population. The data that you are using, however,
does not seem to be sampled that way. How does the kind of sampling you are doing affect your confidence in your
confidences?

DR KANNAN: Okay. I did the boot-strapping by sampling from all individuals or all the data points for each
specific profile. For example, if I had 150 observations on a pressure of282 and an exposure time of four hours, I used that
as the initial data from which the bootstrap sample was taken. In that sense, I think our resampling procedure was okay. In
contrast, if the bootstrap samples are taken from the entire database, the resultant confidence bands will be very far from
correct.
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I would like to acknowledge Keith Gault, my co-author, as the person who conducted most of this research for his
Master's degree.

It is generally accepted that bubbles are the precursors to decompression sickness (DCS) although the exact linkage
between the two is not known. Bubble models are increasingly being used to predict DCS. We propose that the best test of a
bubble model is to apply it against data that measure bubbles directly. This presentation will focus on the development of a
model to predict the occurrence of bubbles as measured using Doppler ultrasound techniques.

Data

The data were obtained from measurement sites on the precordium, the left subclavian, and right subclavian of the
diver's body at rest and exercise during and after a dive. Measurements were taken approximately every 30 to 40 min.
Signals were graded according to frequency, duration, and amplitude, and converted into a single bubble grade, BG, ranging
from zero indicating no bubble activity to four indicating maximum bubble activity using the Kisman-Masurel code (Nishi
1993). The resultant data are multinomal and categorical.

Both air and helium-oxygen (heliox) dives conducted at DCIEM were used in this study (see Table 1). The more
than 2,000 man-dives in the data set included a variety of dives, single and repetitive, and some with oxygen decompression.

Table 1. Summary of dive data with BG recordings.

Air Heliox

Number of Trials 276 86

Number of man-dives 1,425 639

Bottom Depth (msw) 7.3 - 91 36 - 100

Bottom Time (min) 5.0 - 350 19 - 287

Dive Time (min) 9.5 - 300 19 - 287

The distribution of the bubble grade data are: BG = 0 (no bubbles detected) > 40%; BG = 1 and 2 (low bubble
activity) < 30%; and BG = 3 and 4 (high bubble activity) < 30%. The advantage of these data is that they are fairly evenly
distributed in contrast to the typically low occurrence ofDCS. We purposely grouped bubble grades (i.e., 1 & 2, and 3 & 4)
from the original 5 categories for modeling purposes, as explained below.

Model

We assume that the maximum predicted bubble size correlates with the maximum recorded bubble grade. The model
does not take into account the times of occurrences of these maxima. The method of maximum likelihood estimation is used
to fit the parameters using a modified Marquardt algorithm (Bailey and Homer 1977).

The bubble model is documented elsewhere (Tikuisis et al. 1994, Gault et al. 1995); hence, only key points will be
presented here. The gas flux depends on the concentration difference between the gas in the bubble and that outside the
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bubble in the tissue or fluid, and on the rate constant representing a diffusion barrier to gas transfer across the gas-bubble
interface:

l =k. ·~C.
I I I

(1)

where J is the gas flux, k is the rate constant, and ~C is the gas concentration difference across the bubble interface for gas
'i'. The gas content of the bubble, Ng, is constrained by a mass balance and the amount of gas leaving or entering the bubble
depends on the gas flux:

dNf = 41tR 2 • J.
dt I

(2)

Finally, tissue gas exchange with the blood is assumed to be perfusion-limited and is characterized by a time constant, 't,

according to (Hills 1977):

p.bl _ P-
I I=

't i

(3)

where P is the gas tension and the superscript 'bl' refers to its value in blood.

We now present the probability functions used to predict bubble grades. First, we consider the simpler binomial
case. If our purpose was only to predict incidences of low versus high BG, the following expressions would suffice:

P -a·R
rlowBG = e max

P 1 -a·Rr
highBG

= - e max

(4)

where Pr is the probability of a BG outcome, as illustrated in Fig. 1. The prediction of low BG prediction is a single
parameter estimation involving Rmax as an exponent. Clearly, predictions of a high incidence of low BG are associated with
low values ofRmax• Conversely, a high incidence ofhigh BG is associated with large values ofRmax. By definition, the two
probabilities sum to unity. This binomial approach to BG prediction is analogous to the prediction ofDCS.

1

0.8

b 0.6:li
iII -+-lowBG..c
0
l,;. 0.4A. ----high BG

0.2

a

Figure 1. Illustration of the binomial probability function.
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To provide a more elaborate prediction, an additional probability function was introduced to allow a trinomial
outcome (based on advice from Dr. L.D. Homer). This allowed a separate prediction ofBG = 0, as follows:

-a·Rmax

PrBG=o = e b

PrBG={1,2} = e b -e
-a·Rmax

b (5)

-Rmax

PrBG={3,4} = 1- e b

1

0.8
~
;~ 0.6.c

1.11
;g 0.4a

0.2

0

+---....---------=0.........,..-------____1~ SG=O

~SG=1,2
+-----~:__::;o~-'-"-----------____I

-A-SG=3,4

Rmax/b

Figure 2. Illustration of the trinomial probability function (Eq. 5).

Close examination of the low BG (= 1,2) prediction reveals that a second parameter, b, has been introduced, and the shape of
this probability function is distinctly different from the other two. Yet, the summation of all probabilities to unity is
preserved.

Figures 3 and 4 demonstrate the influence of parameter 'a' on the probability distributions. Low values of 'a'
suppress the prediction of low BG. A higher value will boost the maximum probability of low BG allowing the possibility
that the probabilities of the other two outcomes can be exceeded within a certain range ofRmax.

+----------"~---------:~=-----------\ ~ SG=O

~SG=1,2
-+---------:~__....____:---------____1

-A-SG=3,4

1

0.8
~
~ 0.6:am
..0e 0.4
cd;

0.2

0

Rmax/b

Figure 3. Illustration of the trinomial probability function with a low value of 'a'.



Survival Analysis and Maximum Likelihood Techniques 113

1

0.8
>-
R 0.6
t!2
.£J
Q 0.4,I:

0.2

0

Rmax/b

Figure 4. Illustration of the trinomial probability function with a high value of 'a'.

The likelihood function, L, is the product of the above probabilities, each raised to the power of the number of times,
N, that the corresponding Doppler score was observed, i.e.:

For computational convenience, the logarithm ofL is used for parameter estimation:

LL = LNo . InPrBG=o + N 1,2 . InPrBG={1,2} + N 3,4 ·In PrBG={3,4}

(6)

(7)

Since all probabilities are less than or equal to zero, maximum likelihood is attained when LL has the lowest possible
negative value.

The complete list of model parameters are the time constant of the tissue (t), the rate constant ofgas transferring in
and out of the bubble (k), the gas solubility in tissue (8), the volume of the tissue surrounding the bubble (v), the surface
tension of the bubble (y), and the two scaling parameters (a, b). The expression that relates the gas solubilities and tissue
volume is given in Tikuisis et al. (1994) and Gault et al. (1995), and primarily involves the minimum bubble size condition
for bubble growth. The rationale for the other parameter choices are also presented in the cited references.
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Table 2 summarizes the variety of model configurations used to achieve the best fit of the data.

Table 2. Summary of model parameters used e·/) and corresponding maximum log Likelihood
values. Two estimates (for nitrogen and helium) were made for k and 5, where indicated by a "'.

Parameters LL
't k 5 v y a b

-2,229.7*

'" '" '"
-2,189.1

'" '" '" '"
-2,181.8

'" '" '" '"
-2,158.9

'" '" '" '" '"
-2,149.4

'" '" '" '" '" '" '"
-2,146.4

*null model estimation

The nine-parameter version (see Table 3) yielded the most significant improvement according to the log-likelihood
ratio test. Note that the time constants ofnitrogen and helium are markedly different, but their relative order is consistent with
expectation. However, the large difference in gas solubilitities between the two gases suggest different tissue types. This is
problematic but not surprising considering that the fit was performed on a single tissue (lack of data precluded the use of
additional model tissues). The estimated value for the tissue volume is within the range used by other researchers. The very
low estimated surface tension concurs with values reported by Paul Weathersby et al. (1982).

Table 3. Summary of model parameter estimates (± SE) of the best fit. The estimate of't for helium was
derived from the value for nitrogen.

Parameters Nitro2en Helium
't (min) 27.9 ± 1.9 9.3 ±8.3
k (cm . S-I 10-6) 0.050 ± 0.013 55.5 ± 120
8 0.0438 ± 0.0002 0.0096 ± 0.0079
v ( cm-1 10-4) 3.6±0.9
y (dyne cm-I

) 5.0 ±2.2
a 2.55 ± 0.09
b (cm 10-2

) 1.39 ± 0.16

Discussion

How well does the model fit bubble observations outside the calibration data set? We begin our examination of this
question with a 45-meter seawater (msw) dive on air for 30 min. This was an experimental dive which involved sedentary
divers half immersed in cold water, very unlike the dives in the data set used for the model calibration. As can be seen in Fig.
5, the model prediction is poor. This illustrates the model's lack of generality and risk of overextrapolation.

The next dive examined was similar, but involved working dives conducted on a semi-closed circuit breathing
apparatus. Better agreement was obtained in this case. The next dive examined was a 45 msw for 30 min on heliox, and a
similar level of agreement between the observed and predicted BG was attained as with the previous air dive. The last dive
examined was a 15 msw for 4 days saturation dive where no bubbles were detected, in accordance with the model prediction
of a zero bubble grade.
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Figure 5. Comparison of observed and predicted bubble grades for various dives.

Although we have not used any time of occurrence information in the model estimation, it is informative to compare
the evolution ofpredicted bubble sizes and observed bubble grades. The dive profile examined for this purpose in Fig. 6 is a
45 msw for 50 min dive on air. Superimposed on the plot of bubble radius are bubble grades for the six divers (identified by
numbers 1 through 6) involved in this trial. For example, diver #1 had BGs ofO, 3, and 4 at about 70, 120, and between 150
and 220 min, respectively, and then BG began to decrease. Indeed, the history of all the divers' BGs tend to be described by
the shape of the predicted bubble radius envelope. This reasonably strong chronological correlation is remarkable considering
that the parameter estimations were based on the maximum bubble grade recorded, not on when it occurred or on the events
preceding or following the maximum occurrence.
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Figure 5. Comparison of observed and predicted bubble grades for a 45 msw for 50 min dive on air. The
heavy solid line dermes the dive profile; the dotted line shows the predicted tissue gas tension; the thin solid
line shows the predicted bubble radius; and the numbers within the shaded region refer to the diver's
identification and indicate the BGs recorded (scale on left axis).

Summary

The present model distinguishes three levels of intravascular bubble activity and represents a departure from the
binomial outcome distribution usually applied in the prediction ofDCS. It can be referred to as a 'competing risk' model
according to the co-chair's (Dr. W.A. Gerth) overview.

Although we have some difficulties with the interpretation of some of the model parameter estimates, they fell
within the range of acceptable human biological values. The strong chronological correlation between the maximum
predicted bubble size and the maximum recorded bubble grade is important. This is because the time of these maxima lagged
the occurrence of maximum gas super-saturation which generally occurs upon surfacing and has been considered
representative of the maximum instantaneous risk ofDCS. The bubble modei prediction is consistent with the general
observation that DCS symptoms usually occur after surfacing.
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One of our goals in the F.G. Hall Laboratory is to develop a model under which decompression sickness (DCS) survival
data from diving, altitude, and flying after diving can be combined and used to predict DCS risk during flying after diving.
My objective in this presentation is to discuss issues that must be considered in construction of the hazard function to achieve
this goal. These issues include the types of explanatory variables, or covariates, that must be accommodated, and the
motivation for adoption of an unabashedly "mechanistic" approach to risk function design. We will see that this approach is
the distinguishing feature between two very different classes of models that have been used to describe DCS occurrence.

Model Forms and Explanatory Variables

Any model is applicable only to populations for which the explanatory variables and factors in the model are known and
in which no other confounding factors are active to influence the modeled outcome. In other words, any model is applicable
only when all relevant heterogeneity in the population is accommodated in the covariates. Well-characterized parametric
statistical distributions that meet this requirement are readily available. In this Workshop, for example, models for altitude
DCS have been described based on the log-logistic function with time-independent covariates [Conkin, Kannan; This
Workshop]. The hazard function for the ith individual in these models is generally expressed:

hj(t)= Ap.g(Zj,IJ)(At)p-l ,

1+ g(Zj, 1J)(At)P
(1)

where g(Zj,J3) is a function of a vector of parameters, 13, and the vector of explanatory variables for the individual, Zj. These
parametric models work well for modeling responses to exposures that have very simple time courses. For example, a
pressure and respired gas profile for a contingency EVA (Extravehicular Activity) from Space Shuttle is illustrated in Figure
1. The profile consists of a switch to 100% O2 breathing at the start of a 4 hr prebreathe, a 30 min decompression to space
suit pressure of 4.3 psia (equivalent to the barometric pressure at an altitude of30,300 ft in the US Standard Atmosphere),
and a 6 hr EVA followed by return to cabin pressure and air breathing.
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Figure 1. Shuttle contingency EVA pressure and respired gas profile consisting of a 4 hr 100% O2

"prebreathe," a 30 min decompression to 4.3 psia Shuttle suit pressure, and a 6 hr EVA at suit pressure.
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This exposure and other similar "square" decompressions can be rather easily described in terms of the ratio of the N2

tension in a DCS-governing "tissue" at the time of decompression to the ambient pressure at altitude ("tissue ratio" or TR),
the ambient pressure at altitude, and the time at altitude. Computation of the tissue ratio then requires a single additional
parameter, the O2 prebreathe time. Each of these covariates is a constant for any given exposure, allowing Eq. (1) to be used
as a model ofDCS hazard, with t=O at the time of arrival at altitude.

If we complicate the exposure, however, assumptions must be made about potential confounding factors or such a model
becomes inapplicable. For example, Figure 2 illustrates the pressure and respired gas profile for a nominal Space Shuttle
EVA. The exposure includes decompression to a 12 hr stage at 10.2 psia before a second and [mal decompression to the
EVA suit pressure of 4.3 psia. The profile begins and ends with air breathing, but 26.5% O2 in N2 is breathed during the 10.2
psia stage, and 100% O2 is breathed starting 40 min before the [mal decompression and throughout the exposure at 4.3 psia.
Figure 3 shows how this profile must be idealized to apply a simple log-logistic model ofDCS that accommodates only a
single decompression (no staging).
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Figure 2. Shuttle EVA pressure and respired gas profile consisting of 12 hr residence at 10.2 psia breathing
26.5% O2 in N2 followed by 6 hr exposure at Shuttle suit pressure of 4.3 psia.
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Figure 3. Idealization of profile in Figure 2 required to consider it in terms of a simple model applicable only
to Des occurrence after a single decompression.

As required by a simple model based on a single TR value for a given exposure, the profile in Figure 3 contains only a
single decompression from 1.0 atm cabin pressure to 4.3 psia suit pressure. The 12 hr 10.2 psia stage between 60 and 780
min in Figure 2 is considered to be spent at sea level pressure, with the inspired oxygen fraction adjusted to yield the same
alveolar POz as that breathed during the 10.2 psia stage. The decompression is depicted as practically instantaneous,
reflecting that effects on TR ofNzwashout during decompression are neglected. Such effects can be considered by adding
another parameter, the ascent rate, to the covariate vector[13]. The profile in Figure 3 is equivalent to that in Figure 2 from
the standpoint ofDes risk only if the change in pressure from 1 atm to 10.2 psia in the Figure 1 profile has no effect.

The presumption that a given decompression is unaffected by a preceding decompression is not always reasonably made.
This is particularly true in flying-after-diving, where outcome during the altitude exposure is confounded non-negligibly by
the diving history preceding it. A hypothetical flying after diving profile is illustrated in Figure 4, along with a corresponding
Des hazard profile estimated by a model to be described subsequently. Note that the altitude exposure begins before Des
risk from the preceding dive has decayed to zero. Under the model used to estimate the illustrated hazard profile, Des risk
during the altitude exposure is consequently clearly affected by the preceding dive.
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Figure 4. Flying after diving profile with corresponding model-estimated hazard profile.
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The confounding effect of the dive history preceding the altitude exposure can be accommodated in simple models like
that in Eq. 1 by addition of more elements to the z and f3 vectors of explanatory variables and parameters. In general,
however, the number of time-independent covariates and parameters must increase in proportion to the complexity of the
profIles to which the models will be applicable.

Time-Dependent Covariates

The proliferation of parameters with increasing profIle complexity is overcome by using time-dependent covariates. The
model then responds to a covariate process that is manifest in the temporal variations of each element in the covariate vector.
These variations are not fIxed in the model per se, but are accommodated by model structure fashioned to respond as these
covariates change through time. Thus, the complexity of this structure does not need to increase as the complexity of the
covariate process increases. Additionally, models based on such covariates allow computation of intermediate probabilities
of failure based on covariate vectors that are complete only up to arbitrary times, so that such models can be used in real-time
applications.
Time-Dependent Covariate Types

Time-dependent covariates fall into two classes; external and internal[6]. An external covariate is not directly involved
in the failure mechanism, and can be defined; i.e., determined in advance for each individual under study although not
constant through time; or ancillary; i.e., the output of a stochastic process external to the individual at risk. Thus a series of
discrete pressure, time, and inspired oxygen values can be used to describe the time course of exposure in a planned
laboratory decompression trial. The matrix formed by this series is an example of dermed external time dependent
covariates.

In comparison, an internal covariate is the output of a stochastic process that takes place in the individual under study.
Because an internal covariate requires survival of the individual to generate the output, it carries intrinsic information about
the survival history of the individual. VGE grade through time after decompression is a good example of a time-dependent
internal covariate of interest in Des studies.

Use of time dependent covariates requires recognition that the hazard at any time t is conditioned on the covariate
process up to that time but no further. As a result, only values of such covariates before or concurrent with failure in a given
individual can serve as predictors of failure.

Time-Dependent Covariates in an Accelerated Log-Logistic Hazard

Time-dependent covariates can be incorporated into models based on well-characterized parametric statistical
distributions. For example, the hazard function for the ith individual in log-logistic models for altitude DeS that use time­
dependent covariates can be generally expressed:

h.(t)= Ap.g(Zj(t),IJXAt)p-1

I 1+ g(Zj (t), IJXAt)P
(2)

where g(Zj (t), IJ) is a function of a vector of parameters, p, and a vector of time-dependent explanatory variables for the

individual, Zi(t). This type ofmodel is called an acceleratedfailure time model. Note that in comparison with Zi in Eq. (1),
Zi(t) in Eq. (2) is the covariate vector for the ith individual at time 1. Formulation of the g(Zj (t), IJ) function is especially

challenging because no particular form is suggested on purely mathematical or statistical grounds. However, in a DeS
occurrence model, any formulation of this function must produce an instantaneous risk function, hi(t), that behaves in
conformance with known or hypothetical influences ofpressure, breathing gas and time in the Zi(t) matrix. Thus, our only
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guidance for specifying g(Zj (t), p) comes from our etiological understanding ofDCS. It is then far simpler to specify hi(t)

directly -- in terms of Zj(t) and ~ -- than to specify g(Zi (t), p).

This can be illustrated with the following example. Let us stipulate existence of a hypothetical pressure profile that, in
accord with known influences of pressure, breathing gas and time, would be thought to produce a pure, constant amplitude
sinusoidal profile ofDCS hazard. This sinusoidal form is easily expressed, but if used as g(z(t), p) in Eq. (2), yields the

curve labeled "h(t), acce1" in Figure 5.

--~

time

-h(t)

--h(t), accel

log-logistic

Figure 5. Plot ofEq. (2) with arbitrary values of Aand p andg(z(t),p)=1 [curve labeld h(t)] and

g(z(t), p)=1+sin(rot+k) [curve labeled h(t), acce1]. The sinusoid in the latter form of g(z(t), p) is

superimposed on the underlying shape of the log-logistic distribution, h(t).

Features of the sinusoid are clearly evident, but with increasing time on the abscissa, its amplitude attenuates and its
downward excursions become more acute under influence of the underlying log-logistic function. In this case, the
sinusoid g(z(t), p) lli the hazard h(t) and added influence of another distribution, regardless of its particular form, is

undesirable.

As a result of such considerations, we have been compelled to eschew the strengths of well-characterized statistical
distributions in favor of "mechanistic" forms for the hazard function that are defmed wholly in terms of one or more
explicitly-modeled processes as they evolve under the influence of time-dependent covariates. Under this "mechanistic"
formalism, the theoretical processes and their descriptions completely prescribe the form of the arithmetic and logical
relationships between the independent variables, parameters, and hazard in any given model. As with models based on time­
independent covariates, mechanistic models can be "empirical," without claim that the modeled process(es) actually describe
the real physiologic processes involved, or "physiologic", attempting to describe those processes as completely and
accurately as possible.

Mechanistic Models of DeS Occurrence

We have been developing physiologic mechanistic models, schematized in Figure 6, to describe DCS occurrence
survival data. In these models, the body is envisioned as a collection of parallel-perfused compartments that each exchange
gas with the atmosphere via the circulation and lungs. If this exchange lags behind a decrease in ambient pressure so that
gas-supersaturation is produced in a compartment, one or more bubbles may nucleate and grow to relieve the gas­
supersaturation and produce risk of DCS. These models provide the flexibility to accommodate both increasing or decreasing
risk after decompression and a mechanistic foundation that conforms to the well-accepted idea that DCS is initiated by in
vivo bubble formation and growth [5]. The different gas and bubble dynamics equations used in these models are described
elsewhere [2, 3, 5].

These models require a continuous description of the pressure and respired gas profile. This is provided by encoding
each profile as a sequence of nodes that give the pressure or depth and the inspired O2 fraction at particular times in the
profile. An unbroken description of the profile is then obtained by linear interpolation in the time domain between pressures
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and respired O2 fractions at successive nodes. Each node thus gives the conditions prevailing at the end of a profIle stage that
is either a travel stage (compression or decompression), an isobaric stage, a breathing gas switch stage, or a combination
travel and breathing gas switch stage. The model is then exercised on the profile by sequentially processing these stages,
preserving the model state at the end of each stage as the initial state for the next stage. A detailed format (the Augmented
NMRI Standard Format) for listing profIle nodes with outcome information and compiling these lists into machine-readable
data sets of one or more profIles has been developed as described in Appendix A.

At the outset of our attempts to model Des occurrence during flying after diving, two different gas and bubble dynamics
models had been developed to model Des incidence and time of occurrence in either diving or altitude exposures. In the
diving DeS model [3, 5], schematized in Figure 6.A, only a single bubble is allowed to nucleate and grow in the each of
three modeled compartments to produce Des risk. This restriction is relaxed in the single compartment of the altitude Des
model [2], schematized in Figure 6.B, where multiple bubbles are allowed to nucleate and grow subject to a nucleation model
described by Yount [17].

A

Heart and Lungs

h(t) = 'i:.Gi~B,i(t)-VB,i)
i=1

where

Gi = gain, compartment i

VB.lt) = prevailing bubble volume,
compartment i

V:,i = nuclear (or initial) bubble

volume, compartment i

B

Heart and Lungs

h(t) =
(VB(t) VB)

Vi

where

G = gain

VB(t) = prevailing bubble volume

VB = nuclear (or initial) bubble

volume

N(t) = number of bubbles in
compartment at time t

Vt = compartment volume
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Figure 6. Schematics of: (A) three-compartment BVM(3) model for diving DCS, and; (B) single-compartment model for
altitude DCS.

Each of these models describes observed DCS incidences and times of occurrence rather well in its own domain, but
seriously underestimates these properties for exposures in the other's domain. Diving and altitude DCS data could thus not
be combined under either of these models. As illustrated in Figure 7, however, observed DCS occurrence density
distributions from these data appear sufficiently similar to motivate continued search for a single model that can
accommodate all these data.
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Figure 7. Observed Des occurrence density distributions from four large data sets of diving (BIG292), altitude
(USAFAL7) and flying after diving (FAD-USN, FAD-Duke) exposures. Lines between indicated data points in each panel
are drawn for clarity only. The vertical dotted line is drawn through zero time since last decompression in the three panels.
Other important summary information about the data sets is given in Table 1.
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We began our search for such a model by combining important features of the above diving and altitude models into a
single "combined" model schematized in Figure 8. This combined model is a three compartment model in which one of the
compartments in the original diving model is replaced by a compartment with properties of the single compartment in the
altitude model.

Heart and Lungs h(t) = ~ Gi~B.lt) - VB,i)+
i=1

G3N3(tArB,lt) - VB,3)
Vt,3

where

G; = gain, compartment i

VB,;(t) = prevailing bubble volume,
compartment i

V;,i = nuclear (or initial) bubble

volume,compartmenti

N;{t) = number of bubbles in
compartment i at time t

Vt,i = volume, compartment i

Figure 8. Schematic of combined Des occurrence model for flying after diving.

This combined model was optimized about a data set of 5663 exposures and known outcomes on diving, altitude and
flying-after-diving profiles compiled from USN, USAF, NASA and Duke data resources. Essential features of the data are
given in Table 1. Each of the tabulated data sets has been described in greater detail in a variety of other publications [3, 7­
11, 14, 15].

A detailed evaluation of model fit and perfonnance is neither within our present scope nor necessary to illustrate
advantages and pitfalls of the mechanistic approach to hazard function design. A disadvantage of such functions is that they
can require a relatively large number of parameters, regardless of the complexity of the covariate processes in the data. The
present combined model, for example, contains 8 parameters for compartment I, 8 parameters for compartment 2, and 10
parameters for compartment 3 (cj, Figure 8). Except for simplification of compartment 3 into one functionally identical to
the other compartments, the number of model parameters that must be specified, either through optimization or assignment,
can be reduced only by removal of one or more complete compartments. Earlier work had shown that three compartments
are statistically warranted for models of this type to correlate the BIG292 diving subset of the present data alone.
Accordingly, the present model was optimized with three compartments and 26 adjustable parameters. However, only 22 of
these parameters were detennined to within an estimated standard error of 30% or less. The four remaining parameters were
associated with the compartment that emerged from optimization with the shortest half-time, in which only a single bubble
could nucleate and grow after decompression. Each of these had an estimated standard error that exceeded the parameter
value by a factor of 30 or more, and was thus poorly constrained by the data. Nevertheless, model structure requires nonzero
values for these parameters, though the optimization could almost certainly have been completed after fixing these four
parameters at reasonable arbitrary values.
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Table 1. Training Data Summary Description
Exposure Type Data Set # #DCS

x osures Incidents

NMRIBIG29 Single Air EDU885A 483 30
(Diving DC4W 24 8

SUBX87 5 2
NMRNSW 91 5
NSM6HR 5 3

Single Air, Decompression PASA 7 5
Repetitive Air EDU885AR 18 11

DC4WR 1 3
PARA 135 7

Multi-Level Air PAMLA 23 13
Single Non-Air NMR8697 47 11

EDU885M 81 4
EDU1180S 12 10

Repetitive Non-Air EDU184 23 11
EDU885S 9 4

Multi-Level,SDV; P02=0.7 PAMLAOD 13 6
Decompressions

Multi-Level,SDV; P02=0.7 Transits PAMLAOS 5
Air Saturation ASATEDU 13

ASATNSM 18
ASATNMR 1

Non-Air Saturation ASATARE 20
Subtotals 190

USN_FAD Misc. flying after diving FAD-NAVY 128 69 13 70.3
(Flying afte

Diving

USAF Armstrong Laboratory, Brooks AFB USAFAL7 1194 401 C 401.0
altitude

(Altitude'

DUKE_High 02 Single Air; 02 Decompression MOONVQ 3 3 3.3
(Diving

DUKE 8102\ Repetitive Air, Surface 02 S102-85 197 4 I 4.1
(Diving) S102-93 38 1 0 1.0

Subtotals 235 5 1 5.1

DUKE NOAAI Repetitive Non-Air, Surface 02 NOAA 91 ~~(Diving)

40/120-S1-SimComFI FAD40-1 51 1 1 1.1
r 60/55-S1-SimComFI FAD60-1 122 5 10 6.0
\
J

60/55-lhr-60/20-SI-SimComFI FAD60-2 126 6 3 6.3
60/55-1hr-60/20-1 hr-60/20-S1-SimComFI FAD60-3 100 2 0 2.0

100/20-S1-SimComFI FAD100-1 109 7 2 7.2
100/15-lhr-60/35-SI-SimComFl FADI0060 113 5 3 5.3

DUKE_FAD
(Flying afte

Diving

Subtotals 621 26 19 27.9

Grand Totals 5663 695 146 709.6
*Each marginal outcome counted as 0.1 DeS
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A great advantage of the mechanistic approach is illustrated in Figure 9, where performance of the combined model on a
flying after diving profile from the Duke FAD60-3 data set is shown. The complexity of this profile compared with those in
Figures 1 and 3 is immediately apparent. The profile consists of three dives to 60 fsw separated by two 1 hr surface intervals,
a 17 hr preflight surface interval, and a 4 hr exposure to 8,000 ft altitude. Model use of time-dependent covariates allows it to
accommodate this profile, as well as other profiles of arbitrary complexity, without modification.
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Figure 9. Flying after diving profile with corresponding model-estimated hazard and cumulative Des probability profiles.

Evaluation of physiologic mechanistic models is also naturally extended beyond the usual assessments ofgoodness-of-fit
by examining the hazard function as a formal statement of the hypothesis that the observed outcomes were in fact products of
the processes that the hazard function was designed to represent. In the present case, Des risk is formally expressed as a
function of simulated bubble volumes and number densities in a collection ofhypothetical, parallel-perfused gas exchange
compartments. Model parameters are consequently associated with biophysical quantities that are independently measurable
at least in principle, such as gas solubilities, diffusivities, blood flows, etc. If the model equations and logic provide complete
and correct representations of the processes that actually gave rise to the Des cases in the data, optimized parameter values
should be within range of their corresponding measured or "physiological" values. Earlier examinations of this kind lead to
the conclusion that the diving Des model schematized in Figure 6.A was incomplete as a mechanistic description ofDes
etiology, even though it provides a good empirical correlation of a large body of diving Des experience [3, 5].

The present model, however, runs into trouble before consideration of its optimized parameter values. The altitude
portion of the profile in Figure 9 is typical of all Duke-FAD profiles. The model result of zero hazard after return to ground
at the end of the 4 hr altitude exposure is also typical of model performance on these profiles. Comparison to panel e in
Figure 5 shows that the observed Des hazard persists long after bubbles in the model, and hence Des risk, have resolved
with return to ground level. The model consequently fails to account for a relatively large number ofDeS cases that were
observed to occur after completion of the altitude portion of the profiles. We have not yet been able to account for this
observed hazard in terms of prevailing bubble volume.

This model difficulty illustrates another challenge of the mechanistic approach. The behavior of mechanistic models is
intrinsically constrained by model structure, so that elaboration of the model- and addition of parameters - within that
structure may not improve model fit to a given data set. Model improvements may instead require expansion of model scope
itself to accommodate additional mechanistic processes. In the present case, the indication is that such elaboration must
include representation ofprocesses that are initiated by bubble formation but persist to cause DeS risk after bubbles have
resolved.
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A fmal motivation for the physiologic mechanistic approach is belief that as a model embodies more complete and
accurate representations of the processes that give rise to the outcome of interest, the model will provide more accurate
extrapolations from the model calibration data. This has been demonstrated in one case where a gas and bubble dynamics
model ofDCS occurrence provides more accurate predictions ofDCS incidence than a more empirical model in application
to dive profiles in which high oxygen partial pressures are breathed [4]. Both models were calibrated about the same data,
from which such profiles were purposefully excluded.

Conclusions

The complexity of the covariate processes that govern DCS outcomes under conditions of usual practical interest, such as
during flying after diving, compels adoption of a "mechanistic" design of the hazard function in models of DCS occurrence.
However, functions engineered to express DCS hazard in terms of the prevailing bubble number density and volume achieve
only limited success in application to combined diving, altitude and flying-after-diving data. Yet more complex function(s)
are required to account for etiologic processes that are initiated by bubble formation but persist to cause DCS after the
bubbles have resolved.
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The Augmented NMRI Standard data file format is an elaboration of the NMRI Standard data file format described by
Weathersby, et al. [16] for encoding dive profiles and their outcomes. The Augmented NMRI Standard data file format is
backward-compatible with the NMRI Standard data file format. Thus, an interpreter for Augmented NMRI Standard data
files can read files that conform to the older NMRI Standard format, but Augmented NMRI Standard data files may NOT be
read using a strict NMRI Standard format interpreter.

A pressure exposure or profile can be described as a sequence of nodes that each provides point-in-time information about
the prevailing ambient pressure, inspired gas and exercise. An unbroken description of the exposure is then obtained by
connecting the pressures, inspired gas fractions and exercise levels at successive nodes with straight lines in the time domain.
Each node can consequently be considered to describe the conditions prevailing at the end of a profile stage that may have
been either a travel (compression or decompression) stage, an isobaric stage, a breathing gas switch stage, or a combination
travel and breathing gas switch stage. The NMRI Standard and Augmented NMRI Standard formats use such a node-by­
node convention with modifications to simplify recording ofbreathing gas switches and exercise periods.

The left-most fields for each line or node of a profile are strictly defmed in this description. However, the format can be
further augmented to accommodate additional information in new fields to the right of those defmed in this description, and
to the left of any optional COMMENT field (see below), as individual users may require. Profiles coded with such additional
information, but otherwise conforming to the present format description, should be machine-readable by an Augmented
NMRI Standard format interpreter without modification. The format is consequently flexible while providing a mechanism
for ready exchange of essential information about diving, flying and flying after diving exposures.

Each profile is entered separately using standard ASCII characters. A profile is defmed as a unique history ofpressure,
gas breathed, and outcome including symptom times. Ifmore than one subject has the same profile, the replication can be
noted in one profile and not entered again. The format of a profile is (items in square brackets are not always required):

Line 1:
Line 2:
Line 3:
Line 4:

Identification data (free character labelling) [$P##] [$*##] [$ID]
Originating gas, [No. of exposures, Outcome,] [Tl,T2] [!comment]
Time (min), Pressure (depth, fswg), [New gas, Switching time] [, Exercise Code] [!comment]
... Same as line 3

" "
Last line: -9999.0 (or -0000.0)

Entries need not be column aligned and different levels ofprecision can be used for Pressure and Time entries.
Separating commas between entries are required as shown. Each comma can optionally be followed by one or more spaces.
Default units of time are elapsed minutes and default units of pressure are feet sea water gauge. These can be changed for a
given profile using the $P and $ID commands in Line 1 as described below. A Time-Pressure node entry is required only
when a change in the slope of the pressure or breathing gas profile occurs, such as at the start of compression, or when the
breathing gas is changed. Changes in pressure or breathing gas are assumed to be time-linear between successive nodes. The
maximum number of nodes in a profile is limited by software, not the format itself.

"Originating gas" is the Gas Code (see below) for the breathing gas on which the subject(s) were saturated at profile start
(i.e., at 0.0 elapsed time). Such saturation is always assumed at reference "Surface Pressure," which by default is sea level
pressure (0 fswg, 1.0 ATA). Saturation on "Originating gas" at a pressure other than the Surface Pressure is effected by
entering a first node with Time=O.O and Pressure equal to the desired saturation pressure. The reference Surface Pressure is
NOT reset.

NOTE: The Duke interpreter of the NMRI Standard and Augmented NMRI Standard formats assigns saturation on
"Originating gas" at 1.0 ATA Surface Pressure as the default initial condition for all profiles. A Time=O.O first node is
required only if the initial saturation pressure is not 1.0 ATA or the breathing gas is switched at profile start. Other
interpreters may require a Time=O.O, Pressure=Surface Pressure (e.g.; Depth=O.O) first node to signal initial saturation on
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"Originating gas" at Surface Pressure even when no breathing gas switch occurs at profile start. See DEFAULTS AND
OPTIONS below for methods to code other initial conditions.

"No. of exposures" is an integer value indicating the number of occurrences of the profile that produced the indicated
"Outcome", including any indicated TI and T2 times. If the "No. of exposures" field is blank or zero, the profile is
hypothetical, or one for which outcome data are not available. Such profiles are omitted from model optimizations, but can
be included when the data set is used in other model exercises.

"Outcome" is a floating number of value 0.0 (no DCS) or 1.0 (DCS). Note that at least two profiles must be entered to
record a dive in which DCS occurred in x ofN participants (O<x<N); one profile to record the (N-x) exposures completed
DCS-free, and the other to record the otherwise identical x exposures that resulted in x incidents ofDCS. A fractional value
to specify a "marginal" outcome is also allowed. In order to avoid ambiguity arising from this latter option, at least two
profiles must be entered to record x incidents of DCS and y incidents of "marginal" DCS in N participants in any given dive
(O<x+ysN); one profile to record the x incidents ofDCS and the other to record the otherwise identical y exposures that
resulted in y incidents of "marginal" DCS.

TI is the "time last known DCS-free" and T2 is the "time at which defmite DCS was first present" in total minutes
elapsed for each of the No. ofexposures subjects with the indicated Outcome (0.0<Outcomes1.0). A separate profile must be
entered for each set of DCS occurrences with unique Outcome, TI and T2 combinations during any given dive in which
multiple individuals participated.

"Originating gas" and "New gas" entries are specified using one of the Gas Codes listed in Table A.I.
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TABLE A.I.Gas Codes in the Augmented NMRI Standard Formata,b
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Code F02orP02 FN2orPN2 FHe orPHe Comments

Air and Nitrox codes

1.mn 21%ofPamb Balance 0.0 Air; mn ignored
2.mn mn.O% ofPamb Balance 0.0 Constant FI02 = O.mn
3.mn O.mnATA Balance (pamb-PH2O-P02) 0.0 Constant PI02 = O.mn ATA

13.mnopqr m.nopqr ATA Balance (pamb-PH2O-P02) 0.0 High Constant PI02: cj, 3.mn

Heliox (He-02) codes

4.mn mn.O% ofPamb 0.0 Balance Constant FI02 = O.mn
5.mn O.mnATA 0.0 Balance (pamb-PH2O-P02) Constant PI02 = O.mn ATA

15.mnopqr m.nopqr ATA 0.0 Balance (pamb-PH2O-P02) High Constant PI02: cj, 5.mn

Tri-mix (He-N2-02) codes

6.mnopqr mn.o% ofPamb pq.t>1o of (pamb-P02) Balance Constant FI02
7.mnopqr mn.o%ofPamb p.qr ATA Balance Constant FI02, Constant PIN2
8.mnopqr m.noATA pq.t>1o of (Pamb-P02) Balance (Pamb-PH2O-P02-PN2) Constant PI02
9.mnopqr m.noATA p.qr ATA Balance (pamb-PH2O-P02-PN2) Constant PI02, Constant PIN2

10.xxxxxx PREVIOUS P02, ATA PREVIOUS PN2, ATA Balance (pamb-PH2O-P02-PN2) (add He)
11.XX:XXXX PREVIOUS % ofPamb PREVIOUS % ofPamb Balance (vent)
12.mnopqr m.noATA pq.r% of Pamb Balance (Pamb-PH2O-P02-PN2) Constant PI02, Constant FIN2
14.xxxxxx PREVIOUS P02, ATA Balance (pamb-PH2O-P02-PHe) PREVIOUS PHe (addN2)
16.mnopqr mn.o% of (pamb-PH2O) pq.t>1o of (pamb-PH2O) Balance Constant FIN2 and FIRe, wet gas

a In accord with the original NMRl Standard format, the Augmented NMRI Standard prescribes that constant PIOz gas codes
be interpreted as wet-gas descriptions; FIOz=PIOzI(Pamb-PHzO), where Pamb is the ambient hydrostatic pressure; because
such gases are usually delivered from re-breathers. Other codes describe gases as from source, dry, NOT adjusted for
water vapor.

b When using constant PI02 codes (e.g., 13.mnopqr or 15.mnopqr), care should be taken to ensure that the PI02 never
exceeds the ambient pressure, Pamb. Depending on the interpreter, such instances either may cause a profile READ error
or be accommodated through default assignment ofFI02=1.0 until the erroneous condition resolves with an increase in
ambient pressure or a breathing gas change.

When a "New gas" is specified in a line, the change in alveolar oxygen partial pressure from the old gas is assumed to
occur linearly over a period of time equal to the indicated "Switching time" beginning at the time and pressure specified in
the line. Note that this convention obviates need for a separate node entry to signal completion of a breathing gas switch.
The obviated node, which is implied by the "New gas" node, is inserted by the interpreter. Switching times for successive
breathing gas switches cannot overlap: If a given gas switch has not completed before another is specified, a profile READ
error is signaled.

The Duke interpreter allows a blank line to be inserted between successive profiles in a given file; i.e., before the first
comment line of the second and following profile(s). Additionally, any comma preceded by another comma with no or only
blank intervening characters is interpreted as a skipped or null entry in the line. A trailing comma after the last data entry in a
line is not required. Finally, a comment field can optionally appear in any line to the right of required data, provided that its
first series of non-blank characters contains at least one alpha or other non-numeric character. These provisions may not be
supported by other interpreters.
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A) A variety of different pressure units can be used. Two different pressure units, primary and alternate, can also be used in
any single profile to facilitate entry of both hyperbaric and hypobaric pressures in the same profile.

Primary pressure units, which are fswg by default, can be changed on a profile-by-profile basis by including the string
"$P##" anywhere in the fITst free-form comment line (record) of a profile, where ## is the pressure unit index for the
desired primary pressure units. The unit index portion of the field can be either one or two digits ($P# or $P##).
Supported pressure indices are given in Table A.2.

TABLE A.2. Pressure Unit Indices in the Augmented NMRI Standard Format

Index Number

I
2
3
4
5
6
7
8
9
10
11
12
13

Pressure Unit

FSWG, feet seawater, gauge
MSWG, meters seawater, gauge
FFWG, feet freshwater, gauge
MFWA, meters freshwater absolute
PSIA, pounds per square inch absolute
ThFt, Altitude*: Feet/103

FL, Altitude*: FL or Flight Level, Feet/102

ThM, Altitude*: Meters/l 03

ATA, atmospheres absolute
kPa, kilopascal absolute
MPa,megapascalabsolute
bar, bar absolute
kgsc, kg/cm2 absolute

*Altitude units; ThFt, FL and ThM; are always from the US Standard Atmosphere, 1976,
expressed with respect to sea-level (1.0 ATA), regardless ofthe prevailing reference Surface
Pressure [cf, (C) and Pressure Conversions section below).

Alternate pressure units are ThFt altitude by default and can be changed on a profile-by-profile basis by including the
string "$*##" anywhere in the fITst free-form comment line of a profile, where ## is the pressure unit index for the desired
alternate pressure units. The unit index portion of the field can be either one or two digits ($*# or $*##).

Each pressure entry in the ensuing profile description that is intended to be interpreted in alternate pressure units must be
immediately followed (i.e.; no comma, tab, space or other delimiter) by the "*" character. Entries lacking this flag are
interpreted in primary pressure units.

B) Time entries can be made in either elapsed time format (default) or in delta time format. In the latter, each time entry for
a profile node gives the delta time in minutes since the preceding node. Delta time format is invoked on a profile-by­
profile basis by including the string "$TD" anywhere in the fITst free-form comment line of a profile. Profiles with first
lines lacking this string are interpreted in elapsed time format.

C) The reference Surface Pressure can be changed on a profile-by-profile basis to a value less than sea-level pressure to
effect appropriate interpretation of gauge pressure units for diving at altitude. Saturation on "Originating gas" at a
reference Surface Pressure other than the default sea-level pressure is specified by a first node that contains a -1.0 Time
entry with a Pressure entry equal to the desired Surface Pressure. The Pressure entry can be in either primary pressure
units or alternate pressure units with the "*,, flag, in conformance with the conventions described in (A) above. A gauge
pressure in this first Time=-l.O node is interpreted with respect to the default sea-level Surface Pressure, while all
subsequent gauge pressures are interpreted with respect to the new Surface Pressure. A "New gas" entry in a Time=-l.O
node initiates a gas switch at Time=O.O from saturation on "Originating gas" at the new Surface Pressure. Note that an
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initial Time=-1.0 node is similar to an initial Time=O.O node in the NMRI Standard Format, but also causes the Surface
Pressure to be reset with corresponding effects on interpretation of 'gauge' pressure units.

Two starting nodes must be used to code a profile that occurs with reference to a surface pressure other than default and
that begins with the subject(s) at initial saturation on "Originating gas" at a pressure other than the new surface pressure.
A first node with Time=-1.0 must be used to code the desired surface pressure. A second node with Time=O.O then resets
the initial saturation conditions at the indicated pressure on "Originating gas". Note that the surface pressure reset node,
with Time=-1.0, causes the initial saturation conditions to be set equal to saturation on "Originating gas" at the new
surface pressure. The subsequent Time=O.O node then resets the initial saturation pressure (again), without effecting the
surface pressure setting. If the nodes are reversed, with the Time=O.O node entered before the Time=-1.0 node, the reset
of the initial saturation conditions that accompanies the latter will override the effect of the first Time=O.O node.

D) A profile ended with a "-9999.0" TIME entry is terminated at the TIME of the preceding node. A profile ended with a "­
0000.0" TIME entry signals the presence of an end-stage of indefmite duration at the last entered PRESSURE and
breathing GAS CODE. The latter allows a suitably coded DCS model to run until all DCS risk decays to zero, without
requiring explicit specification of an arbitrarily long post-decompression stage.

E) Supports entry of an Exercise Code in any node to indicate performance of exercise in the period beginning at the node
time and ending at the elapsed time of the next node. (This convention is similar to that for the "New gas" entry which,
when present, indicates that breathing of the New gas starts at the node time.) Nodes that are included only to indicate
start or fmish of an exercise period must include the time, in appropriate format, followed by four commas before the
Exercise Code to signal absence of pressure and gas switch information. The Exercise Code is a floating value as follows,
where the square brackets indicate optional information:

O[.opq] (or absent)
mn[.opq]

REST or END EXERCISE [.opq] ignored]
Begin exercise of type mn [at intensity opq].

If [.opq] is absent or opq is 0 with nonzero mn, an appropriate unit response; e.g., 1 vice 0 in a simple binary EXERCISE
or REST code; is assumed.

Defmitions of various exercise type and intensity codes are user or site specific and, for proper interpretation, must be
included as separate accompaniments to the data set(s) in which they are used. For example, the opq intensity field can be
used to indicate an (opq x 10)% increase in whole-body 02 consumption above resting baseline:

mn.005
mn.010
mn.120

Pressure Conversions

Begin exercise of type mn increasing 02 consumption by 50%
Begin exercise of type mn increasing 02 consumption by 100%
Begin exercise of type mn increasing 02 consumption by factor of 12

Units of pressure are converted according to the following primary defmitions [1]:

1 atm = 760.000 torr
1 bar = 100,000 Pa
1 psi = 6,894.76 Pa
1 torr = 133.322 Pa

Units of pressure expressed as water depth below sea-level are converted using the following additional standard
defmitions as adopted by the Undersea and Hyperbaric Medical Society:

1 bar = 32.6457 fsw (assumes seawater density = 1.02480 gm/cc)
1 msw = 10.0000 kPa (assumes seawater density = 1.01972 gm/cc)



136

1 bar = 33.4702 ffw (assumes freshwater density = 0.999552 gm/cc)
1 mfw = 9.80229 kPa (assumes freshwater density = 0.999552 gm/cc)

Undersea and Hyperbaric Medical Society

Units of pressure expressed in terms of geometric altitude above sea-level are converted using defining equations for the
us. Standard Atmosphere, 1976 [12]. These equations give pressure P in atmospheres absolute (atm abs) as functions of
geometric altitude above seal-level A in kilometers (km):

[
288.15 ]-5.25588

P= ·A<l1km
288.15 - 6.5A '

P = 0.22336· exp[0.15769 -(11- A)] ; 20km > A ~ 11 km.

(A.l)

(A.2)

These equations are inverted to obtain the following expressions for geometric altitude A in kilometers (km) as functions of
pressure P in atmospheres absolute (atm abs):

\

288.15 - eXP[ln(288.15) + In(p) ])
5.25588

A = ; P > 0.22336 atm abs
6.5

!In(0.2;336) )A = 11- ; 0.05403 atm abs < P ~ 0.22336 atm abs
0.15769

(A.3)

(A.4)

The above expressions cover the relationship between geometric altitude and atmospheric pressure over the entire
physiological range; from below sea-level to above the Armstrong line at 62,800 ft (19.14 km), where atmospheric pressure
equals the vapor pressure of water at 37°C (47 mmHg). In this physiological region, the us. Standard Atmosphere, 1976, of
the United States Committee on Extension to the Standard Atmosphere (COESA) is the same as COESA's "us. Standard
Atmosphere, 1962," and is identical with the International Civil Aviation Organization (ICAO) "Manual of the ICAO
Standard Atmosphere," as revised in 1964. The defmition of the Standard in this region was also adopted in the ISO
Standard Atmosphere (ISO 1973) by the International Standards Organization (ISO) in 1973. (c.f., [12])
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This paper presents an example of a process by which an existing model, considered to be a good model of
decompression sickness (DCS) risk, can be improved. Along the way, some questions as to what constitutes a good model,
what conditions require an improvement and what constitutes an improvement will be raised.

In general, the process works as follows: The decompression modeling program at the Naval Medical Research
Institute (NMRI) developed an empirical model (as opposed to a mechanistic model) and calibrated it to high-quality
observed data. This model was successful in describing outcomes in a large, diverse set of diving data [1] and provided
several useful products [1,2,3,4]. Later we identified an area where the model did not perform well enough to provide a
useful answer. At this point we had two options to improve the model's performance: 1) Add data to specifically address the
area ofpoor performance, and 2) Modify the model itself. After each step, we have to ask two important questions: 1) Have
we fIXed the problem that we identified? 2) How do we know we fIXed it?

The model used as the example is known as USN93 (the acronym identifies the sponsor and the vintage of the work)
[1]. This is an empirical probabilistic model of decompression sickness risk, optimized by fitting to data using the maximum
likelihood method. The data used to calibrate the model consist of the time, depth and the gases breathed by the diver and the
outcome of the dive (DeS or not-DCS). The outcomes of those exposures are coded in a binomial sense as zero for safe
outcome and one for DCS outcome. A third category, referred to as a marginal outcome, is considered somewhat worse than
completely safe, but not as bad as a DCS outcome. Such marginal cases are coded as one-tenth of a full DCS case. The DCS
and marginal outcomes are further modified by the time of the event occurrence. A form of time of event occurrence is used
which represents the interval during which the case develops. This interval begins with the last time that the subject was
known to be safe and ends at the time when the subject was considered to have acquired DCS [5].

The USN93 model accumulates Des risk as a time integral of instantaneous risk and this risk, or hazard, function is
proportional to over-pressure. This over-pressure consists of the model's calculated nitrogen tissue pressure when it is in
excess of the ambient pressure. Over-pressures, or instantaneous risks, are summed over multiple independent parallel
compartments. There are typically one to three compartments, depending on the size and complexity of the calibration data
set. USN93 was calibrated with 3,322 dive exposures which included 190 DCS and 110 marginal events.

How does the model perform after calibration? One way of answering that is to look at how the calibrated model
predicts outcomes in the calibration data itself. Figure 1 shows time after surfacing on the x-axis in increments of hours, and
on the y-axis, the number ofDCS cases. The vertical bars represent the observed Des rate (number ofDCS cases per hour
observed). The solid line represents the USN93 model's prediction ofDCS cases for each time category. The model performs
well at describing the features of this distribution: A success in that measure of its predictive ability.

Figure 1. Calibration Data
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Another way the goodness-of-fit question can be asked is to look at how the model predicts Des risk in the data that
was not included in the calibration data set, sometimes referred to as validation data. In this case, there were roughly 1,500
dive exposures not included in the calibration data set for various reasons. One question to ask, of course, is why was this
data not included in the calibration data set? There are a number of reasons. For example, one of the original criteria for
inclusion in the calibration data set was that the divers be immersed during the study. Some of these dives included divers
who were dry, in a compression chamber, during exposure. Other parts of these data simply arrived too late to be included in
the calibration, so were used here as validation data. Figure 2 shows that USN93 provides essentially the same quality of fit
to the data not included in the calibration as it did for the calibration data of Figure 1.

Figure 2. Validation Dives
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One of the criteria for a model to be considered'good' is that it provide a useful product. One such product that
USN93 has led to has come to be known as the U.S. Navy Dive Planner [2]. This is an implementation of the model in which
the user can input depth, bottom-time and gas mix to plan a dive of arbitrary complexity. Upon reaching the end ofbotlom
time, the dive planner will provide a decompression profile to follow. This dive planner has been approved by the U.S. Navy
for special operations dives and is extensively in use today.

USN93 performs well in these goodness-of-fit measures and has proven to be of practical value, so it can be
considered to be a 'good' model. Why does it need improvement? There are areas in which its performance is less than
optimal. One such area occurs in dives which use 100% oxygen during decompression [6]. This is an area of diving
operations which, during model development, was not considered to be of primary importance, but has since become a
critical question. USN93 does a poor job ofpredicting the Des outcomes in 02-decompression dives. From Figure 3, it is
clear that USN93 dramatically under-predicts the number of observed cases.



Survival Analysis and Maximum Likelihood Techniques

Figure 3. Available Oxygen Decompression Dives
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What is happening inside the model to cause this under-prediction? The risk ofDCS in USN93 is proportional to
the Nz over-pressure, and wash-out during decompression is controlled by both the kinetic time constant and the relative
levels of ambient and tissue nitrogen. When 100% Oz is breathed, Nz wash-out is enhanced due to the absence of a nitrogen
component of ambient pressure. Since the risk that the model accumulates is proportional to this over-pressure, a diver
breathing 100% Oz has substantially less accumulated risk than a diver breathing air. Observations indicate that oxygen
during decompression should be beneficial, but USN93 over-estimates that benefit. USN93 under-predicts the observed DCS
incidence in Oz decompression dives by 60 percent.

There were 729 Oz-decompression dives withheld from the original calibration data set. One approach to improve
the model is to simply add these dives to the calibration data and recalibrate. When this is done, the model under-predicts the
DCS incidence in Oz dives by only 30 percent: Certainly an improvement but not enough to declare a success.

We then postulated two modifications to the model. The first was to introduce the idea of oxygen acting as a
circulatory drug with nitrogen wash-in/wash-out kinetics slowed based on the POz present in the diver's breathing gas. This
idea was derived from a publication by Anderson et at [7] from the hyperbaric group at SUNY-Buffalo, in which substantial
slowing of nitrogen wash-out with a dependence on POz was observed.

The second modification involved oxygen acting in part as an inert gas; that is, some part of the POz, the pressure of
oxygen breathed by the diver, contributes to the risk producing over-pressure as though it were another inert gas.

These two modifications appeared promising with the available data set (original 3322 dives plus the 729 Oz dives)
but did not provide statistically significant improvement to the log-likelihood fit; that is, not enough of an improvement in the
log-likelihood to justify the added parameters necessary to implement these modifications. These models still provide a
15-to-20-percent under-prediction of the observed DCS incidence.

A prospective oxygen decompression dive trial [4] provided the next necessary component. In this trial, the Dive
Planner provided an oxygen decompression schedule following an air dive. These were dry dives (divers not immersed) with
divers breathing air during the bottom time, followed by 100% oxygen during the decompression, at either 60 or 40 feet.
This dive trial was conducted in two phases.

The initial phase can be summarized as having asked the following question: Can the dive planner provide an
oxygen decompression schedule that works? The short answer is: No, it did not. The dive planner failed to provide an
adequate oxygen decompression. The second phase of the dive trial asked a different question: What percentage of the dive
planner's recommended air decompression time, spent breathing 100% oxygen, provides an adequate decompression? At the
end of a dive's bottom time, the dive planner recommends a certain total air decompression time. Perhaps some proportion
of that total air time could be taken at 40 feet breathing oxygen to provide an adequate decompression. Twenty percent was
found to be a reliable proportion. For example, a diver conducting an air dive, which resulted in a dive planner­
recommended total decompression time on air of 100 minutes, could take 20 minutes at 40 feet breathing 100% oxygen to
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provide an adequate emergency decompression. This procedure of taking 20 percent of the dive planner's air decompression
as an emergency oxygen decompression was approved by the U.S. Navy for use with the dive planner.

This dive trial resulted in 284 dives with 17 DeS cases. Adding these to the existing calibration data set gives over
4300 dives, including 1,013 oxygen decompression dives. Recalibrating the unmodified model with this expanded data set
yields a small improvement. This model now under-predicts the observed DeS incidence by only 25 percent, still not
enough to be considered a success, but the two oxygen effect modifications can now be recalibrated as well. The nitrogen
kinetic slowing modification was a success. It provided a significant improvement in log-likelihood, enough of an
improvement to justify the additional estimated parameters. In this case, an improvement of about 12 likelihood units was
achieved with two additional parameters.

In addition, this model now predicted greater than 90% of the observed Des cases in the oxygen decompression
dives. Equally important, it maintains the excellent predictive ability in the original air and nitrox dives that successful
USN93 exhibited.

The other modification, or oxygen effect model, considering some part of the oxygen as an inert gas, was also a
success. This model also provided essentially the same degree of improvement in log-likelihood and predicts 90+ percent of
the incidence in the oxygen dives, while maintaining the original quality ofpredictive ability.

Figure 4 shows the DeS incidence in the 1,013 oxygen dives as predicted by these models. Each bar represents the
observed Des incidence in one hour. The original USN93 model badly under-predicts Des occurrence. The two curves that
almost overlay each other are the predictions of the two modified models. They both provide adequate representations of the
observed time distribution ofDes incidence in these dives.

Figure 4. Updated Oxygen Decompression Data
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After adding the new data, re-calibrating the models and fmding the two modifications to be successful, the
remaining question is: What constitutes goodness-of-fit? The log-likelihood is our primary measure of fit to the data. One
advantage log-likelihood has is that it is an objective measure, and direct comparisons can be made within model groups.
Another advantage of likelihood as a measure of fit is that it allows the formality of the likelihood ratio test for testing the
significance of adding or removing parameters from a model. One disadvantage of likelihood is that in models of this
complexity, it can be highly prone to finding local minima, or local 'best-fits'. In 10-to-12-dimensional parameter spaces,
the shape of the likelihood surface can provide many opportunities to stop searching before fmding a global best-fit. A large
number of different sets of starting parameters are needed in order to thorougWy explore a model of this complexity. For the
models presented here, on the order of thousands of different starting parameters sets, rather than tens or hundreds, were
needed.

The other general category of goodness of fit measure that we apply is the model's ability to predict outcomes, as
shown in the figures. One quantification of this predictive ability is the chi-squared test. A note of caution in the use of
chi-squared tests is in order, due to their extreme sensitivity to the necessary categorization of the data.
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The examples shown here are categorization of the DCS outcomes by time after surfacing, but the data can also be
categorized in other ways. For example, dive data can be categorized by groups of increasing depth or groups of increasing
risk level or by type of dive. For example: single dives, repetitive dives, saturation dives, etc. Chi-squared tests can lead to
contradictory results depending on how those categorizations are chosen. For example, grouping the data in this study by
type of dive, opposite conclusions regarding the significance of fit were achieved by two equally valid categorizations. If the
data were grouped as follows: air dives, non-air dives, saturation dives and oxygen dives, the chi-squared test indicates that
the model is a good predictor of the outcomes. Grouping these same dives as single dives, repetitive dives, saturation dives,
and oxygen dives yields a chi-squared indication of poor predictive ability. The same data and same model with equally
valid groupings yields a contradictory conclusion.

This categorization issue has surfaced in other studies as well. For example, in a different study using only no­
decompression dives [8] and categorizing dives in terms of ascent rate (seemingly an important factor in no-decompression
dives) a strong sensitivity of chi-squared tests was found with regard to where the boundaries of those categories of ascent
rate occur. Slight changes in boundaries, which push an important sub-set of data from one group to another, result in
substantial chi-squared test differences. These tests also tend to be highly sensitive to extreme cases. In this instance, two
high-speed ascents, which can unduly sway the result to indicate significance of predictive ability when in fact there is none
in the absence of these outlying cases.

Application and interpretation of such chi-squared tests can be misleading. Practitioners are encouraged to present
their results in as much detail as possible so that summary measures like chi-squared tests are not the sole gauges of success.
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As in all scientific investigations, the success of modeling the occurrence of decompression sickness (DeS) relies
upon the quality of the data used. First consider the ideal, or natural, data set.

A natural data set
- Has the same dive type (rig, immersion, temperature...)
- Was obtained at a single research center
- By a single investigator, and
- With a single subject pool (and maintaining a consistent attitude about what subjects should expect), and
- Conducted and scored by a single detailed protocol

In the history of decompression sickness research, there are numerous examples of studies missing one or more of
these qualities. Moreover, the better studies tend to be "small" by modeling standards. There are zero natural data sets with
N> 1000, and only 6 natural data sets with N > 300 in the NMRI data collection. (7)

For a decompression model to allow predictions over an operationally useful range, we cannot use natural data
alone. We must combine studies. The process ofcombining data sets is referred to as meta analysis. In non-hyperbaric
medicine, meta analysis has achieved "fad" status, and engendered controversies for many of the same reasons we relate
below. In the wrong hands, meta analysis becomes a targeted search for studies that, taken together, support a pre-conceived
belief that a "P<.05 effect" exists, but could not be demonstrated in the natural data cited. One infamous example is the
EPA assessment of cancer risk from second-hand smoke (4).

Several approaches can be followed to assemble the unnatural data set. At different times, our group has followed
four different paths described below:

a) Ignore all differences among the naturaldata sets
b) Select "similar" data to combine
c) Test for data combinability (under a specified model)
d) Revise prior data for similarity

a) Ignore Differences

This approach offers a defmite advantage: it is the easiest. Naturally, ease is associated with a major disadvantage:
uncritical combinations ofdata can seriously bias results.

For simplicity consider the following contrived example:

Study A used deep dives with low Des incidence
Study B used shallow dives with high DCS incidence

The result of an uncritical meta analysis (say with simple logistic regression on the combined data from A and B)
will be the conclusion:

-- The risk ofDes decreases with deeper depths !

To decrease the possibility of such a bias, this easy path must be avoided.

Each natural data set must be scrutinized to fmd important differences in the way the data was obtained. For
example, we have been struck by the huge variation in reporting of post-dive manifestations (7). Likewise, the diagnostic
criteria seem to have evolved since the 1940's. Two reported actual cases are:

Study A
"No complaints upon surfacing. That evening, diver noticed slight swelling of left wrist lasting 2 hours. No pain in this
joint, but it felt stiff. Probably a sprain as this does not resemble bends." Diagnosis: Not DeS
Study B
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"No complaints following the dive. About 24 hours post surfacing, diver noticed a du1l2/l0 ache in his right hip, which
resolved spontaneously after about 13 minutes." Diagnosis: DeS.

Even the most generous accommodation of physician diagnostic variability could not ignore this demonstration of
differing interpretations on just what is DCS. Other recent reviews of cases - by experienced diving medical officers - have
also noted unsatisfactory differences in diagnostic standards (2,3, 5).

Less subjective than the diagnostic quandary are problems arising from differences among data sets in such factors
as temperature, immersion, etc. Our analysis ofDCS risk in dry/sedentary vs. immersed/exercising subjects (see below)
demonstrated less than a 30% effect (14), but we still resist automatic combinations of data with those different attributes.

Even tabulated raw results must be questioned. A detailed reading of an earlier study, followed by examination of
institutional archives, led us to change tabulated depth by several fsw (1). We believe the report used a convention of deepest
depth (the feet of standing subjects) rather then the mid-chest convention adopted for our other data files.

The first successful model of air diving combined data from different studies without a comprehensive attempt to
ensure similarities (12). Indeed, many serious data questions were simply noted in passing (as an initial proof of concept).

b) Select Data which is Similar

Sometimes, studies appear to have so many similarities, that it might be almost natural to simply combine them.
The advantage is to increase the amount of data, but the disadvantage is that unrecognized biases can be introduced.

By the mid 1980's, the value of having a collection of data sets with an achievable degree of similarity was recognized.
In a laborious iterative process, some 23 studies were accumulated which possessed the following specifications (17):

• Done in military laboratories in 1972 or later
• Depth/time records available to 1 fsw/30 sec
• Regular pre- and post-dive checks by military Diving Medical Officers
• Original investigator available to assist in resolving discrepancies

Each of the above specifications evolved from the sequence of quality control issues uncovered during data assembly
and review. The resulting data sets were later referred to as Primary Data for modeling and made freely available to
investigators (17). Included in the documentation were details on immersion, temperature, acclimatization and other possibly
relevant information.

The labor involved in generating and scrutinizing Primary Data has led to repeated temptations to use "easier" data.
Some discussion of the problems found in commercial or military occupational diving records, and why those sources will
seldom produce Primary Data, have been reported (15).

c) Statistical Test for Data Combinability

Sometimes a formal statistical test can answer the question "Are these data sets compatible?" The advantages are
transparency and objectivity (although defmitions of "compatibility" can be problematic). The disadvantage is that the
answer may be irrelevant to the study at hand.

c1. Overall model compatibility

One test of"compatibility" asks the question:
Does this mathematical model describe a combined set of data "about as well" as the model describes the
component data sets, examined individually?

(The "about as well" is defmed in the Likelihood Ratio Test - see Appendix B).
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Any answer in this test depends upon the model making sense in the ftrst place. If you don't think much of the
model, the test is not worth performing. And the test can sometimes be uselessly "weak", if there are insufficient cases of
DCS in the component data sets.
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On the other hand, the test may be uselessly strong. A statistical answer that a discemable difference in data can be
demonstrated, might be less important than production of a model and parameters that has some "acceptable" ability to
describe the full range in the data.

c2 Parametric tests

It may be possible to more precisely test a suspected data difference. In (14), we examined some pressure exposures
that were dry/sedentary, while others used immersed exercising subjects. A risk model was constructed with parameters
defmed for dry conditions, but with a single immersion-difference parameter assigned to displace risk for the wet divers.
When that difference was shown to be essentially zero, we concluded that immersion was not a strong risk factor - and that
dry dives could therefore be combined with wet ones for modeling. Other parametric tests examined oxygen effects (13).

Sometimes a single observation can dominate a data set and models calibrated from it. This occurred (16) when a
short duration dive was followed by DCS late after surfacing. For the exponential gas exchange to maintain a calculated
overpressure that late, the allowable range in time constants was only a few minutes. Failure of this dive to combine easily
with other data would not be surprising.

dl Revise Prior Data for Similarity

In the evolution of Primary Data standards (17), many older studies were uncovered which had thorough details on
the diving proftles, and various notes as to medical outcome. In examining the DCS events and their descriptions of the signs
and symptoms, it became apparent that historical and contemporary defmitions of DCS were different. (The "back when men
were men" phenomenon.) The advantage of using the older studies was a great increase in available data. The expected
disadvantage was that the older reports might have ignored - or - "underdiagnosed" some cases that would be diagnosed
and treated as DCS today.

One of us (PW) moderated a panel of military Diving Medical Offtcers (E. Flynn ofNEDU-NMRI, C. Harvey of
NSMRL, K. Sawatsky ofDCIEM, H. Schwartz ofNEDU, and E. Thalmann ofNEDU-INM-NMRI) who had participated in
modem diving trials and were still active in the diagnosis of DCS in diving trials. During a one-day meeting in September
1988, examples ofDCS manifestations were reviewed from published military trials extending over 40 years (9, 10, 11, 13,
18). A consensus document on how to approach retrospective re-diagnosis was drafted, then reviewed by all participants.
The revised standards are presented in Appendix A.

Although a document was produced that could serve as a diagnostic tool, the participants were not particularly
comfortable with it. As physicians, they were naturally hesitant about second guessing one of their own - especially through
a written document that lay-people might be tempted to apply. Many of the fragmentary case reports reviewed were
insufftcient to convince panel members of the presence of DCS and whether the "case" would receive recompression
treatment today. Problems were most prevalent in cases labeled as "marginal" in modem studies, and as "minor bends",
"moderate pain", etc in older studies.

The system of re-diagnosis in the Appendix was not actually applied for several years. It was recently resurrected
for two reasons:

- desired expansion of data with manifestations to allow epidemiology, and
- re-emphasis on high risk proftles no longer ethically feasible for study.

The re-diagnostic criteria have been applied to 9 older studies dating from 1945 to 1957 from NEDU (3 of which
had been partially used in (12)). They were also applied to 2 recent NMRI studies (6, 8) after issues arose in the consistency
of Undersea Medical Offtcer staffmg. Compilation of the older studies, several modem trials not included in (17), and the
existing Primary Data - complete with manifestations - has been released in a 2-volume Technical Report (7). The
compilation encompasses 7400+ exposures with 800+ manifestation reports from 36+ original studies.
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Conclusions
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Data quality will continue to be an issue in a field where the scientific use of data is so recent. The NMRI Technical
Reports that have recovered, reviewed, and codified the results of older studies are intended to provide a stable platform for
anyone intending to model decompression sickness.

There is no single "right" answer to whether data should be combined. Different objectives will lead to different
decisions. The responsibility, as always, rests with the analyst to justify, or at a minimum clearly document, the source of
any data.
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Appendix A

Diagnosis Criteria: from 22 NOV 1988

Requiring recompression therapy by 1988 standards
NOT requiring recompression by 1988 standards. Difference between A-I and
A-2 is 1988 perception of whether lack of treatment will lead to morbidity in the
diver.

First step: Separate outcome into 3 categories:
Cat A. Defmite DCS (Symptom within 24 hour unless saturation dive)
Cat B. Unknown Outcome
Cat C. Not DCS

Second Step: Separate Cat A further:
Cat A-I Defmite DCS.
Cat A-2 Defmite DCS.

Specific Description:

omt pam perslstmg as ta u ate e ow w et er recompresse or no :
One Joint Multiple Joints

Pain Mild 60 min + 30 min +
Moderate 30 min + 15 min +
Severe 15 min + 8min+

Cat A-I. Definite DCS requiring recompression.
- Any suspicious symptoms leading to and relieved by recompression
-J" bl dbl hh d t

- Dyspnea, unless clearly from barotrauma or anxiety hyperventilation syndrome
- Any spinal neurologic symptoms, supported by signs, regardless of duration
- Any brain symptoms, such as visual blurring, "mental sluggishness", regardless of duration
- Any inner ear symptom, such as unsteadiness, vertigo, hearing loss, unless clearly from barotrauma

Cat A-2. Definite DCS not requiring recompression.
- Joint pain not persisting as long as tabulated under A-I

Fatigue, moderate or severe
Skin itch in immersed air or Nr 0 2divers (Itch in dry chamber dives and He02 dives is probably due to local skin
mechanisms that would confuse modeling of primary symptoms)
Skin rash or mottling, ifonly symptoms (When combined with non-persistent (A-2) joint pain, becomes A-I).
Default diagnosis: Symptoms reported as "Mild bends, not requiring recompression" which do not fit other
categorization criteria

Cat B. Unknown outcome; data insufficient for 1988 diagnosis
- Headache, typical and common for this diver
- Vague abdominal pain, not related to trauma or barotrauma
- Vague chest pain, not related to trauma or barotrauma
- Vague symptoms of any kind NOT responding to recompression or oxygen therapy attempted soon after dive (say 18

hours for non-saturation dive).
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Cat C. Not DCS
- No post-dive symptoms reported
- Joint pain or fatigue, mild and consistent with recent exercise
- Sharp pain, consistent with joint sprain or impact injury
- Vague symptoms similar to Cat A-2 NOT responding to recompression therapy attempted not soon after dive
- Skin itch in dry chamber dives and He-02 dives.

Appendix B

Likelihood Ratio Tests of Combining Data

In the Likelihood Ratio test, the procedure is to fit each data set alone, and then the data combined. The total of the
maximum likelihoods from the component sets will be better than from the large combined set, but perhaps only by an
amount likely to be due to chance when the number of estimated parameters are properly accounted for. The test statistic is
the ratio oflikelihoods (or difference in log-likelihoods), which is Chi-square distributed under the null hypothesis of
indistinguishable differences.

Take a specific example. Suppose we are using a 2 compartment model, with a time constant and scale/gain
coefficient as parameters for each (4 total parameters).

4 parameter model fit to data set A -LLA = 42
4 parameter model fit to data set B -LLB = 38

( so 8 parameters give a combined -LL = 80)

4 parameter model fit to combined
data set A+B

Likelihood Ratio = 2 * [ LLAB - LLA - LLB] = 8
Chi-square with 4 df is 7.8 (at p < .1) and 9.5 (at p < .05)
So the data sets A and B appear somewhat - but not strikingly - different.
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This presentation will begin with a demonstration of the model that we have developed for predicting survival times
during cold exposure (Tikuisis 1995, 1997). Hereafter, we will refer to this model as CESM (Cold Exposure Survival
Model), and following the demonstration, we'll discus the challenges ofmaking such predictions.

The user interface (see Fig. 1) of the model accepts inputs according to three separate categories. The fIrst category
pertains to the characteristics of the subject such as age, gender, weight, height, body fatness, and fatigue, plus the level of
water immersion. The second category consists of environmental factors (the air exposure factors of temperature, humidity,
and wind speed are not shown in Fig. 1 because of the example chosen below) and the last category concerns the clothing
protection on the individual.

For example, let us choose a 35 yr old male, as shown in Fig. 1. The weight of the individual can be entered directly
ifknown, otherwise it must be estimated. To accommodate the latter, CESM provides a menu from which the individual's
weight can be selected. The 'very light' category refers to the 5th percentile of the population, 'light' refers to the 25th

percentile, etc. up to 95 th percentile for the 'very heavy' category. Height is similarly selected. Body fat (BF) is an important
determinate of survival time, however, its value is rarely known. In this case, CESM determines the %BF according to a
regression formula based on age, gender, weight and height. In the present example, we have chosen the 50th percentile for
weight, and height leading to a BF of 19.3%.

CESM can be applied to situations involving cold air exposure and/or cold water immersion. For this demonstration,
we will assume conditions that an individual might have faced in the water after the sinking of the Titanic. We'll assume that
the individual is not fatigued and is immersed to the neck-level, thus only the water parameters apply. In this example, we
select a light sea state and a water temperature of 2°C. Clothing can be selected in any combination of different garments by
making appropriate selections from the clothing menu shown on the lower left of the input screen in Fig.l. Alternatively,
actual clothing ensembles can be selected from the adjacent menu on the right. Among these are coveralls, survival suits, etc.
Let us suppose that our unfortunate individual is wearing a long-sleeved shirt and a heavy sweater. Clothing is specifIed for
the torso only since the other regions of the body are assumed to be clothed to the same level of protection.

To recap, we have selected a 50th percentile male of 35 years of age, neck-immersed in light seas at 2°C, and
wearing medium-weight clothing. The model predicts times to two different stages of body cooling on the basis of these
inputs; a functional time of 1.4 h and a survival time of2.8 h (see output screen of Fig. 1). The functional time is the
predicted time for the individual's deep body temperature (Tdb) to decrease to 34°C at which point the individual would suffer
motor and cognitive impairments. The survival time is the predicted time for Tdb to reach 28°C at which point
unconsciousness is likely to occur. Ifwe change the value of one of the input factors, say the weight, then CESM predicts
shorter times for a lighter individual and vice-versa. In this case, %BF changes automatically to correspond to the changes in
the weight, or any of the other individual characteristics.

This brief demonstration covered only the body cooling portion of the model. An additional calculation pertaining
only to neck-level immersion in water provides the probability of fmding the individual alive at the predicted functional time.
That is, ifCESM predicts that 1.4 h elapses before the individual's Tdb reaches 34°C, then what is the chance offmding that
person alive at that time? Causes of death other than hypothermia are considered here. This calculation will be explained
later, but suffIce it for now that in the present example, there is a 86% chance of fmding the individual alive at 1.4 h if
flotation is worn and 57% if not (see output screen of Fig. 1).

In summary, CESM predicts times to specifIc body temperatures corresponding to functional and survival times, and
secondly, it provides a prediction of fmding an immersed individual alive at the predicted functional time.
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iii Cold Exposure Survival Time m
- -

Estimated Body Cooling to

Functional Time 34.0 °C 1.4 Hrs

ISurvival Time 28.0 Gel 2.8 Hrs

Probability of Remaining Alive Until Functional Time

f.t}j'n Rololion 86% f.t}j'noul Rollllion 57%

Figure 1. Displays of the input and output screens ofCESM (see text for explanation).
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To calibrate and check CESM predictions, we require information on the characteristics of the individual, exposure
conditions, and the level of clothing protection. We also need to know the individual's Tdb at the end of the exposure, and the
individual's state of cognition or consciousness associated with their deep body temperature.

This represents the desirable data. Data with this level of detail are usually only available from controlled studies
and are limited to conditions that do not exceed a mild hypothermic state. Typically, the deep body temperature is not
allowed to go decrease below 35°C in laboratory experiments, and thus much of the controlled Tdb data reside between 35
and 37°C. There are many accidental cases involving severe hypothermia, but of these, only very few are documented to the
level of detail required to calibrate or validate CESM. As a result, predicting the time course of body core cooling to 28°C is
extremely extrapolative.

On the other hand, data are available for the statistics of survival during cold water immersion and the probability of
fmding someone alive as a function of time during such exposures. We will now consider in more detail the deterministic
prediction of the rate of body cooling and the probabilistic prediction of survival outcome for water immersion.

Body Cooling Prediction

An important assumption in CESM is that the individual is considered sedentary. That is, the only source of body
heat in addition to the resting metabolism is shivering. Any activity beyond this would contribute to internal heat production,
which cannot be predicted unless the actual activity is known. The sedentary assumption is a reasonable one for accidental
exposures to cold and it represents a worst case scenario. We also assume a normal physiological response to cold. Relevant
information that can be obtained from laboratory experiments on individual responses to cold is coded into the model. The
possibility of death due to causes other than hypothermia are not considered, at least in the model prediction of the rate of
body cooling.

Figure 2. Schematic of the body cooling portion of the model.
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The model is schematized in Fig. 2 and is essentially based on a core-shell configuration. If heat is produced within
the core of the cylinder, that heat passes through two layers of insulation. The intemallayer of insulation is represented by
the skin and fat of the individual, and the external insulation layer is represented by clothing and the still boundary layer. As
indicated earlier, CESM can be applied to problems involving cold exposure in both air and water environments.

An important feature of the model is its discrimination ofdifferent body types. During the model demonstration, the
impact of different body size conditions was discussed. Typical model predictions for three body fat conditions are shown in
Fig. 3 with survival time plotted against water temperature. Lean individuals have the fastest body cooling rates and hence



152 Undersea and Hyperbaric Medical Society

the shortest predicted survival times while fat individuals should last longer, with other factors being the same. Similar
survival curves can be constructed with variations in other factors, such as sea state, level of clothing protection, etc.
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We conclude our consideration of the body cooling portion of the model by reiterating that this prediction is
deterministic. It predicts not "if', but "when" lethal hypothermia will occur. Although this portion of the model is based on
physical principles ofheat conduction and physiological responses to cold stress, its predictions ofbody cooling to
temperatures below 34°C are extrapolative. Little is known about what happens to the body's response to cold when its deep
body temperature drops below this level. This is particularly challenging for model development since we are unable to
acquire controlled data for these situations. Instead, we must rely on case histories, yet the documentation is rarely as good
as required, and there are simply too few detailed cases to support a statistical approach at this time.

36

o
o 5 10 15 20

Water Temperature (OC)

Figure 3. Model predictions of body cooling times to a core temperature to 28°C for water-immersed individuals of different
body fatnesses.

Immersion Survival Outcome Prediction

The model prediction offmding someone alive during immersion is based on data from the U.K. National
Immersion Incidence Survey. These data were analyzed and modelled by Oakley and Pethybridge (1997). The U.K. survey
covered 930 incidents in which there were 66 deaths. The factors that were considered in the model included immersion
time, water temperature, and whether or not the individual wore a buoyancy device. The model was based on the following
logistic form:

8
Pr=--

1+8
(1)

where Pr is the probability of fmding the immersed individual alive and the quantity eis defmed in terms of three parameters;
U, J3 and y; and two independent variables; time of immersion (tunm) and water temperature (Tw):

(2)
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The data were segregated into three groups according to whether a buoyancy device was worn, not worn, or if
unknown. The model was then fitted to each group using maximum likelihood. Resultant parameter values for each of the
groups are given in Table 1 and the percent survival rate is shown in Fig. 4.

Table 1. Immersion survival outcome model parameter values (see Eq. 2).

Buoyancy Device Parameters
a 13 y

Yes 5.55 - 0.888 0.121
No 3.99 - 0.888 0.120
? 2.52 - 0.888 0.291

241812

- - + - - buoyancy device
• no buoyancy device
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Figure 4. Model-predicted influence of personal flotation on survival outcome of individuals immersed in 5°C water.

The survival outcome does not take into account any of the factors used in the body cooling portion of the model;
that is to say, it doesn't consider individual characteristics, sea state, or clothing protection. Figure 5 illustrates how well the
U.K. model of survival outcomes compare to the observed data used to calibrate the model. The data were categorized
according to immersion times beginning with consecutive IS-min periods, and ending with time periods that cover 1 to 2 h, 2
to 4 h, and> 4 h, respectively. Although the agreement between predicted and observed rates appears good, the chi square is
significant only at the 0.5 level.

The prediction of the immersion survival outcome is a probabilistic approach in which the factors are immersion
time, water temperature, and whether or not a buoyancy device is worn. Model parameters, however, are biased since the
statistics neglect immersions of very short duration. Accidents in which individuals are rescued within a few minutes are
usually not reported, nor are incidents in which bodies are not found.
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Figure 5. Comparison of predicted and observed survival outcomes for immersion in water (X2 = 4.46; df= 5; P >0.5).

Clearly, much work remains to be done with respect to both the prediction of survival times due to hypothermia and
the survival outcomes during immersion. Continued laboratory experiments and better documentation ofthe status of
accidentally cold-exposed individuals will facilitate the improvement of CESM. Additional surveys of accidental
immersions with particular attention to the immersion time will strengthen the statistical assessment of immersion survival
outcome.
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DR. HARRELL: I think there were many nice things that Wayne laid out. One of them is how different pieces of the
data enter into the likelihood. Another is it how the fit of a model to the data is influenced by the different event times or
event time intervals.

There were just a couple of things that I might pick on Wayne for. He mentioned that the Cox model cannot predict
outcomes, but that is not really true. While the Cox model is designed to predict relative effects, like hazard ratios, it can also
predict absolute effects, such as survival probability. It may not do so quite as accurately as a parametric model, but it is
almost the same.

Then Wayne made a point about which my comment is going to seem very subtle: that there are formal ways to test
for unnecessary parameters in a model, and that deletion of those parameters will ameliorate over-fitting. That really is not
the case, because we know from simulation studies that use ofyour data to discern which parameters should be in the model
is just another kind of over-fitting. The only time we see gains from looking at multiple models and thinking that we are
reducing problems with over-fitting is when we consider the fmal model as if it were pre-specified and ignore how we got
there. So, the value of tests Wayne described is really a mirage.

DR. HOMER: I, too, enjoyed Wayne's presentation. A couple of things came up right off the bat. One was a
question asked about what should be done with a data set that the model does not quite fit in a meta-analytic combination of
data sets; whether it was all right to defme a new category. Paul gave us a very nice summary of such situations.

One of the things that was not mentioned explicitly can sometimes be done with two different data sets that are not
compatible under a single model: Generalize the model with just a few new parameters. Instead of trying to fit the different
data sets with wholly separate models, keep some of the parameters in common between the data sets under a single model
and specify other parameters to accommodate differences between the two data sets. I think Erich's talk gave us something
very close to what I have in mind as an example for that.

Another thing came up with Wayne's talk. What do you do with parameter values that are unexpected; that is,
parameters that do not make physical sense in a mechanistic model? One of the answers that both Peter and Wayne
addressed is that we just have to face the fact that the model sometimes does not fit. Another thing that was not mentioned is
that occasionally the standard errors on those non-fitting parameters are so large that it is inconclusive whether they are
revealing much. I think Peter in fact was guilty on one occasion of bad-mouthing one ofhis own models that appeared to me
to have been perfectly all right.

NMRI Models ofCNS Oxygen Toxicity.
(Paul Weathersby)

DR. HARRELL: Paul described three models for the probability of oxygen toxicity: a constant hazard model, a
power function model, and a four-parameter model. The last two really gave about the same log-likelihood. Paul went on to
give us really nice descriptions of the different shapes these two models can take, even though the differences did not matter
so much for the calibration data set he used. However, he gave a nice derivation of how these differences affected model
performance on other data sets.

The general comment I had about Paul's presentation, which relates to many of them, is that there is a real problem
with categorizing continuous predictions into intervals when assessing the accuracy ofmodel predictions. The intervals can
be very arbitrary, and also it is not a very powerful way to assess predictive accuracy. In Paul's particular case, he divided
outcomes into three risk intervals, and got a Chi-squared with three degrees of freedom of 0.78. That sounds pretty good, but
such a validation ofmodel accuracy has fairly low resolution.

Another suggestion that will also come up in discussion of other talks is the possibility of rank ordering the severity
of multiple symptoms rather than just using the presence or absence of anyone symptom. There might be some information
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to be gained by making a judgment about the relative severities of the different symptoms.

DR. HOMER: I am also very unhappy with the Chi-squared test as a way of trying to judge how well I have done. I
would say that generally speaking, if it tells me that I have a bad situation, I believe it. If it tells me that I have an acceptable
situation, the test is a piece of trash.

Another thing that I try to do is categorize the results into bins containing nearly equal numbers of events. The
reason is that Chi-squared is notorious for being poor if the cell sizes get small. We all are often in such situations, and it is
not unusual for us to worry about a bin that is empty. So as I prepare results for publication in a chi-square table, I know that
somebody is going to want to see the table with equal numbers. I will usually do a calculation in which I have near equal
number of events in the bins and try to keep those numbers each larger than five.

Paul also brought up something about global maxima and local maxima, which Erich echoed in a reminiscence of
some ofhis tortured experiences. I could sense the pain in Erich's voice as he was telling us about how he has searched and
searched and searched, thought he had the answer, and then made the mistake of running one more run, which then went on
for another two or three weeks to achieve a new higher likelihood. I think you have to do it that way: There is no substitute
for trying lots of different parameter starting values. When working with multiple parameters, you can be easily deceived
into believing that you have achieved a global likelihood maximum, which is revealed only with continued work to have been
a local maximum.

Modeling Diver Tolerance to Breathing Resistance.
(John Clarke)

DR. HOMER: John's talk sparked something new in me that I had not noticed before: When he went to his logit
model, he included interaction terms. Now the inclusion of interaction terms in these complicated situations is very, very
important. I just got through working on a paper trying to predict renal complications for diabetics, in which I chanced to
start by including all the parameters at the beginning, and then progressively eliminated parameters that seemed to be less
important. I ended up with a model that had fair predictive capabilities, but with none of the linear terms remaining, only
quadratic terms. So, when you are getting ready to do some of this modeling, if it is appropriate, I would urge you to follow
John's example.

DR. HARRELL: I think John presented a really nice description and graphic lay-out of the different events that
would cause you to stop working; dyspnea, unconsciousness and fatigue of the diaphragm. I suggested when talking about
Paul Weathersby's presentation that we might want to look at the severity of the symptoms, and in John Clarke's presentation,
we see that there is actually a complication in doing that for his set-up. He said that a subject can get dyspnea and stop
working; or might not get dyspnea, work awhile longer, and then lose consciousness. You could argue that it is a good thing
for a subject to get dyspnea, because it provides a warning not to continue working, not to proceed and be put at risk for a
worse outcome. So, when you are trying to rank the order of different events, you could possibly run into problems, as
occurrence of a minor event acts as a premonition of a worse event and thereby precludes occurrence of the worse event.

DR. HOMER: Do you want to launch onto a larger treatment of having more than binary events, because having
only binary events is sometimes very confming?

DR HARRELL: Right. I think that is going to be a common theme here for several things. But I wanted to come
back to your statement about binning, and specifying Chi-square intervals based on the number of events rather than on the
number of subjects. I really do not like any of the binning approaches. I just think they give you an accuracy curve with too
large a variance. I will be talking later about using smoothing techniques for getting accuracy curve estimates.

A Log-Logistic Survival Model Applied to Hypobaric Decompression Sickness.
(Johnny Conkin)

DR. HARRELL: Johnny Conkin used a log-logistic model for looking at altitude decompression. The dependent
variable was intervals of time until DCS. There was one model that also looked at time until VGE, the grade ofVGE and its
location. I think there is a real problem with this particular model in that when you write down the model that includes a
time-dependent covariate, you have to be very careful to make it so that the time dependency is done in the framework of the
instantaneous hazard. The time dependency must be expressed explicitly as a function of time. In other words, if you
construct a variable that is time until VGE, the value of that variable is unknown at time zero, and at time one minute.
Specification of the variable value at those times requires you to look into the future. Putting such a variable in the model
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consequently gives you the wrong likelihood. It yields a model that is very difficult to interpret, particularly if for subjects
who do not get VGE, you put in the censoring time for that particular observation. Ifyou put in the maximum observation
time as the time until VGE for these cases, that is a fairly arbitrary type of variable to include in a model.

I am very dubious ofusing a "looking into the future" type of variable. When you are going to have time-dependent
covariates, they need to be included in a very special way that causes ongoing modification of the hazard, and not by using a
summary value such as time until the intervening event. This is something that we will revisit because it also applies to at
least one other talk given today.

Johnny had several models that got fairly complex as he added variables into the particular formulation that he had.
By the time a certain complexity is reached, it no longer helps so much to have a model that looks mechanistic. The model
tries to make sense out of the underlying physiology, but as it gets so complex, you might as well have a completely
empirical model. It would be like an ordinary regression model that has the right product terms for interactions, and the right
square or higher-order polynomial terms. You will fmd that such a model will fit just as well as having the fairly complex
ratios with different things in numerators and denominators.

DR. HOMER: Johnny got me thinking about why the astronauts do not have more cases of the bends. I was not
paying as close attention to some of the rest of it. I still want to come back, if we have time later, and hear his thoughts on
that. I will move on to the next paper.

Testing of Hypotheses About Basic Mechanisms with Risk Functions.
(Hugh Van Liew)

DR. HOMER: Dr. Van Liew gave me a very useful and interesting perspective that shifted away from using models
to make predictions towards using models to understand how things work. The one thing that he mentioned over and over
again, that really rang a cord with me, was plotting data. I am glad I do not have to do it with pencil and paper any more, but
I really think that there is no substitute for visualizing, fIrst your original data, and then how well the model works or does
not work in numerous different ways. I noticed also that Dr. Van Liew treated us to multiple variable views of how well the
data was doing. I think all of this is absolutely essential to making progress.

DR HARRELL: I really liked the way Hugh talked about including the ascent rate in the model, and how that
uncovered the shape of the hazard function. Once you adjust for that variable, you got much closer to the truth and the
underlying function of time.

He talked about unexplained variation, and I think there is just one other source of unexplained variation he could
maybe stress a little bit more. That source is simple randomness, because at a certain level that we cannot measure,
unexplainable randomness will always be present. You might include another variable and explain some of the variation, but
there is always going to be some noise we cannot deal with.

Survival Models for Altitude Decompression Sickness.
(Nandini Kannan)

DR. HARRELL: Nandini Kannan covered a real nice overview ofthe big field of survival analysis. I was glad that
she talked about the Cox proportional hazards model since, that is, by far and away, the number one survival analysis model
used.

She mentioned that a parametric model is more powerful, and that is the one thing I would take issue with. The Cox
model has the same power to assess the impact of certain measurements or risk factors as a parametric model. What she
might have been alluding to, and I think I mentioned this when discussing Wayne's talk, is that parametric models would be
slightly more precise in getting survival predictions - but not by much.

Now, one interesting thing that Nandini did was to fit an improper time-dependent covariate. I think she did it on
purpose to show why you should not do that. The issue was fitting the time ofoccurrence of the maximum bubble grade, and
that has the problem that I talked about earlier, where inclusion of a "looking into the future variable" gives you the improper
likelihood. It is not the correct likelihood for time-dependent covariates. It is pretending that time until maximum bubble
grade could be known at time zero. She pointed out that you get this huge Chi-squared for that variable, which is, you know,
not surprising because that is sort of pre-destined.

She had some nice examinations of goodness of fit, and looked at the empirical distribution function. There was one
minor problem in saying that something fits if the cumulative distribution function is within the confidence bands of the
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bootstrap, because you really have to consider that the empirical distribution function also has its own confidence bands.
There are consequently two sources of error: one from the variance in the estimates; say from a Cox model; and the other
from variance in the observed survival distribution. The observed survival distribution is also just an estimate, not the gold
standard.

DR. HOMER: On this VGE business, 1 think it does not help us in writing diving tables or making predictions. But
suppose someone was to say to you: "1 put it in to try and understand something about mechanism, and it really did help us to
predict." Would you feel the same way?

DR. HARRELL: Yes. I would, unless you enter it correctly, not as a baseline variable. It has to be entered in a
fashion that updates the value of a time sequence type of variable.

DR. HOMER: Well, it becomes a mixed model, but if it is a factor that is improving the description, even though it
is not consistent, and even though it is useless as a predictor, would you feel you might have learned something about the
mechanism?

DR. HARRELL: Yes. But, the way you would have to do it is to put the bubble grade in as an instantaneous
measurement at each time. You cannot simply use the time until the maximum bubble grade.

DR. HOMER: Not to have a consistent model. Yes.

DR. HARRELL: Nor even to learn about it.

DR. HOMER: 1 was also very impressed with the use of the bootstrap. 1 have very consistently used propagation of
error formulas, but those really are only very good if you are fortunate enough to have a well-behaved likelihood surface, and
you are close to normality. In fact, very often we are not. Here is a simple way to look at how far away you might be. Take
one of your parameters, and its estimated standard deviation. Run two standard deviations up, and two standard deviations
down, and check the likelihood surface to see if the likelihood ratio test agrees with the approximate t-test. What you will
often fmd is that the likelihood surface gives you much larger confidence regions on one side than the other. Such situations
violate the usual assumption that you have a normal surface in the region of the estimate.

DR. HARRELL: Dr. Kannan also had real nice description of the confounding due to the dependence of oxygen pre­
breathing time on the intended altitude. She also had a really nice description of the classical accelerated failure time
formulation. We have seen other log-logistic formulations talked about today, but the one she described is the more common
one; the accelerated failure time model in which you write about how your risk factors affect the median time until an event.

Now, one thing 1 remain unclear about is why a large variation in onset times would motivate us to use a weighted
likelihood. So, 1 would need to talk to her about that to understand it.

There was a really nice use of the Cox model in estimating an underlying hazard function, and in looking at what
shape you actually get. So, you are estimating this hazard function non-parametrically, essentially empirically, and then you
can check to see whether it looks like a log-logistic hazard. That is a good way to justify the use of a log-logistic.

There was one additional issue in Dr. Kannan's use of a time-dependent covariate because, if1 understood her
correctly, the model under-predicted for low pre-breathing time. That signals to me that maybe there is a main effect that was
not modeled correctly. It was not that you needed to do anything really fancy, but there may have been a linearity
assumption that was used for the effect of pre-breathing time that might have been relaxed, that might have made the model
fit without having to add some other variable.

Multinomial Bubble Score Model
(Peter Tikuisis)

DR HOMER: I enjoyed Peter's talk. 1 think Peter and 1 have talked a lot over the years about trying to get those
parameters to end up agreeing with solubility, if it is supposed to be solubility, and with the real diffusion coefficient if it is to
be one. 1 see fmally that you got the time constant down. That was very satisfying to me. Those 360-minute time constants
have given me trouble for years. 1 have no idea what they mean physiologically.

DR. HARRELL: 1 got a little bit worried when Peter began by saying that bubble grade was a multinomial variable.



Survival Analysis and Maximum Likelihood Techniques 159

That sort of sets up a worry flag for me that maybe he was not going to use all the information in the bubble grade because a
multinomial analysis would treat the outcome like Chevrolet, Chrysler or Ford, where you do not have any way to order those
cars. Bubble grade is something that is naturally ordered. So, I would have called it an ordinal response variable. You
would call it a continuous response variable if you could measure it more accurately than to five values. But Peter grouped
his five initial bubble grades into three categories: 0; I and II, and; III and IV. I think there is a risk that Grade I is not the
same as Grade II, and that Grade III is not the same as Grade IV. Such categorization may consequently translate into little
losses of power and precision.

In analyzing data that really is naturally ordered, I try to keep from making ties, at least any more ties in the data
than there already are when the data are measured. So, I would try to deal with that as an ordinal variable.

Now, since the model was an exponential in the probabilities for different categories, I think it does end up utilizing
the variable as ordinal, really not multinomial, although it was doing so for only the three values allowed under the grouping
scheme used. So, what I would attempt to use there is a classical ordinal regression model that allows you to have as many
levels as you want, and that always makes sure that the ordering of those levels is used. These models are really
generalizations of the Cox or Spearman correlation approaches.

DR. HOMER: Did you try more than those levels, Peter?

DR. TIKUISIS: No, we did not.

DR. HOMER: It does raise an interesting issue, though. We have talked about considering different kinds of
decompression sickness, like Type I and Type II. There are some areas in which we perhaps should be interested in
multinomial models, though indeed if one has continuous data, generally it should stay that way.

Probabilistic Models ofDCS During Flying After Diving: Motivation for Mechanism.
(Wayne Gerth)

DR. HOMER: I was curious when you described the failure of the model on Duke flying after diving data. Did I
read it correctly that there were something like two cases of DCS occurring late, and it is on those observations that you were
basing this assessment?

DR. GERTH: Yes. But only two cases occurred early, while about eight or so occurred late. The overall number of
hits in those data is still very low.

DR. HOMER: So, it was not a large number of failures. Now let me ask you, when you treated those cases, did they
respond?

DR. GERTH: Yes.

DR. HOMER: So, what do you think? Was it a bubble?

DR. GERTH: We have to be careful about trying to infer "truth" from any aspect of model performance. The point
I was trying to make is that I cannot model DCS risk with a bubble during the time frames of those DCS incidents, no matter
what I do with it.

DR. HOMER: No, I understand that. I mean you might have to give up the bubble, but I am curious to know
whether you went one step further. I presume that you treated those cases with hyperbaric therapy and observed that they
responded.

DR. GERTH: Clinically, they responded.

DR. HOMER: Okay. So, do they have a bubble or not?

DR. GERTH: I do not think that in those cases, where we had very late onset, that we were treating a bubble any
longer. We were treating something that a bubble caused.

DR. HOMER: Okay. So, you are saying that we can successfully treat something that is not a bubble by
recompressing it, is that right?
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DR. GERTH: Remember that recompression also entailed administration of oxygen. So, we might have been
treating an ischemic condition.

DR. HOMER: Boy, it is awfully hard to get you to admit that it is not the bubble that is doing it, isn't it?

DR. GERTH: Ed is going to give a presentation later this week in which he illustrates that there is not much we can
do to bubble dynamics models to account for the persistence of a bubble under those conditions for much more than a few
hours.

DR. HOMER: Well, you could give them up and go after something else.

DR. GERTH: I will back off and say we do not know whether the model is true or not. However, I cannot make the
model I described fit those late-onset cases ifyou hold it to what it is supposed to represent, i.e. that Des risk arises from
presence of a bubble. I cannot make a bubble last long enough in that model.

DR. HOMER: I think that looking at your data that way and saying, "No, the model will not account for this," is
really in the fmest traditions of what you ought to be doing. This takes me all the way back to Kaplan. So, thank you for a
nice observation.

DR. HARRELL: Wayne incorporated time-dependent covariates in his model through their effects on the hazard
function, not through their effect on the time axis, on the failure time variable, if I understand the model correctly. That
would mean that, unlike the way we saw Dr. Kannan present the accelerated failure time family, this was not an accelerated
failure time model; and that is fme. It is just that sometimes it is useful to model in terms of how you accelerate or delay a
failure. How do you move the time axis rather than how do you multiply the hazard function? This other approach, using
classical log-logistic or log-normal accelerated failure time models, is often interesting to entertain.

Wayne had a good discussion of confounding factors and an excellent lay-out of the shapes of profiles and where the
time origin is. He had a wonderful description of the covariate process and made the point that when you are using time­
dependent covariates, you do not need to know the future values of them to look at how they modify the risk at a certain point
in time. You just look at the current values of the measurements.

One thing I did not understand was his sinusoidal example where he said, "Here is an underlying hazard function if
we do not know about bubble formation or how other variables contribute to the hazard." He showed an overall hazard
function that you would have if you did not know the values of some time-varying covariate, like bubble formation, and then
a fast-moving sinusoidal shape that would be the hazard if you knew the values of that covariate. The maximum points of the
sinusoid sort of followed the simpler hazard. I really was not motivated about that. It seems to me that the more you know,
the less the hazard function is going to stay smooth, and the more it is going to vary up and down. Ifyou get in a car, for
example, and start driving at a hundred miles an hour, you know that your hazard function takes an instantaneous increase.
But you also know that when you stop the car the hazard will come back down. So, I need to talk to him some other time to
understand why the sinusoidal shape hazard would not be realistic.

DR. HOMER: I would add that I enjoyed your remark just now, about how use of different models provides
different views of what is working and what is not to prompt a different sort of thinking. I think I am one of those people
who is partial to the hazard models, as Wayne is, but using the other models sometimes does give you another way of looking
at things.

DR. HARRELL: I might add that the accelerated failure time models are especially nice if you want a simple
calculation of, say, median failure time. They are very simple in form.

Improving on a "Good" Model.
(Erich Parker)

DR. HOMER: I want to reiterate my sympathy for Erich's convergence problems. The other note I had for Erich
was on goodness of fit assessment. We have covered both topics in several different directions.

DR. HARRELL: I want to dwell on goodness of fit assessment for one second more, particularly when lack of fit is
viewed interval-by-interval, or when there has been some sort of binning going on. Erich made an excellent point how the



Survival Analysis and Maximum Likelihood Techniques

goodness of fit depends drastically on how you categorize a continuous variable.
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I think when looking at the problem with the initial model under-predicting, you still probably have to do some more
smoothing before you really make a firm conclusion about exactly how much underfitting it is doing. Ifyou fmd that the
model just does not seem to predict well for one little interval, I would look at the surrounding intervals or use a continuous
type ofmoving average, something to get a smooth estimate.

The bottom line is: we know there are dangers in tweaking a model. You will eventually make it fit the data that
you have, but it will then fit future subjects less well. When you are making modifications to the model, you want to really
be sure to do it in a very patterned way that is not specific to one small interval.

So, I would tend to use a lot of smoothing even for that purpose.

DR. HOMER: Do you happen to have a reference with you on that? Because this business of binning is very
important to all of us. The journals defmitely expect us to be doing something like that, and I have not talked with anybody
who is happy about doing it. So, if you happen to have a reference with you, that would help.

DR. HARRELL: Yes. I will show one when I get to my little talk with an example ofusing the smoothing method.
We had a paper in Statistics in Medicine in '96 that shows how to do that.

The most often cited method for looking at calibration accuracy is probably the Hosmer and Lemeshow paper from
years ago. That was for looking at accuracy of logistic models by binning the data using the percentage of events instead of
the average predicted number of events. They actually had a newer paper out in Statistics in Medicine a couple ofyears ago
showing that their prior method had serious problems. With the one they proposed about 15 years ago, they found that just
using different defmitions of the bins (how you calculate a decile, for example) can really change your Chi-square value. So,
the people that really invented that Chi-squared goodness of fit test now have serious reservations about using a test that
requires that sort of categorization.

Meta-Analysis of Diver Decompression Data.
(paul Weathersby)

DR. HOMER: I liked Paul's first solution. Just go ahead and ignore it all because no available solution appears
completely satisfactory. Thinking of all the attendant problems as he was talking, I do not know what else one can do.

I have watched Erich do test after test to see whether different data sets were compatible. The problem in those
endeavors is that you have a multiple comparison difficulty. In comparisons of eight or 10 different data sets, some of them
have to come out looking not as good as the others. So, I do not even know that formal statistical tests of data combinability
are completely satisfactory.

DR. HARRELL: Yes. A related issue is that the test for combinability really does not have much power. If you are
trying to feel comfortable that you can combine two data sets because the test for whether they were combinable was very
insignificant, you cannot really feel that comfortable. It is very difficult to know what sort ofP value cut-off to use. You
certainly would not use 0.05, but people are very confused right now about whether to use 0.1 or 0.2. It needs to be relatively
high because of the low power of that particular test.

I think sometimes, if you have the right kind of data documentation, you can rescore outcomes using uniform
criteria. You may have had some experience with that, but I could see where that would have some advantages if you have
the right narrative descriptions accompanying each dive that can be scored by impartial objective reviewers.

DR. HOMER: Of course, you do not choose those sets randomly either, do you? One sort of bright spot is that
consideration of this problem invariably starts you thinking about why data sets may be different. Occasionally, you may
come up with a new idea. So, the problem is still worth worrying about.

DR. HARRELL: Yes. I want to commend Paul, too, for coming up with a list of criteria for judging similarity of
studies. I think that is a very necessary step.

Cold Exposure Survival Model
(Peter Tikuisis)
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DR. HOMER: I thought the way you coupled the deterministic model into a probabilistic problem was interesting.
One of the things that I saw in one of your papers, again coming back to subject matter rather than methodology, was that at
about the time when you would like to really know what is going on, the metabolic rate of the person takes a nosedive. Is
that the major deficiency in the predictive model that you described for us?

DR. TIKUISIS: Yes. That is one of the great uncertainties.

DR. HOMER: If it is exceedingly variable, the whole prediction must just come to pieces about that point.

DR. HARRELL: Peter had a really beautiful interface for using the predictive instrument. What programming
system was that using?

DR. TIKUISIS: Visual Basic.

DR. HARRELL: That was really nice.

One of the things Peter addressed in that predictive instrument, that few people are willing to talk about, is that you
use a number of predictive variables; and then invariably there is one variable you cannot obtain. You cannot measure it, or
you are in a hurry. He had a built-in sort of imputation. I guess the percent fat was one of them, and there might have been
others. So, he had some logic going on behind the scenes that was really nice for imputing missing predictor values.

I, too, really liked the combination of deterministic and probabilistic models. There was just one little point I would
take issue with. Peter quoted a goodness of fit test. Again, we have the problem with the categorization. But I think his was
a Chi-squared test that was calculated on the training data, and that is not really informative because you know the training
data is always going to fit. Training data will always be on the 45-degree line. I would really use a bootstrap for getting an
assessment of goodness offit. That really adjusts for over-fitting as much as possible.
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Promising Approaches to Experimental Design
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A remarkable thing about my talk is that I heard it earlier today at lunch, from Dick Vann, and I liked his so much
that I decided I had to tell the rest of you about it.

Dick was much more eloquent than my outline slides. We talked about plannmg experiments, that is, experimental
design. One view of diving research is to think of a particular diving series as being a binomial problem, in which you either
develop the bends or you do not. That view has a lot of literature behind it on how you plan the size of the experiment.
Another approach is to use a model. But if you are going to use models, and you are going to estimate parameters (rather than
the probability of decompression sickness directly) then there are a number of things that you should begin thinking about.

One point is that you really do not have to be exactly on the mark with respect to the probability of bends that you
are going to have. Suppose you are trying to predict a one-percent profile. You may be perfectly all right in doing a five­
percent calibration trial for your model, and extrapolating to one percent using the model. That is a relief, but then you still
have the responsibility for deciding where you should do that trial. Should you do it at a one percent incidence? Should you
do it at five percent? Should you do it somewhere else?

You need a design that represents the plan for the dive. The design will specify the kind of dive, and results (data)
which is to be used with the model to estimate the parameters of the model. A good design should minimize costs in some
sense, and should optimize some function, F, of the parameters. For example it might minimize the number of dives and at
the same time minimize the variance of the estimated probability of decompression sickness. The function F will depend on
the parameters to be estimated, ~,and the design, D.

F(j3,D)

In the simplest case, F might just be the probability of bends.

F = P(bends)

One might choose to minimize (optimize) the variance of a parameter of the model, or some more complex function ofthe
parameters and the variance covariance matrix. Ifwe choose the variance ofF, V, we can estimate that variance with a
propagation of error formula:

V(F) =( ~;rV(ft)

If F is not a parameter itself, the variance of F still is a function of the parameters and the variance-covariance
matrix. Generally, we will have in mind some function that we are trying to optimize. Again, it might be as simple as the
variance of the parameter itself. Then we have one or more designs, call them Design-I, Design-2, Design-3; choices that we
have in mind for how to run the dives. We can simply try out each design with computer simulations and choose the one
which minimizes the variance of F.

A "SIMPLE" PROBLEM TO OPTIMIZE EXPERIMENTAL DESIGN

Now I am going to treat you to a simple example. First I want to convince you that in some settings, it really does
make a difference to think about plannmg the design. I want to stimulate ways of thinking about what you need to do (in
considering possible designs) that you might not have done, if you did not go to the trouble of thinking about the variance of
F.

The particular example that I am going to use is simple. You go down to a depth, stay eight minutes, and come
back. The trial is trying to understand how depth is related to the risk of decompression sickness. (I am going to end up
telling you that the best design will be to bend as many people as you can). Now the figure below is like a lot of the curves
that you've seen before.
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1 - exp(-R)
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The Y axis is probability of bends, and the X axis is integrated risk. The reason I put it here, is to remind you that most of the
time we are working way down in the lower left comer. If I expand that comer and just show that to you, this is what it looks
like.
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The following few lines of math explains analytically why the initial curve seems to have become a line. If you expand the
infmite series for the exponential term in the first term for probability ofbends, you end up with the conclusion, that in this
narrow area, the probability of bends must be close to that integrated risk.

R2

P(bends) =l-l+R--+...
2

P(bends) ~ R

Now I am going to take you on another very big leap. I am going to tell you that for this simple example, the
integrated risk is going to be proportional to the depth:

R=jJd

This assumption allows me to give you a nice simple formula for the variance. Referring back to the propagation of errors
formula, the variance of the probability of bends is going to be the square of the depth times the variance of that
proportionality constant, beta. Remember that the variance of the estimated (binomial) probability is going to be probability,
P, times one minus P and divided by the number of dives, N. I then make the substitutions, and I end up with the same
expression but now including the proportionality parameter, beta, the depth, and the number of dives. In algebra, we have:

P(bends) ~Pd

V(P) ~ V(P)d 2

vel»~ = P(l- P)
N
" "

V(/J)d 2 Pd(l- Pd)
N

" "2 "
" P P P

V(P)=---~-
dN N dN

The variance of the proportionality factor, beta, is approximately equal to the proportionality factor itself, divided by the
depth and the number of dives. So, to make the variance small, you make these terms in the denominator (depth and N) as
large as you can.

Other ways of saying this, are that in order to have a fIxed variance in the parameter of interest, beta, you simply
need to bend a fIxed number of people, and you have two ways of doing it. Either you can take a lot of low-risk dives or you
can take a few higher-risk dives. But to have the same variance, you have to bend exactly the same number of people. Or
from another view, if you want to double the depth; that allows cutting the number of dives by half, but you have the same
variance and the same number of DeS events.

Now, that was a little parlor game. Reality is sometimes a little more complex. First of all, P is not necessarily
small in some problems. I think I saw one slide, where for the flying people, they were advertising 80 or 90 percent
incidence. That is marvelous. I wish we had had stuff like that in the Navy to deal with.

Occasionally the time of the event is known. It was not in the example case that I gave you above. If the time of the
event is known, you would be foolish not to use that in your model.

Also, usually you have many parameters. Six, eight, 10, a dozen, are not unusual, and usually the design and the
choice of design is fairly complicated.

In Wayne Gerth's model presented today, he wants to dive you, bring you to the surface, let you go have a drink,
and then go flying. So, you have to be able to take care of all of that. (I did not see the drink step in his model.)
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OPTIMIZING MORE COMPLEX DESIGNS
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My perception of the more complex problem, is that you still are going to have some function that you want to
optimize. For our purposes here, we will talk about simply minimizing the variance of that function.

The function could be even simpler than the example above, something as simple as the probability of bends. It
might be like the example above; and in Dick's talk that he gave at lunchtime, he was interested in the slope of something.
So, it could be dependent on one parameter; or it could be some other function of several of the parameters. But you need to
develop an expression for variance. I have suggested using propagation of errors, because I do not know how to do any
better. But, I must say I am going to start looking for better ways after some of what I have heard today. For example, one
could use Monte Carlo simulations to obtain estimates of the variance of F.

We will assume for now that we are using a propagation of error estimate of the variance of F, obtain a variance
covariance matrix from estimation performed with data from a simulated dive, and then we will apply the variance matrix to
the calculation of the variance ofthe function to be optimized.. The fIrst step of this is to look at the propagation of error
formula:

F,=(;')
V(F) = F;1Ji;] + 2F;2Ji;2 +
F22V22 +...

where the Fi are partial derivatives of the quantity of interest, F, with respect to each of the parameters, the V terms are from
from the parameter variance-covariance matrix (the V ll element is the variance of parameter 1), and F ll represents the
square of the partial ofF with respect to the fIrst parameter, and so on. In this manner you develop your expression for the
variance ofF.

To estimate the variance you do some Monte Carlo simulations. You start with the best values that you now have of
the collection of parameters, the betas; and a projected design, Design-I. The simulation produces a sample data set. From
that data set, you estimate the simulation betas; and, in the process of maximum likelihood estimation, you get the variance­
covariance matrix for that simulation. With this variance-covariance matrix, one can use the propagation of error formula to
estimate the variance ofF. You repeat the simulation over again with Design-2, and with Design-3. Get your new
variances, calculate the variance ofF for each, and simply ask yourself which design is going to get you where you want to
go (mininum variance on F). In order to be reliable, the Monte Carlo procedures must be repeated, so that you obtain a
collection of estimates of ~ and a collection of estimates ofF and its variance for each design. Then you would choose the
design providing (usually) the smallest estimates of variance for F. If you can afford the computer time, it would be possible
to estimate F many times, and calculate a variance for F from the repeated simulations rather than from the propagation of
error formula.
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There are several elements of developing reliable statistical models. Some of them are
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1. Choosing between theoretical and empirical models
2. Selecting the model structure or model family
3. Modeling the shapes of the effects of independent variables, or how to best transform them to fit model assumptions
4. Diagnosing the fit of the model
5. Quantifying the precision of parameter estimates and the overall accuracy and predictive power of the model
6. Drawing inferences about associations
7. Validating the model so as to get an idea of its likely performance in the future
8. Presenting the model graphically to non-statisticians

Readers may want to see tutorials in Statistics in Medicine in 1996 and 1998 for detailed case studies of the development,
validation, and graphical presentation of multivariable empirical models, for survival and ordinal response data, respectively.

In terms of measuring the accuracy of predicted values from fitted statistical models, many authors categorize
predictions so that simple summaries can be derived. For example, it is common to stratify predicted risks into deciles and to
plot the proportion of events in each decile vs. the mean predicted risk in that decile. It is easy to show that the assessment
one obtains from such a procedure is very dependent on how intervals of predicted risk are selected. There are many
advantages to using statistical measures of predictive accuracy that do not require grouping the data. One popular summary
index for is the area under the receiver operating characteristic (ROC) curve. This is a measure not of absolute accuracy but
of strictly discrimination accuracy. R2 is another measure that primarily assesses discrimination. One of the more common
indexes that combines absolute or calibration accuracy with discrimination accuracy is the Brier quadratic probability
accuracy score. This is a mean-squared error measure used by the U.S. Weather Service for judging accuracy of rain
forecasts.

An excellent method for assessing absolute predictive accuracy when the response is binary is the smooth
calibration plot based on the lowess nonparametric regression smoother (Cleveland, 1979). An example of a non-parametric
calibration is illustrated in Figure 1. This example is from one of the must studied of all risk prediction problems - assessing
risk of individual patients undergoing open heart surgery. The predicted probability of operative death is shown on the X­
axis. The average probability is around 0.03 across the spectrum of patients. The actual probability, or our best estimate of
it, is shown on the Y axis. We don't know the actual risk, but we can estimate that by a non-parametric regression on
(predicted risk, 0/1 binary outcome). What we're trying to show is agreement of predicted results with the 45-degree line,
which is the line of perfect prediction. This curve is just a fancy sort of moving average between the predicted risk and the
observed zero-one, or binary, outcome.
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Figure 1: A nonparametric calibration curve for assessing absolute predictive accuracy.

We can see that we are very close to the identity 45-degree line, especially where we have a lot of data at risks less than 0.05.
The histogram at the bottom of the graph depicts the distribution of actual predicted risks. There are many other very well
developed and justified indices that quantify the fit of predicted to observed binary outcomes in various ways, but limited
space precludes covering them here.

For assessing the predictive accuracy of survival models there is a rank correlation index that generalizes the ROC
area to quantify discrimination ability. This assesses our ability to discriminate individuals having early failures from those
having late failures. Assessment of calibration accuracy is not as well developed for survival models other than using
arbitrarily stratified Kaplan-Meier estimates.

Modeling Tools

There are many modeling tools that become more helpful as the number of variables increases. We have just seen
one use of nonparametric regression such as lowess. Instead ofusing predicted risk as the independent variable, we could use
pressure or depth. Nonparametric regression methods are not only available for a single predictor or X variable, but there are
well developed generalized additive nonparametric models for multiple X variables (Hastie & Tibshirani, 1990). There are
also models for optimally transforming the X and Y sides of the equation simultaneously for a continuous response variable
Y (Tibshirani, 1988). Piecewise polynomials (spline functions) that are almost non-parametric can also be used for modeling
shapes of effects.

I note in passing that empirical regression methods can be used to do formal tests of adequacy of biomathematical
models. Suppose one had a pre-specified model, say y = 1 - exp(x2/h), and we want to test whether that model is adequate.
We can embed that model inside a more general one such as y = 1 - exp(x2/h + spline(x)), where spline(x) represents a
piecewise cubic polynomial whose coefficients are to be estimated. By jointly testing the regression parameters of the spline
function for significance we are testing the adequacy of the x2/h equation.
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Model uncertainty is a big problem that statisticians like to keep hidden in the closet. If one tests many models and
picks the one that fits best, that model will never predict as well on future data. There is another problem in picking the best
model on the basis of data: standard errors and P-values are no longer appropriate (Faraway, 1992). This is a well-kept secret
because it takes much more analyst time do correct inferences that take into account model uncertainty. Currently the best
way to do that is to use a bootstrap process as Faraway described. The bootstrap is a very valuable tool for getting standard
errors and confidence limits and other things, because no statistical theory for computing those for non-pre-specified models
is available.

Even when the model form is pre-specified, the non-parametric bootstrap is a good way to estimate standard errors
of individual parameters without even assuming that the model is correct, and the bootstrap does not assume normality of
estimates. The bootstrap can also be used to get standard errors of predicted values and confidence bands for them. This
involves sampling with replacement from the original data and studying how the model changes as it is fit to each of many
such samples.

The bootstrap is also very valuable for validating models because its inventor, Brad Efron, has also developed a
different kind of bootstrap procedure for estimating the optimism in a measure of predictive accuracy. One can validate
summary indices, get calibration plots corrected for over-fitting, and get an estimate of how well a model performs without
waiting for that new data set. This is not an external validation that would validate how you collect data or how you enroll
subjects in the study, but it is an internal validation that correctly penalizes the R2 and other measures for over-fitting.

Another modeling procedure gaining popularity is model averaging. When there are competing models, better
predictions will often be obtained by averaging their predictions rather than choosing a single model. Bayesian modeling is
the fastest growing area in statistics, and researchers owe it to themselves to look into Bayesian methods. A frequentist
method that parallels some aspects of Bayesian modeling is penalized maximum likelihood estimation (discussed in Harrell
et ai., 1998). This technique is useful in problems that involve too many parameters and not enough subjects, where
parameter estimates need to be discounted to make the model more conservative and not over-fit.

There is a problem particular to decompression research that traditional statistical models do not account for - lack
of independence of observations. In decompression research it is not uncommon to have some divers participate in multiple
dives within a given study. If these divers have some similarity with themselves across multiple dives, or if they tire over the
course of the study, for example, that generates a dependence or partial redundancy in the data. Simply speaking, one should
not get as much credit for one diver making multiple dives as for separate divers each making one dive. This may not greatly
affect parameter estimates, but it really affects confidence intervals (they will be too narrow) and standard errors. There's a
need in many of applications for correcting variances using some sort of cluster sampling approach or using the cluster
bootstrap (an especially easy solution; see Feng, McLerran, and Grizzle, 1996).

It may also be worthwhile to include a subject's track record up to the date as a predictor. According to David
Southerland, if a diver has had multiple bends, she might be more prone to bends than another diver, and that might be a
powerful predictor.

Time-dependent covariables is another useful aspect of modeling. These can provide powerful and interpretable
analyses when the covariables pertain to experimentally-controlled conditions. If covariables are "internal" or out of control
of the investigator, it is very difficult to interpret model parameters. But such covariables can still be useful for
understanding patterns of risk. For example, one might understand how to use a VGE grade profile by seeing how changes in
VGE relate to the instantaneous risk, and that might help one to score or grade the severity of VGE. Internal time-dependent
covariables are not very handy for prospective use.

There are models that are under-utilized such as a family of logistic models for ordinal response that uses just the
ordering of the response variable. These models do not assume any spacing between the levels of the response and do not
require any grouping of, say, bubble sizes.

Another consideration is whether the time until a symptom develops is more important to predict than the severity
of the symptom when it does develop. There are main types of failure time models, such as the accelerated failure time
family, for focusing on the time until the event. A model that has not yet seen very much use, but that might come into play
here has been developed by Berridge and Whitehead (1991). Their model combines an ordinal logistic model for severity of
an event with a Cox model for the time until the event. Their application was a clinical trial for preventing migraine
headaches in which the goal was to delay as long as possible the next headache or, when one gets a headache, to minimize its
severity.
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In summary, there is a real explosion of statistical methodology for model development, diagnosing fits, and
validating models. Many of the new techniques allow us to completely avoid categorization of variables by using
nonparametric smoothers or flexible parametric modeling. Software such as S-Plus (see Harrell, 2000 for example), is
starting to keep up with the latest statistical developments, opening new opportunities for merging empirical and bio­
mathematical models.
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Editors' Note: The transcript ofthis session did not allow identification ofall ofthe speakers. We apologize for any
omission, or even incorrect assignment, ofpeople's remarks.

R. VANN (Duke): I am interested in life after death. Here I do not mean this in a theological sense. But people die,
light bulbs burn out, and survival analysis addresses these processes pretty well. A difficulty is that divers are cured of
decompression sickness and live to dive another day.

My question is: what is the future of statistical procedures that will accommodate either a cure or a resurrection?
Did I get a hint from one of your last slides, Frank, that similar problems exist elsewhere, such as the time to the next
migraine, or time to the next incident ofdecompression sickness? Is the [reference to Berridge and Whitehead in the
bibliography ofF. Harrell's paper] approach something that we might use to address the problem of repetitive diving better
than we are doing now with survival analysis?

F. HARRELL: The state of survival analysis, now, is incredibly well developed for looking at multiple events per
subject. The classic examples would be multiple heart attacks, or multiple strokes. There are some fantastic techniques for
dealing with those, and then there are techniques for dealing with multiple different kinds of events. But for your particular
question, the closest thing I know of that's fairly well developed is if you look at death as the end point, and you have an
intervening event, such as a heart attack. You can follow a subject who after some period of time suffers a heart attack, at
which time his or her outcome goes from zero to one. Then you can say that if the subject survives the heart attack a certain
length of time, the heart attack loses its impact. The outcome can come up (and be a one) and then it can wane. So, ifyou
survive the heart attack a few months, it is almost like you didn't have one.

That still does not address your question, though, because you are asking about, say, a heart attack being your main
end point, and then the end point resolving. Since you gave me a heads-up on this question at our break earlier, I had toyed
with the idea of using a two-stage model. You model the time until the event, and then given that you had DeS, you model
the time until resolution of symptoms. I think that approach has some promise, but it will probably add more parameters to
the overall model. You won't get something for nothing.

v: FLOOK (Britain): This is more of a comment addressed to Erich Parker. One of the things that happens when
bubbles form is that the bubbles grab the gas and make it very much more difficult for the inert gas to be washed out of the
body. I would hazard a guess that this is perhaps the single biggest factor that was missing in your model when you looked at
the effect of oxygen breathing post-decompression.

It obviously is, to some extent, a random effect. In some people, the bubbles will have formed before you start the
oxygen breathing, while in other people, they will not have formed, or at least you think they will not have formed. Bubble
formation will slow down the wash-out and very much reduce the effect of oxygen breathing. If you run our bubble model,
this comes out automatically. As soon as bubbles form, you see the tissue partial pressure drop right back down almost as
low as arterial partial pressure.

There's a second issue from that. I suspect that perhaps this is one of the reasons, Wayne, why your bubbles were
not lasting so long. The effect was being taken into account.

W. GERTH: The bubble model is the risk function in that model, in that hazard function. So, all of those things are
built in.

v: FLOOK: I am running the Van Liew bubble model, and I get bubbles lasting for many, many hours. As an
example, there is a paper in last year's UPS proceedings where after a two and a half minute submarine escape exposure, the
model predicts the bubbles to last for six hours.

W. GERTH: Yes. We get bubble lifetimes that long, too, under certain conditions. But not after return to ground
level following an altitude exposure of the kind that I showed. It is under those conditions that I cannot do anything to our
bubble model that allows the bubble to persist beyond the point of return to ground, and remain consistent with the way the
bubble must behave to account for risk after the dives that precede the altitude exposure.

E. THALMANN (Duke): You are generating a controversy. I remember sitting at NMRI with Dr. Homer one day
scratching my head over how we could validate these models. I said, why don't we just take our sample of dives and
randomly select different data sets and compute parameter values and see how they agree with one another? When we were
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fmished, he had convinced me that such a procedure would not be very useful. I just learned that this is something called
bootstrapping, which Dr. Harrell thinks is useful. Lou, how do you view bootstrapping as a way to validate the parameters
that you compute, given that your data set already exists, and you may not get any more?

L. HOMER: I would not use bootstrapping as a validation of parameter point estimates, but as a means ofjudging
the variance of the parameters. I think that, on the average, ifyou use resampling from the same data set, you are going to get
the same point estimates.

F. HARRELL: It might be worth elaborating on just how the bootstrap works for validating accuracy. You take
samples with replacement from all ofyour subjects. You refit the model, say, a hundred times, taking 100 of those samples,
and you fmd out how much that model falls apart when you use it to predict all of your original data.

So, you are studying how some measure, sayan R-squared, reduces when you go from how well it seemed to work
in the bootstrap sample compared to how well it works in the original sample. It's really a kind of a backwards idea ofwhat
we usually mean by training and test sampling.

W GERTH: So, if I understand that right, you sample your data many times, and you compute parameter values.
Then you tum around and use those parameter values to look at the whole data set. Ifyou have a good model and a
reasonable data set, you would not expect to see much difference between parameter estimates from the different samples?

F. HARRELL: Right.

W. GERTH: But if you see a large variability, in other words, if your parameter values become wildly dependent on
the specific sample that you take, then how do you know what the problem is? Is it the data? In other words, do I have
inhomogeneous data, which cannot be combined, or do I have an unsatisfactory model? How do you decide?

F. HARRELL: Well, you can look at multiple indexes of fit. I tend to look at two types. One is the discrimination
ability, and one is the calibration, or absolute, accuracy. You have certain characteristics that you see, such as a shrinkage of
your predictions. The 45-degree line, instead ofbeing 45, it tilts toward a flat line. That would be a symptom of over-fitting,
or not having enough information to estimate the parameters that you tried to estimate. It would tell you that you somehow
need to either make the model more conservative, or wait until you get more subjects.

W. GERTH: I was impressed that you recommended we use the C index as a measure of goodness of fit. No one
here today showed that we do in fact use it. We have shied away from it, perhaps because we do not understand it well
enough.

My particular question with regard to the C index is: how do we apply it in altitude decompression sickness
problems? Because there, failure during an altitude exposure terminates the exposure for the person that fails, while those
people that survive remain at altitude to accumulate more risk. So calculated risk for the survivors is always higher than
calculated risk for people that failed.

F. HARRELL: You are saying it is right-censored?

W. GERTH: Yes. So, do you have to do the C index evaluation at each failure time that you have?

F. HARRELL: What Wayne is talking about is a measure of concordance between your predicted and observed
responses. What you do is: look at all pairs of subjects, and ask how often did the subject that had a higher predicted risk
actually have the earlier failure in that pair. You look at all possible pairs. That's why you need a computer.

But if you have a subject who was censored before the other subject failed, that pair is ignored. That is how you
take censoring into account. This is not a measure of goodness of fit; it is a measure of discrimination ability.

W. GERTH: The reason I asked the question is because you distinguished between two sorts of tests, discrimination
ability being one of them, and that's an assessment that we tend to give little weight to at the moment.

F. HARRELL: Yes. That is just an overall single number summary of how you can separate low and high risk. I
think it is worth doing.
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A. BRUBAKK (Norway): I am very impressed with lots of the statistical things that have been done. But by the
criterion that the model should give added insight into what is actually going on, I feel somewhat at a loss. Many of the
models do not tell me much about the actual process. One of the problems might be that what you are only trying to model
gas dynamics and bubble formation, when your actual end point is clinical symptoms. Although we know that there is a
relationship, we do not know exactly what that relationship is. I would venture to say that if there is a lot of gas, the primary
bubbles are perhaps very important. But, ifthere are few bubbles, as there probably are when diving many modern tables,
the biochemical effects would probably playa significant role. Thus, all your trying to adapt your model would be an
exercise. You may adapt your model, but it does not actually tell you what is going on.

One interesting thing that came out of the study done in the North Sea, where they did a lot of diving on many
different profiles, was that the only dive time and depth were correlated to DCS incidence, nothing else. The kind of profile
did not matter. In a way, such a result says that it does not really matter what kind of procedure you are using, as long as you
use some kind of procedure. That governs your rate of ascent, and it doesn't really matter ifyou stop for two minutes or 10
minutes perhaps.

I have a different comment that relates to use ofbubble grades. For instance, the way that Peter displayed a
continuous line on the Y axis, with Grades 1,2,3 and 4. That gives a totally wrong impression because ifyou have a Grade
3 and 4, that covers something like hundreds, at least according to our studies. A Grade 3 can be, say one, but the Grade 4
can be also hundred bubbles. There is a very large volume here. It is quite obvious that if you do not fmd a correlation
between VGE, the number of bubbles, and the incidence of decompression sickness; it might be partly because of the way
you use these.

So, I think ifwe are going to proceed on that, we have to get the linear scale on those bubbles. Ifyou use that, you
can actually see that some models are able to predict how much gas is produced in the vascular system.

QUESTION: Could you transform the bubble rate to make them non-linear? I think you mentioned something like
that.

E. PARKER: Well, I may be able to make a comment that helps. Dr. Brubakk's insight into what goes into bubble
scores is always appreciated, but is somewhat outside the modeling methodology focus that we're on today. Dr. Tikuisis'
approach combined categories for reasons that made sense under a data-limited condition, and then Dr. Harrell pointed out
that there are additional techniques available to us that can preserve the full ordering of the events. This does not require that
there be a linear relationship between one point and the next on the scale. So, we may be able to have our cake and eat it, too.

QUESTION: I fully appreciate that, but in many of the presentations made here, you actually did try to match the
bubble grades to your models. I am just making the comment that in some cases, I think you may have used [bubble grade]
in a way that did not take account of the extreme nonlinearity of this scale.

L. HOMER: The general point is about trying to use ordinal values, if you have them., rather than treating them as
categories. It is still an important piece of advice, whether one were to conclude that it did or did not apply to bubble grades.

R. VANN: I have a question concerning repeated measures. I have a data set now that has Doppler bubble
measurements during open water dives, and a recorded dive profile. Some of these subjects were repeated. Now, I
understand that there is a new technique that will let you handle that somehow.

Would it be safe to say that an approach to determining the importance of considering these repeated measures
would be to do it both ways? Consider all subjects to be the same, and then consider them to be different. Then see how
significant that was in how the models fit the data; according to whether repeated measures was used, or all were assumed the
same?

F. HARRELL: Yes. I think the approach is the so-called sandwich variance estimator. The basic idea is that you fit
the data, ignoring the fact that some subjects are repeated. You get the ordinary parameter estimates which are valid unless
the within-subject correlations are fairly strong. But then, the variances are not valid. You use this new variance estimator,
or you can use the bootstrap to get valid estimates of the variance. Then if the variance increases substantially you have
evidence of intra-cluster correlation so the cluster correction is needed.

L. HOMER: In that case, though, even the bootstrap is not a complete protection. The problem is that your variance
is small because you really do not have that many subjects. It is very hard to cure that, but I am not so sure that the [within
subject] correlation is all that good.
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We have tried in some instances to decide whether there were divers who were prone to this or that. It is not an easy
thing to demonstrate. I think you would say physiologically that it is probably true based on some studies, but it is not a
strong effect.

QUESTION: What is your recommendation then when you analyze these data? See if there is a difference?

L. HOMER: No harm in that.

E. PARKER: Maybe, unless you pick the way that proves your point.

COMMENT: That's the principle of maximum satisfaction.

W. GERTH: I am not going to resolve the following issue here, but I want to make a comment. There is a real
difference between identifying a factor as important, as statistically significant in improving a model's fit to data, and
ascribing to that significance any sort of important or significant insight into a mechanism. We, in this field, need to come to
grips with those two things. I will ask this question of the bunch: when is it that we can claim to have learned something
about mechanism when we show that a factor required in a mechanism is statistically important? How much can we learn
about mechanism by model fitting?

F. HARRELL: I think Erich's paper is a good summary of that. He may not have the complete handle on exactly
what oxygen is doing, but it is not innocuous. Oxygen is an important factor.

W. GERTH: What is the mechanism?

F. HARREL,L: Well, you are not going to unravel the mechanism until you are frrst convinced that it is a factor.

W. GERTH: So, we have established the importance of this "thing" as a factor. Now what does that tell us about the
mechanism that we posited to manifest that factor in the model? We will just have to leave that open, but I do think that is
yet an unanswered issue in the approach that we take here, and what the kind of importance we ascribe to our results.

H. VANLIEW (Panama City): It does not prove it, but you start thinking along the line that the data leads you, and
you look for other evidence of it.

L HOMER: I think if you believe in a factor, put it into a logistic model, and it comes out to be important, that does
not say why it is important. It just says it is. I think what Wayne is saying is just because it is important, how can you
determine why? My sense from much ofwhat was said today is that you really cannot tell very much. For example, there
are many ways to include an "ascent rate" in a model besides just plopping it in. In principle, you could take a completely
different model where your "ascent rate" is factored into bubble size, or something else, to get as good a fit. You are faced
with determining whether this simple logistic model over here is as good or better than this more complicated bubble model,
even though they both work as well. Our take has been that you need to demonstrate your mechanisms independently of the
fitted data.

In other words, do experiments to show that in fact the "ascent rate" does impact bubble size, which defmitely does
cause bends. Just by simply fitting it to a data set where all you know is the outcome, all you learn is that your mechanism is
consistent with the data. Such work does not tell you that your particular mechanism for including a factor is any better than
the next guy's. It all really comes out just in the data fit.

F. HARRELL: The only thing I could think to add to those nice statements is that you can postulate an unmeasured
variable that might explain away the effect of, say, ascent rate. Then you can do a sensitivity analysis to fmd out how likely
it is that some other variable could explain the effect that you are attributing to the one variable that is currently in your
model. In terms of causal inference, I think we will start to see this sort of sensitivity to unmeasured variables being a part of
our arsenal.

V FLOOK: I think the answer really is much more fun, because having identified something that's important to you,
you then put up three or four models of how that might be acting, and spend the rest ofyour life playing with them.

W. GERTH: Amen.
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The task has fallen on me to wrap this up. I will not endeavor here to summarize everything that has been covered
today or develop any sort of conclusions. Instead we promise to provide a collection oftoday's presentations in a
Proceedings to be published by the Undersea and Hyperbaric Medical Society.

In 1984, Drs. Weathersby, Homer and Flynn published a paper that set in motion a sea change in the way that we
have come to reconcile theory with data in environmental physiology. Their formalization of a way to make one conform to
the other was a seminal contribution in the area ofdecompression studies. The approach they outlined has since blossomed
into a variety of different papers with applications of the technique to problems beyond decompression sickness. The value
of their contribution is represented by the interest that motivated everybody's participation here today.

One of the principal purposes of this Workshop has been to provide a snapshot of the state-of-the-art of this work.
We will hope that the Proceedings will provide a point of reference from which future work can be launched, and from which
people can look to the past to fmd papers relevant to their particular interest.

On behalf ofus all sitting in front you today, let me thank you very much for joining us. Without any further ado,
we'll close.

Thank you.

(Applause)
(Whereupon, the meeting was concluded.)
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