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DCS and many marginal cases. Maximum Likelihood fitting of the four models to these data 
indicate LEI to be the best fit. The LEI Model is able to pred,ict DCS occurrence in the fitted data, 
as categorized by type of dive profile, risk level, and time of DCS occurrence. LEI is able to predict 
DCS occurrence well in most data not used for fitting, with the exception of profiles using high 
percentage 0, breathing mixtures and some repetitive profiles. - 
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INTRODUcrION 

This report continuesbthe analysis of probabilistic models applied to decompression 

diving. Previous probabilistic models have been shown to be successful in describing 

occurrence and even time of occurrence of DCS (1,5,7). While simple exponential tissue 

gas kinetics have been widely used in such modelling, the need for lcinetics that would 

result in slower tissue washout has been noted (57). The enphasis of this report is a 

class of models that employ linear as well as exponential kinetics in an attempt to 

provide this slower washout. 

These models are extensions of similar models developed and described elsewhere 

(1,4,7). Where previous models used single- or multi-exponential compartments to 

describe gas exchange kinetics, the present models use mixed linear and single- 

exponential kinetics in each of several compartments. The effect of adding linear 

kinetics is to lengthen the duration of risk accumulation for a given compartment time 

constant. 

The data used in this report are taken from the available dive data described in 

detail in Report VII (6) of this series. A wide variety of dive profiles is included in this 

modelling effort, from submarine escape exposures with durations on the order of 

minutes to saturation dives on the order of days. Single, repetitive, and multi-level, as 

well as air and Mark-15 (0.7 ATA PO,) dives, are represented. Time of symptom 

occurrence is included for all DCS and many marginal cases. 

The 

in various 

t* 

models, having been fitted to 'the data, can be used to predict DCS outcomes 

data sets. Since time of symptom information is included in the data, these 



models may be used to predict the time of DCS occurrence as well. 

MODELS 

Two types of tissue kinetics and two types of risk formulation lead to the four 

classes of models that are considered in this analysis. All are extensions of multi-tissue, 

single exponential decay models described in detail in previous publications (1,7). The 

current models differ in that they allow the use of linear (LE), as well as exponential 

(EE) kinetics, as described by Thalrnann (4). 
1 

In previous models (1,7), tissue pressures have been described by purely 

exponential uptake and elimination. The models of this report similarly allow for 

exponential-only kinetics (EE) in response to a linear change in inspired nitrogen; 

where; 

Ptiss(T) is the compartment ti&e pressure at the time of interest T, Ptiss, is the 

beginning tissue pressure, PI, is the initial inert pressure, RI is the rate of change of inert 
* 

pressure over the time of interest, P;02, P,,C02 and PIH,O 6re constant metabolic gas 



pressures and a is the compartment time constant, sometimes expressed as a rate 

constant k, where k = a-',. For those more accustbmed to half-times, the time constants 
# 

reported here can be converted to half-times by multiplying a by 0.693. 

The metabolic gas terms Pv02, PvC02 and PiH20 were not included in earlier 

models (1,5,7), but are included here to acknowledge that non-inert gasses can contribute - 

to gas bubbles (4). 

In addition, the current models allow for mixed linear and exponential kinetics 

(LE). Linear kinetics are invoked whenever the tissue pressure exceeds ambient 

pressure by a given amount. This overpressure is represented in the model by the 

parameter PXO, with one PXO per tissue. When the tissue pressure falls below ambient 

plus PXO for that compartment, tissue pressure follows exponential kinetics. Linear 

kinetics are never invoked during gas uptake because tissue pressure never exceeds 

ambient while in uptake. This results in the desired asymmetry in gas uptake and 

washout, with washout occurring at a slower rate than uptake. 

The shape of the linear kinetic curve is dominated by its slope, which is a function 

of the PXO and time constant for each compartment; 

where Ptiss(T) is the tissue pressure at the time of interest, Ptiss, is the initial tissue 

pressure, PO, is the initial oxygen pressure, Pv02, P$02 and P,C02 are constant 

metabolic gas pressures, a is the compartment time constant and RO, is the rate of 



change of oxygen pressure over the time of interest. The quadratic term will be 

non-zero only over periods with changing oxygen pressure, that is, RO, + 0. 

SO, for any given compartment time constant, the slope of the linear tissue pressure 

curve will be steeper for large values of PXO and shallower for small values of PXO. 

Thus, the lower the PXO value, the slower the washout for that compartment. 

Conversely, if the PXO is high enough, linear kinetics is not invoked and the LE model 

simplifies to the EE model. 

In Fig. 1, the first frame shows the effect of adding a PXO parameter to a given 

tissue pressure curve for a single air aive 

gain. The curve with a PXO of 1000 fsw 

exponentially. The curve with a PXO of 

Both curves have the same time constant and 

and therefore no linear kinetics, decays 

15 fsw invokes linear kinetics during scen t  and 

remains in linear kinetics mode until Ptiss decays to 15 fsw. After surfacing, since 

oxygen pressure is not changing, the quadratic term will be zero and the kinetics will be 

linear. The kinetics remain in linear mode for this curve until about 280 minutes, when 

the tissue pressure drops below 15 fsw and the curve then decays exponentially, at the 

same time constant as in the exponential-only case. The mixed-kinetic curve crosses 

0 fsw ambient pressure about 100 minutes later than the exponential-only curve. A 

tissue with a small PXO of around 1 or 2 would reach 0 fsw much later still. 

Risk accumulation for each of these models is characterized by an instantaneous 

risk proportional to the sum of the risks of each compartment. In the first class of 
%. . 

models the relative supersaturation"in each of up to four tissues is used to define the 

instantaneous risk; 



Where 

r lA  = GAI PtisA-Pamb-7lrA ' .  ;rlA r 0 
Pamb '" 

with rlB, r l C  and r l D  defined similarly for each compartment. GAI is a scale factor, 

PtisA is the tissue pressure for compartment A, Pamb is the ambient pressure and ThrA 

is the threshold parameter (1) for compartment A. Tissue pressure must exceed 

ambient plus the threshold in order for that compartment to generate a non-zero 

instantaneous risk. Models using this type of risk accumulation will be referred to as 

EE1 models when exponential-only kinetics is allowed, and as LEI when linear- 

exponential kinetics is used. 

Appendix A gives the details of the analytic risk calculation for the LEI and EE1 

class of models. 

In the second class of models the risk is obtained from the integral of the relative 

supersaturation in each of up to three tissues; 

Where; 

r2A = ~ ~ 2 1  tPtisA - Pamb - ThrA dr 
o Pamb 



with r2B and r2C defined similarly for each tissue and GA2, PtisA, Pamb, and ThrA 

defined as for the first model above. Models using this type of risk accumulation will be 

referred to as EE2 and LE2 models as defined for EE1 and LEI models above. 

In the first instantaneous risk plot of Fig. 1, the effect of the PXO parameter in 

delaying risk is shown in terms of the risk accumulated by the EE1 and LEI algorithms. 

Since the thresholds for this example are set to 0, the instantaneous risk curves are 

proportional to the tissue pressure curves of the top plot. Again, the important 

difference is that the curve with a 15 fsw PXO accumul;ates risk about 100 minutes 

longer than the exponential-only curvk. 

This difference is greatly amplified in the second ihstantaneous risk plot of Fig. 1 

due to the integration of the pressure difference used in EEZ and LE2 models. 

Parameter estimation inevitably reduces the gain of these models, EE2 and LE2 so that 

they have roughly similar total risks after long integration. Here, even the 

exponential-only (EEZ) risk curve extends long after the end of the dive, coming back to 

0 at about 1280 minutes. The mixed linear-exponential risk curve (LE2) is substantially 

lengthened, not decaying to 0 until almost 48 hours after surfacing. Smaller PXOs 

provide even more time at risk. It would seem that EE2 models have already achieved 

the desired extension of risk accumulation without the addition of linear kinetics. 

However, simply lengthening the risk curve is not necessarily sufficient to provide a 

superior model. The shape of the risk curve, particularly how it relates to the time of 
7.'. 

symptom information in the data, iS"an important factor. 



The parameters 
- 

for each model, at minimum a time constant and gain for each 

compartment, with the option of a PXO and a th&hold, are estimated from 
I 

The probability of each outcome, needed for the estimation, comes from the 

equations; 

if DCS is not observed; 

-I0-""r dr 
P(no DCS) = e 

the data. 

following 

% 

if DCS k observed in the interval TI - T2: 

The calculation of P(DCS) combines the probability of not observing DCS over the 

interval from 0 to TI with the probability of o b s e ~ n g  DCS over the interval TI to R. 

Any risk remaining after T2 in this case is ignored, where in the case of no DCS, all risk 

out to 24 hours is included. 

The Likelihood function is calculated as the product of all individual dive 

probabilities, P(outcome n); 



Since each P has a value of less than 1.0, we use the natural logarithm of L, or the 

Log-Likelihood (LL).A modified Marquardt (3) nonlinear estimation algorithm is used to 

adjust the parameter values to be estimated in order to maximize LL. In general, many 

values of starting parameters must be tested with this estimation procedure in order to 

be certain that the maximum LL found is a global and not a local maximum. The shape 

of the likelihood surface near the converged parameters is used to estimate the precision 

of the parameters (2). 

A simplified model, the Null model, assumes a constant instantaneous risk for all 

dives; 

r = O  before beginning decompression 

r = constant afrer beginning decompression 

The LL value for the Null model can be considered as a baseline that more complex 

models must exceed. 



DATA 

The 

described 

?,' 

I 

data sets usedin fitting models in this report were taken from the dive data 

in detail in Report VII (6) of this seriks. The 14 different data sets (Table 1) 

contain 799 dive profiles, representing 2383 ma&ives. From these dives there are 131 

DCS and 75 marginal cases, giving an overall incidence of 5.8%. Marginal cases are 

taken to be equal to 0.1 DCS case. 

Marginal symptoms, sometimes called "niggles", are transient aches or pains 

following a dive and seemingly associated with it but not of a severity or persistence to 

warrant treatment. 

In previous modelling (1,5,7), we assigned marginal cases a numerical outcome of 

0.5. This assignment is functionally an implementation of the assumption that wo 

marginal cases are as important as a single DCS case. Discussions with senior medical 

officers indicate a much lower level of concern for marginal outcomes. Furthermore, not 

all reports included marginal symptoms, thus raising the chance that data including them 

would appear excessively dangerous for DCS. 

One region of the data where assignment of marginal outcomes is important is in 

the region of shallow saturation dives. This data contains 19 exposures to 25.5 fsw air 

for 2 days followed 6y rapid decompression. No DCS cases were recorded, but 17 

marginal cases were observed (13 of them excessive fatigue). If marginal cases are 

considered as 0.5 DCS, then raw incidence from this depth is 45%; if they are considered 

as 0.1 DCS, then the incidence is 9%. The latter figure seems more appropriate, 

especially since there were no DCS and no marginal cases in the 32 saturation exposures 



to 20 fsw in the data. Therefore, we chose to assign marginal cases as 0.1 DCS outcome 

throughout the data. 

Of the 2383 man-dives, 36.8% were from the Single Air category, 8.1% were from 

Repetitive Air, 32.4% were Single non-Air, 10.0% were Repetitive non-Air, and 12.7% 

were from Air Saturation. Only dives with immersed subjects were included. Table 1 

oives the distribution of profiles, man-dives, and DCS cases for each data set and D 

category. Dives not included in the present data set, but described in Report VII (6) 

were single and repetitive air dives with dry subjects, those from oxygen decompression 

and surface decompression categories as well as some multi-level non-air dives. These 

dives and their relationship to the models will be discussed later. 

Time of DCS occurrence is included for all full DCS cases and for many of the 

marginal cases. The time of symptom occurrence is represented in the data as an 

interval (TI-T2) over which symptoms appeared. T1 is taken to be the last known time 
4 

the diver was entirely free of symptoms and T2 is the time at which definite symptoms 

were reported. Details of the methods and rules of establishing the TI-T2 times for a 

dive are given in Report VII. A listing of all DCS and marginal cases in the fitted data 

set, with T I  and T2 times, is given in Appendix B. 

With the exception of two single air dives, all T2 times that occurred before 

surfacing were from the saturation data sets, where DCS occurrence under pressure is 

not uncommon. 
t ' 

Figure 2 shows the distribufion of R times relative to time of surfacing for dives in 

which DCS (or a marginal) occurred. While a large number of cases occurred within a 



few hours of surfacing, the rate of occurrence did not drop off substantially until eight 

hours after surfacing. Over 10% of all cases oc&rred more than eight hours after the 
* *  

e 

dive surfaced. 

RESULTS OF FTITING 

The results of fitting the four classes of models to the data are summarized in 

Table 2, which gives the Log Likelihood (LL) values found for each of the various levels 

of complexity of the EE1, LEI, EE2, and LE2 models. There are three or four 

compartment versions with and without-qPXO, as well as with and without thresholds. 

Two compartment models of all four classes were tried but found to be much poorer fits 

than those presented here. Table 3 gives the parameter values found for the most 

important versions of each model. 

The simplest form of both EE1 and EE2 are si,gificantly better fits to the data 

than the Null model, with LL improvements of about 180 and 113 for Models l a  and 2a, 

respectively. Both of these are exponential-only models (PXO parameters f i e d  at values 

high enough that linear kinetics is never invoked) and have thresholds set to 0.0. 

EE1 and LEI 

Each step of added complexity does not always result in a ~i~pif icant  improvement 

of fit. Significance of fit is measured by the Likelihood Ratio test ( 2 3 .  In this test, 

twice the difference of the log likelihoods of two models is an X2  distributed variable, 

with degrees of freedom equal to the number of added parameters, if the added 

parameters do not significantly improve the fit. 



For example, a threshold parameter is added to each compartment of Model l a  to 

make lb, three added parameters, but the fit improves by only 1.2 LL units. For the 

additional three parameters there would have to be an improvement in LL of at least 3.9 

units for the more complex fit to be significant, even at the 95% level. Thus, the 

addition of thresholds to the EE1 model is not justified statistically. 

Similarly, the two added parameters required to get Model lc, a four-compartment 

EE1 model without thresholds, is not justified, since the LL improvement over l a  is only 

0.22. Also, adding thresholds to two compartments to get Model id is not justified by an 

LL improvement of only 1.88. " 

To get Model l e  from la, a PXO parameter is added to each compartment, 

enabling mixed linear-exponential kinetics. However, only the PXO on the second 

compartment is statistically justified by the Likelihood Ratio test, so only one parameter 

is added to Model l a  to make le. 

The significance of the single PXO parameter in the LEI model was amved at by 

adding a PXO to each compartment individually, as well as to all compartments together 

and using the Likelihood Ratio test to judge the benefit of each addition. The LL values 

for models with a PXO on only the first, second or third compartment are 

-707.35, -700.11 and -708.50, respectively and for a PXO on all three compartments the 

LL is -698.47. 

With an LL value of -708.77 for Model la, only two of these models with added 
c... 

PXOs have a significant fit re1ati;'e to la; the second and the fourth proposed models 

with improvement of 8.66 and 10.30, respectively. while the fourth of these test models, . 
L 



with PXOs on all compartments, is certainly significant relative to la, it is not significant 
. , 

relative to the simpler second test model, with ' P X O  on the second compartment ody. 

Since the LL improvement between these two models is only 1.64, compared to the x2 

value of 3.0, the more complex fourth model carinot be considered a significant 

improvement over the second test model. The fit of the second test model, with a single 

added parameter, is si,@icant at the 99.5% level and is listed in Table 2 as Model le. 

Addition of threshold parameters to Model l e  results in Model If. In this case 

adding only one threshold parameter, on the longest time constant compartment, is 

justified statistically following the method described above for adding PXO parameters. 

The LL improvement of if over l e  is 3.6 units, enough for significance at the 99% level. 

Model if is the most complex three compartment LEI model obtainable with a 

statistically si,@ficant fit to the data. 

Model lg is the four-compartment version of le, also requiring only one PXO 

parameter, on the second time constant compartment. Since l g  gives an improvement in 

LL of only 0.61, it is not si,gnificant relative to le. 

Model lh  is the elaboration of if into four compartments, using eleven parameters. 

Like If, l h  has only one PXO parameter, but has two threshold parameters, m e  on each 

of the two longest time constant compartments. The addition of three parameters, time 

constant, gain and threshold, to make Model l h  requires an LL improvement of at least 

8.1 units for significance at the 99.9% level. Since the actual improvement is 8.8 units, 

Model l h  is significant and is the most complex fit of the LEI risk models. Note in 

Table 3 that the parameters for the first three compartments'of Model l h  are virtually 



identical to those of Model lf.  The only exception being the third compartment gain, 

which is about 13% smaller for lh, giving this compartment relatively less importance in 

l h  than if while the kinetics remain unchanged. 

The long time constant of the fourth compartment, along with its 30.6 fsw 

threshold, insure that this compartment will not contribute to risk accumulation except in 

long, deep dives with fairly rapid decompression. In fact this compartment accumulates 

risk on only eight saturation profiles in the fitted data, from the data set ASATI\FSM. 

These dives saturated men at 111 fsw on air then quickly decompressed to 55 or 60 fsw, 

followed by a slower staged decompression to the surface. These eight profiles resulted 

in 8 DCS cases out of 17 man-dives. Since the gain for the fourth compartment is over 

1000 times larger than that for the third, this compartment will certainly dominate the 

total risk on those dives, and any others which are able to invoke it. 

It is because this compartment is involved with so few dives that the uncertainties 

in its parameters are so large. Despite its limited involvement, this fourth compartment 

contributes enough to the overall fit of the model that its presence is justified 

statistically. 

For all of the LEI models (le, if, lg, and lh), only one compartment has a PXO 

parameter low enough to invoke linear kinetics. This is shown in Table 3 as PXOB, 

which is nearly identical for both Model if and lh. With a PXO of 1.06 fsw, linear 

kinetics will be invoked on practically every profile in the data set since the tissue 
%' 

pressure for this compartment will often exceed ambient pressure plus this PXO. This 

compartment will remain in linear mode until the tissue pressure decays to 1.06 fsw over 
e 



the ambient, greatly lengthening the time extent of this compartment's overpressure 
L. 

compared to exponential-qnly kinetics. Since th$icornpartment has no threshold 

parameter, risk will be accumulated during all of this decay time. 

EE2 and LE2 

As is the case for EEI  and LEI, added complexity does not always yield a 

si,@icantly better fit for EE2 and LE2 models (Table 2). In adding three threshold 

parameters to 2a to make 2b, an improvement of 31.1 in LL is achieved, more than 

enough for significance at the 99.9% level. However, the addition of finite PXO 

parameters on any or all compartments does not result in a significant improvement in 

LL relative to the simpler exponential-only models. Model 2c has a poorer LL fit than 

2b, with the same number of parameters. While Model 2d is a signifkant improvement 

over 2c, it is not significant relative to the simpler 2b, with an LL improvement there of 

only 0.70 for 3 added parameters. The improvement in LL between 2d and 2c is 

comparable to that between 2b and 2a and is due primarily to the addition of the 

threshold parameters. No LE2 model is sig&ficant relative to the simpler EE2 models. 

The most significant fit of the integrated risk models is Model 2b, which has 

exponential-only kinetics with three separate thresholds but no finite PXO parameters. 

The values of its nine parameters are listed in Table 3. 

The present data set does not require that linear kinetics be invoked in models of 

Type 2. The prolonged accumulation of risk due to the integration appears to be 

sufficient without the added duration afforded by linear kinetics. In trial fits with f i e d  

values of PXO's, LE2's time constant parameters are adjusted to smaller values by the 



fitting routine when lower PXO values are set, in an attempt by the model to offset the 

lengthening effect of linear kinetics. 

Development of a four-compartment version of EE2 or LE2 is considered 

unnecessary due to its abundant coverage of all possible symptom times in three- 

compartment form. 

Both models were successful in fitting the data using symptom times. Previous 

models ('Model 1' in (7)) similar to the current EE1 were unable to accommodate 

certain symptom times in this data set. On several dives the instantaneous risk of each 

compartment in those models decays to zero before reaching the beginning of the TI-T2 

internal for that dive, resulting in an impossible outcome; occurrence of DCS during a 

period of zero risk, and thus an infinite LL. 

From the finite LL values in Table 2, it is clear that even the current EE1 models 

(la, lb, lc, and id) were able to fit all. of the symptom time data. The reason for this 

apparent contradiction lies in the treatment of metabolic gases O,, CO,, and H,O which 

are ignored in the previous models (1,7) and are here given constant non-zero values. 

These metabolic gases have the effect of adding a constant offset of about 0.1 ATA to 

the total tissue pressure. The pressure that any tissue will reach in a given uptake time 

is now increased by that small amount. Off-gassing to an ambient pressure of 1 ATA 

requires more time for this tissue than for the previous model, having started its decay 

from a higher pressure. This added time is enough to allow an exponential decay curve 

to reach the symptom times previ&sly missed. 



To illustrate, in Fig. 3 tissue pressures 

current EE1 model and the previous model 

The ambient pressure is provided by one of 

are plotted for 
L' 

using' the same 
8 

the dives from 

a single compartment of the 

compartment time constant. 

the fitted data set that the 

previous model was unable to fit. The differenc'due to the metabolic gases is clear in 

the constant offset between these two otherwise identical curves. The T I  marked in the 

figure is the critical point at which the tissue pressure must exceed 1 ATA in order to 

'fit' this dive. The previous model's tissue pressure, and thus its risk, decays below 1 

ATA more than an hour before TI, while for the same time constant, EE1 sustains 

pressure almost 10 minutes beyond TI,  giving EE1 a small but important instantaneous 

risk within the T1-T2 interval. While other time constants may allow the previous 

model's tissue pressure to come closer to T1 for this dive, no time constant is capable of 

reaching it (7). 

Because this added decay time is not needed by EE2 or LE2 to satisfy these 

symptom times, they accommodate the metabolic gases in a different way. Previous 

models (Model 2 in (7)), similar to the current EE2, with exponential-only kinetics, but 

ignoring metabolic gases, were able to fit all of the symptom time data. With the 

metabolic gases present, as they are in Model 2b, each tissue requires a threshold 

parameter that ranges from 2.6 to 3.8 fsw. The offset of ~ 0 . 1  ATA generated by these 

gases equates to a ~3.3 fsw difference in tissue pressure, close to the average found for 

thresholds when these gases are present. The effect of these thresholds is to decrease 

the accumulation of risk by roughly the same amount it is increased by the metabolic 

gases. If the metabolic gases are set to zero in EE2, making-this model the same as the 



previously published model, no thresholds are supported. 

The LL value £or that previous model is -748.7 for the current data set, while for 

Model 2b it is -741.2, suggesting that there is some additional improvement in fit due to 

including the metabolic gases beyond the compensating effect of the thresholds. The 

remaining parameters are virtually identical in both cases, except for a 24% decrease in 

the middle compartment gain when the metabolic gases are present. 

Model 2b, therefore, compensates for the addition of these gases by requiring 

offsetting thresholds for each compartment, negating the effect of the increase in total 

tissue pressure. 
* 

ESTIMATES FOR INDIVIDUAL DATA SETS - FTI7ED 

These models, having been "calibrated" by fitting them to the current dive data set, 

can now be used to predict the probability of occurrence of DCS in any proposed or s 

actual dive profile. By using the best fitting models to predict occurrence in subsets of 

the data to which they were fit, we have a further test of the values and limitations of 

each model. The results of these predictions are shown in Table 4. 

Models i f  and lh  give nearly identical results in almost all cases. The only 

difference greater than 1 DCS case arises in the saturation data, as might be expected, 

since the fourth compartment that sets l h  apart from if is only invoked in these data, as 

noted in the fitting of Model lh. While differences in predictions between if and i h  
%. 

are in the 1 to 4% range elsewhere, in the saturation data the differences are 

approximately 7 to 12%. 



Model 2b does a better job of predicting DCS in 8 out of 14 individual data sets 
?-' 

than either if or lh, but does slightly worse in the' overall prediction. Looking at data 
1 

groups, 2b does better in predicting DCS in Single Air and Repetitive Non-Air, but tends , - 

to over-predict, leading to a higher overall total c~mpared to i f  and lh. 

From Table 4, Model i f  would appear to be the best predictor of DCS occurrence 

among the original data, but only by a slight amount. No model stands out from this test 

to be strongly preferred over the others. In fact, all three predict occurrence fairly well 

in these data. 

Figure 4 is a graphical presentation of the information in Table 4, with the addition 

of error bars representing the 95% confidence limits of each prediction. The large 

uncertainty associated with Model lh  in saturation data is due to the large standard 

errors of the fourth compartment's parameters (Table 3). Since this compartment 

contributes to risk accumulation only in the few saturation dives noted above, the 

uncertainty in its parameter values does not influence predictions in other data. The 

large uncertainty for this model in the combined data is inherited from this effect in the 

saturation data. 

From Fig. 4 it is clear that, except for the differences noted above, Models if and 

lh  are virtually identical. However both of these models fail to contain the observed 

value for Repetitive Non-Air within its error bars. Only Model 2b brackets the observed 

DCS values in every case. 



Table 5'presents another test of each model's 

the fitted data. In this method, each model is used 

a.biIity to predict occurrence among 

to classify all of the fitted dives into 

risk level groups as shown in the first column. From these groups, which may contain a 

different number of dives for each model, the number of DCS cases observed and the 

model's prediction of occurrence is reported. This provides a measure of how well a 

model can distinguish between dives of different risk. The risk limits were chosen to 

allow as even a distribution of dives among the risk categories as possible without 

resorting to awkward limited groups. 

Again, Models i f  and lh  have similar results, with the exception that i h  predicts 

occurrence in the highest risk catesory slightly better than if.  Their observed and 

predicted values are almost identical in the lowest risk group, with both under-predicting 

by about 30%. 

Model 2b folloas the same pattern of over and under-prediction as If and lh, 

under-predicting somewhat more (40%) in the lowest risk group. The distribution of 

dives, and of DCS cases, is different for 2b with fewer dives and cases observed in the 

extreme groups and more in the middle range. Revising the risk limits to give Model 2b 

a more even dive distribution improves its DCS prediction for the lowest risk group, 

which then under-predicts by only 4%. This arrangement gives results similar to those of 

If and l h  in all other risk groups. 

The X 2  statistics listed in Table 5 for each model are a measure of the frequency 
C' 

with which random variation woul-d be expected to 1ea.d to the observed lack of 

agreement. The Null model can be conclusively rejected (p < 0.001) as disagreeing with 
* 



the data. Models If, lh, and 2b cannot be rejected ( ~ ~ 0 5 ) .  While Model l h  nominally 

has the lowest X 2  value, the similarity of the val& for if, lh, and 2b does not allow this 
* 

statistic to distinguish between these three models. 

No strong preference for any model can be;drawnafrom this test as all three models 

are able to separate the fitted dives by risk with about the same level of accuracy. 

Another test of model performance, this one measuring a model's ability to predict 

time of symptom occurrence, is presented in Table 6. With the inclusion of symptom 

times in the fitted data, these models should be capable of distinguishing between dives 

by their time of symptoms. Time categories are constructed relative to surfacing time of 

the dive, and the number of observed DCS cases is calculated from the proportion of 

each TI-T2 interval falling in each category. Only single-dive records are included in 

this test due to the difficulty in choosing surfacing time for repetitive dives. 

Table 6 shows that the Null model fails to predict the time of DCS occunence. 

This constant risk model predicts DCS occurrence as an exponentially decaying function. 

However, the time constant of this decay is the reciprocal of the risk, and is therefore 

very long (~33,000 min). Thus, for times of up to 24 hours, the Null model predicts DCS 

occurrence as virtually constant, proportional only to the length of the time i~terval. 

This results in far too much risk being placed long after surfacing when fewer actual 

DCS cases are observed. 

Once again it is difficult to distinguish between Models if and lh. They both 

predict time of occurrence much better than the Null model and they miss their 

predictions in the same direction and nearly the same proportion for each time category. 

- 
r.. 



Model 2b is also a great improvement over the Null model and perform 

comparably with i f  and lh, except for DCS times before surfacing where 2b does poorly. 

From the example given in Fig. 1 it is clear that Model 2b will continue to have risk 

accumulation beyond the 24-hour limit of Table 6 'for some dives. However, this is true 

for fewer than 4% of all fitted dives, and half of these only extend risk to between 24 

and 25 hours. The effect of including this later risk is a slight increase in predicted DCS 

in the last time category, making no change in any conclusions drawn from this test. 

Models i f  and lh  do not have risk accumulation beyond 24 hours after surfacing. 

Based on the %' values for this test, the Null model can be conclusively rejected 

(p < 0.001), while Models If, lh, and Zb are accepted as representing the data. However, 

because of the similarity in %' values for these three models, again this statistic does not 

distinguish between them. 

ESTIMATES FOR INDIVIDUAL DAT-4 SETS - NON-FTllXD 

Applying these models to predict occurrence in dives not included in the fitted data 

reveals some of their limitations. Table 7 lists the results of these predictions with 

95% confidence limits. 

their 

The Single and the Repetitive air data listed in 'Table 7 are the "dry subject" 

counterparts to similar data with "wet subjects", which were used in model fitting. DCS 

occurrence in data set DC4D is predicted 
-.- 

with an accuracy s i rdar  to that for Single 

could reasonably be included in the fitted 

reasonably well by each of the three models, 

Air dives in Table 4, suggesting that DC4D 

data. This is supported by the results of a 



specific study of wet and dry single air dives (a), which concluded that the difference in 

risk is probably less than SO%. 

Occurrence in DC4DR is badly over-predicted by all three models. A close look at 

DC4DR reveals that it contains two types of repetitive dives: No-decompression profiles 
.\a 

unique to this data set and decompression profiles shared with DC4WR. 

The no-decompression data consists of 93 man-dives in which no DCS cases were 

observed; the models predict about 3 cases due to an underlying average risk of about 

3%. The remaining 6 profiles of DC4DR are identical to the 6 profiles of DC4WR. So, 

why are these dives over-predicted in DC4DR and under-predicted in DC4WR? These 

profiles are considered by the models to have risk levels of 8 to 9.5%, and although the 

number of divers for each profile is different for DC4DR and DC4WR, the predicted 

average underlying risk for each is nearly the same, about 8.4%. For these profiles in 

DC4DR, 1 DCS case out of 49 man-dives was observed and over 4 cases are predicted, 

while these same profiles in DC4WR had 3 cases observed out of 12 man-dives but only 

1 predicted. The models correctly see these profiles as generating the same risk, but 49 

divers at 8.4% risk predicts over 4 DCS cases, while 12 divers at the same risk predicts 

only 1 case. 

DCS occurrence in the repetitive non-air data set, EDU1180R, is over-predicted by 

all three models by 400 to 600%. The data set most similar to EDU1180R is EDU184 

in which occurrence is only moderately over-predicted (12 to 33%). There are three 

main differences between these data sets: 1) during the interval between dives, 

EDU1180R profiles stay at 30 or 10 fsw, while those of EDU184 stay at the surface; 2) 



EDUllSOR divers breathed 0.7 ATA PO, throughout the dives, while in EDU184 air 

was breathed during the surface interval and 0.7 ATA PO, at depth; and 3) 0.7 ATA 

PO, gas was breathed for about 5 minutes on the surface before diving in EDU1180R. 

However, these differences seem to make EDU118OR's predicted DCS lower than it 

would otherwise be: If ~ ~ ~ 1 1 8 0 ~ ' s  profiles are artificially changed so that they go to 

the surface between dives and breath air while on surface, making them as close a 

possible to EDU184's, predicted DCS for this modified EDU1180R increases to 16.j, 

lj.8, and 15.8 cases from models if, lh  and 2b, respectively. 

The very nature of EDU118QR's dives leads to the lowest possible predictions by 

the models, yet its DCS occurrence is still badly over-predicted. With so little data of 

this type available it is difficult to draw a firm conclusion from these discrepancies. The 

only way to resolve them is to add more multi-level and repetitive non-air dives to the 

data base to find whether EDU1180R represents a separate class of dives or is simply a 

statistical outlier, a highly improbable but still possible outcome. 

The Air and 0, Decompression data are not included in the original fitted data 

because they contain periods of high percentage oxygen breathing, close to 100% 0,. 

The current models were not expected to perform as well with such a gas mixture. The 

models treat the sudden loss of inspired N, pressure as leading to a rapid decrease in 

instantaneous risk. These models tend to systematica~lly under-estimate the risk of this 

type of dive, as s h o w  in Table 7. Models that fit well to dives having a high 

percentage oxygen breathing gas s g h t  need to allow for a continued risk presence 

despite the lack of nitrogen pressure. 
e 



The Surface Decompression dives of Table 7 have much in common with the Air 
*-- 

and 0, Decompression dives discussed above. The majority of these profiles have 
* 

periods of high percentage oxygen breathing, in addition to rapid ascents to surface with 

a quick return to depth to resume decompression; -DC8ASUR in particular seems . -b 

closely related to the previous category, as its DCS is under-predicted, on average, by the 

same amount as for the Air and 0, dives (about 60%). 

Occurrence in DCSUREP, which combines repetitive dives with intermittent 

oxygen as well as surface decompression, is predicted well by all three models. This 

quality of prediction may suggest that the repetitive aspect of these dives is the dominant 

factor in how the models view them, as DCS occurrence in Repetitive Air dives is 

similarly well predicted (Table 4). Approximately 25% of these man-dives are wet 

exposures, 75% dry. 

SUREX contains long saturation dives with short excursions to the surface and 

short periods of high 0, gas breathing. While models if and 2b under-predict DCS in 

this data set by 20 to 50%, l h  over-predicts it by 350%. These profiles invoke the 

longest time constant compartment of Model l h  more than any other available set of 

dives. Due to the large gain on this compartment's risk, it assigns a large amount of risk 

to each of these dives, considering them all to be nearly 100% risky. The 24 SUREX 

dives are predicted by Model l h  to lead to 23.9 DCS cases. 

Predictions of occurrence for the non-air saturation data set ASATARE are good, 

fair, and poor for Models If, lh, and 2b respectively. Dives in this data set saturated at 

depths ranging from 23 to 78 fsw breathing 0.4 ATA 0,, followed by various excursions 



to shallower depths while breathing air. About 13% of these dives used intermittent 

100% 0, with air breaks during excursions. While these gas mixtures set this data apart - 
from the other saturation data, predictions of DCS in ASATARE are remarkably similar 

to those for ASATEDU, with each model giving nearly the same proportion of under- 

prediction for both of these different sets of data. The fact that Model if is a good 

predictor of DCS in ASATARE suggests that this data could be included with the fitted 

data for this model. 

One measure of the ability of any of these data sets to be included into the fitted 

data set is how accurately its obserued DCS occurrence is predicted by the model. Since 

each model's prediction is based on the fitted data, if a model's predicted DCS a g e s  

well with the observed value, then that data might rezsonably be combined with the 

fitted data under that model. 

We can establish u a rule that the observed DCS for a data set must be within a 

model's 95% coddence limits of prediction for that data set to be considered for 

inclusion in the fitted data. Following this rule, only DC4D, DCSUREP and ASATARE 

might be included under models i f  and lh,  although the extreme range of limits for 

ASATARE with model l h  would allow for any possible outcome and may be misleading. 

Likewise, only DC4D and DCSUREP might be included under model 2b. 

DISCUSSION 
% ' 

Models if and lh, as well as Model 2b, are able to fit the time of symptoms data, 

to predict the occurrence of DCS in a majority of the available data and to predict time 
* 



of symptoms in the fitted single dives. None of these models fails outright in these 1 2 . ; ~ .  
? ,' 

They are not entirely equgl in their success, how&er. Both Models i f  and lh  fit the 

data much better than 2b, by 48 to 56 LL units (Table 2). Since models i f  and i h  ax 

not subsets of 2b, a strict likelihood ratio test is ribt possible to reject 2b on ,these 

grounds. However, the LL values strongly indicate that Models if  and lh  better des53t 

the data than does Model 2b. In addition, Model 2b does not predict overall occurr:zz 

in both fitted and non-fitted individual data sets as well as either if  or lh. 

One possible explanation for this difference is in the shape of the instantaneoui 

. - 
risk curve for each model (Fig. 1). Models i f  and lh have risk curves, and therefore 7-s  

accumulations, which are relatively limited in time extent, even to the point of nearly 

. . 
missing some symptom times. Model 2b, however, even without linear kinetics, has i s  

curves which extend to great lengths of time, clearly to the detriment of fitting the d z : ~  

Adjustments of kinetic, gain and threshold parameters in models i f  and lh  can 

have a dramatic effect on the fit to the data, resulting in wide variation in LL and e=:: 

missing a dive's TI-T2 interval altogether. Subtle changes in risk distribution, to m31k 

that of the data, are possible because of the sensitivity of the model to changes in 

parameters. 

Similar adjustments in Model 2b have less effect because the risk curves have 3 

duration that makes changes in their shape are less important. In the simple exampl: 9: 

Fig. 1, the same change in PXO extends time at risk by 67% for LEI over EE1 and by 

120% for LE2 over EEL For LEI this increase meant that it could now generate risk 5: 

more possible symptom times. Since the EE2 curve already covered almost all possihi: 



symptom times, even such a large change is of little or no value. Adjustment of other 

available parameters results in similarly diluted effects. Subtle and controlled changes in 

adding risk for one dive-or reducing it for another are more difficult with EE2. 

The only distinction between Models If and lh  is in whether the fourth 

compartment of lh  makes a positive or a negative contribution. In terms of LL 

improvement, Model l h  is a significantly better fit to the data than if .  But what does 

that fourth compartment really add to the value of the model? In the several tests of 

ability to predict DCS that were conducted, Model lh  did not distinguish itself as the 

superior model. Overall, Model lh  performs somewhait less well, over and 

under-predicting in slightly higher proportions, than Model If. A more troubling 

difference is illustrated in Fig. 4 and in the Model lh  prediction for the data set SUREX 

in Table 7, where the effect of the poorly determined fourth compartment parameters is 

clearly apparent. 

While Model i f  is not the best overall fit, by L l  to the data set, the increased 

uncertainties and added complexity of the better fitting four compartment model make If 

the best overall model for the present data. Almost nothing is given up in terms of 

predictive ability in selecting Model if over lh, and what is gained in simplicity and 

reduced predictive errors, particularly on saturation dam, makes up for the penalty in LL 

fit. 

Of the previously published models, 'Model 1' in (7) is closest in form to the 
%'. 

current EEl, but was unable to f i t  some time of sympt:oms data, as discussed above, so 

its predictions of DCS are based on an occurrence-only scheme. Within the current 



fitted data, the average difference in prediction 

current best fit model (If) is only 0.9 cases. Ten ofthe 14 fitted data sets are better 
* 

predicted by the LEI model (If). For the data not, fitted, the average difference in 

prediction is just 0.8 cases, with only 3 of the 9 data . .  sets better predicted by the current 

model. However, since many of these data sets are poorly predicted by both models, 

indicating one or the other as predicting such a data set "better" has little meaning. 

The generally small differences between predictions from these two models 

suggests that each does well for the limited purpose of predicting DCS occurrence only. 

However, without time of symptoms information, the earlier model fails to predict time 

of occurrence (7), which the current model does well (Table 6). This limits 

usefulness of the older model to applications in which timing is unimportant 

The predictions of the previously published model closest in form to current 

EE2 ('Model 2' in (7)) can be compared directly with Model 2b, since the oniy 

difference between them is the presence of metabolic gases, as described above. 

Amongst the fitted data the average difference in prediction is just 0.4 C S ~ S  airh a 

maximum difference of 1.7, while for the non-fitted data it is 0.3 cases, with 2 &mum 

of 0.7. Clearly there is little difference between these two integrated risk no5tk in 

terms of their ability to predict DCS occurrence in any of the data. In ~ d d - i h  each 

does quite well in predicting time of occurrence (Table 7; (7)). The small I-L 

improvement (4.5 units for 3 added threshold parameters) for the current EE wer the 

older model also does not indicate any strong difference between these wo nSz=iy 

identical models. 



The only 'systematic failure of the current best model is in predicting DCS 

occurrence in dives with high 0, breathing gas mixtures, especially when breathed during 

decompression. DCS occurrence on such dives as a group is under-predicted by 60%. 

As a test, the high 0, data can be added to the original fitted data and a model of type 

If  fitted to this combination. The DCS predictions that result from this fitting are better 

for the 0, data, with DC8AOW, DC8AOD, and DC8ASUR now having a predicted 0.7, 

3.5, and 6.0 cases respectively, an average 77% increase in predicted DCS. While this 

increase is an improvement for these 0, data, there is a simultaneous increase in most 

other data set DCS predictions as well. In order to achieve a better fit to the 0, data, 

this model simply increases risk accumulation for all dives. The net effect of these 

increases is an overall prediction of 111.2 DCS cases for the original fitted data (138.5 

observed) compared with 138.9 predicted by Model If when using only the original fitted 

data (Table 4). 

From the parameter values for this 0, a q n e n t e d  fit, the increased risk 

accumulation is due primarily to reducing the threshold parameter on the longest time 

constant compartment from 1.74 (Model if) to 0.43 fsw. Because this 1.3-fsw difference 

occurs near 0 fsw, where the slope of the exponential decay curve is generally fairly flat, 

even this small change in threshold adds a great deal to risk accumulation time. 

Further model development should include treatment of high O2 gases such that 

they are not considered overwhelmi'ngly safe, while allowing for appropriate fitting to air 

dives. 



The model's failure to predict DCS well on other data sets is not as troubling since 

the failure is not applied to a whole class of dives &t to two isolated sets of profiles. 
0 

These problematic data sets, DC4DR and EDU1180R, both badly over-predicted, have 

counterparts in the fitted data that appear to differ.;from 'them subtly at most and which 
..\a 

are themselves predicted reasonably well. Inclusion of more quality data of the type 

found in each of these problematic data sets may resolve the questions raised by their 

failures here. 

The use of linear-exponential kinetics in these models is somewhat limited, but 

significant where it is invoked. In LEI, only one of three or four compartments was 

found to require the mixed kinetics, the other compartments fitting better, or equally 

well, with exponential-only washout. In LE2, none of the compartments required mixed 

kinetics for a statistically significant fit. 

The inclusion of these mixed kinetics in LEI allowed an improvement of 12 LL 

units in fit over exponential-only EE1 models. The LEI model also had a better fit than 

EE2 models by 48 LL units, and 52 LL units better than the exponential-only "Model 2" 

of (7). A direct comparison with "Model 1" of (7) is not possible, since that model is 

unable to fit the current data using time of symptoms information. 
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APPENDIX A 

LEl/EEl Risk Calculation 

The contribution to accumulated risk of any one time segment in th- 623 is 

calculated analytically. This is achieved through a series of decisions b ~ f d  on the value 

and derivative of the instantaneous risk function during the time segment Fig~re A1 

shows the logical branching of these decisions for LEI and EE1 type modzb. -4 similar, 

but far more complex figure could be prepared for LE2/EE2 model risk cd."112ii0~. 
9 

However, since neither LE3 or EE2 were selected as best-fitting models in 2..alysis, 

only the process for LEl/EEI is included here. 

The following terms are used in Fig. Al; 

B1, BZ, BIZ, ... B22211 are labels for the logical branches showing & p2k 

followed. 

f(t) is the value of the instantaneous risk function at time t; 

At) = 
Ptiss(t) -Pam b(t) - nr - 

Pamb 

where, Ptiss(t) is the time 

quadraticllinear or exponential 

varying tissue pressure which follows either 

kinetics; Pamb(t) is ambient pressure, a lin22; k c t i o n  
. . 

of time; Thr is the risk threshold, a constant; - .  t. and Pamb in the denominator 5 mean 

ambient pressure over this time segment. 

f (t) is the derivative of the instantaneous risk function at . time 1. 



To is the time at the beginning of the current segment. 

TE is the time 

Tx is the time 

TR is the time 

may be two 

AR is the risk 

at the end of the current se'gment. 
b 

b a 

at which f 1 (t) = 0.0 

at which f(t) = 0.0, or the root 
... Z 

roots in one time segment; TRl 

contribution due to the current 

of f(t). There 

and T,. 

time segment. 

To  illustrate the method by which a risk contribution is determined using this 

process, we can look at two quite different branches, B l l l  and B22211. 

B111. Beginning with the value of q the instantaneous risk function at time To, f(To), 

this process can follow either the upper set of branches if the value is greater than 0, or 

the lower set if it is less than or equal to 0. In this case it follows B1, because f(To) is 

positive. Next f ( T 3  is evaluated and for this case found to be also positive, leading to 

B11. At this point the first derivative of the risk function at time To is used to choose 

the next branch. If f (To) is negative, several possibilities arise leading to three possible 

values of AR. However, in this case f '(To) is positive (or 0.) and the value of AR for this 

segment is the integral of f(t) over the To TE interval. 

B22211. For this path, the value of f(t) was found to be negative (or 0.) at To and 

TE, leading to B2 and B22. Then the derivative of f(TJ was found to be positive, 

leading to B222. At this point, if the derivative of f(t) at TE is positive, then the function 

must take only negative values over this time segment. This leads to path B2222 and a 

risk contribution of 0 for this segment. However, in this example, f (TE) is negative, 

meaning that there is a possibility of f(t) taking a positive value between To and TE. The 



solution is to evaluate f(t) at the inflection point, the point at which f (t) = 0. If f(t) at 

his point, Tx, is negative, ,,then the function must take only negative values over this time 

segment, again leading to a-risk contribution of 0.0 for path B22212. If f(Tx) is positive, 

the function must have two roots, TRl and T,, between which the function is positive. 

The risk contribution for this path, B22211, is the integral of f(t) over the interval 

between these two roots. 





APPENDIX B 

DCS and Maqinal Cases from Data Set Used for Fitting 

Outcome = D for DCS 

= M for Marginal 

A 

Bottom 

Bottom 

Surface 

D u ~ e s  = Number of divers showing same outcome 

Depth in feet of sea water 

Time in minutes 

Time = Surfacing time in. minutes, i.e. length of dive 

T1 = Last time definitely free of symptoms 

T2 = Time of reported symptoms 

Rules for determining TI: 

Re~or ted  

Tsurf + 180 min or more 

Tsurf + 60 to 180 min 

Tsurf + 20 to 60 min 

Tsurf . + less than 20 min 

Before Tsurf 

Some Tls obtained 

Some Marginal cases do not have time 

(from 5,6) 

TI bv Rules 

Tsurf + 120 min 

Tsurf + 30 min 

Tsurf + 10 min 

Time leaving last 

stop depth 

Time leaving second 

previous stop depth 

from dive records, not from rules. 

of symptoms information. 
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AN2010.OUT 
-AN2010.OUT 
AN2010.OUT 
AN2011. OUT 

-. 
AN2011.OUT 
AN2017.OUT 
AN3003.OUT 
AN3003.OUT 

- AN3004.OUT 
AN3004 .OUT 
AN3 007. OUT 

NMRNSW 
- - - - - - - - - - - - - I - - - - - . - - - - - . # - - - ,  - ------ ---- --- --------- 0- 

hTSWlC03 4 M 1 61.5 79.0 85.9 206.0 266.0 
NSWlC06 8 D 1 61.5 90.0 97.5 127.5 217-5 
NSWlC12 15 M 1 61.5 90.8 106.7 227.0 297-O 
NSWlC13 17 M 1 61.5 100.1 107.9 117.9 137w9 
NSWlC14 19 D 1 61.5 99.0 111.5 141.5 204.5 
nswlcl6 22 M 1 6 . 5  100.1 106.7 

- nswlcl6 23 D 1 61.5 100.1 106.7 226.7 4 6 7 - 0  
NSWlC17 25 D 1 61.5 90.2 97.7 217.7 608-* 
NSWlC19 28 D 1 61.5 79.7 86.1 96.1 121-1 
NSW1E07 36 M 1 61.5 300.2 308.3 -- ---~-~-.----,-----,-,---.- - - o , - - - - w ,  -------- -- ,----,--- ---- 

NMR8697 -- ------.----,-______---- - --,------- ---- 
- 

-- DRA4:[WEATHERSBY.DLE]8301 6 D 1 71.0 28.9 31.5 151.5 271w5 
DRA4:[WEATHERSBY.DLE]8301 7 M 1 71.0 28.9 31.5 91.5 151.5 
Dm4:[WEATHERSBY.DLE]8301 9"' M 1 71.0 28.7 31.5 151.5 391°5 

- DRA4:[WEATHERSBY.DLE]8301 15 M 1 75.0 28.6 31.6 36.6 91.6 
DRA4:[WEATHERSBY.DLE]8301 44 M 1 1 0 5 . 0  . 28.2 32.1 92.1 152.1 
DRA4:[WEATHERSBY.DLE]8301 58 D 1 125.0 28.1 32.4 152.4 2 7 3 0 ~  

- DRA4:[WEATHERSBYbDLE]8301 65 ' D 1 130.0 27.6 32.5 32.5 :I 6 . 5 . 
7 
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AIRSAT-3D + l a s t  198 excur  
AIRSAT-3D + l a s t  198 excur 
AIRSAT4 -D, 

AIRSAT-5F 
AIRSAT-5D 
AIRSAT-5E (TRUNC) 
AIRSAT-5G (TRUNC ) 
AIRSAT-5G (TRUNC SH) 
AIRSAT-51 



TABLE 1 

Summary of Data Set Used i n  Modelling. 
b 

Man- % of 
Profiles dives T o t a l D i v e s  DCS ~ar; W/TOB** 

-single A i r  

EDU8 8 5A 
DC4W 
SUBX87 
NMRNSW 

T o t a l  

EDU88,SAR 
DC4WR 

T o t a l  
- 

Single non-Air 

~ ~ ~ 8 6 9 7  
EDU885M 
EDU885S 
EDU1180S 

T o t a l  

Repetitive n o n - ~ i r  

EDU184 
T o t a l  

- 

saturation 

ASATEDU 
ASATNSM 
AS ATNMR 

T o t a l  
-- 

l o o  . 0% G r a n d  T o t a l  

- ,  r. Y. 
I 

* .  
Marginal DCS = 0 . 1  DCS case ** 
TOB = T i m e  of DCS O c c u r r e n c e  



TABLE 2 

~ o g  Likelihood Results for ~inear/~x~onential Models. 

MODEL 

(constant risk: r = .00003) Null 

Log 
Likelihood 

# of Estimated- 
Parameters ' -. 

la. 

lb. 

lc. 

Id. 

le. 

If. 

U g .  

'lh. 

3 tiss. 

3 tiss. 

4 tiss. 

4 tiss. 

3 tiss. 

3 tiss. 

4 tiss. 

exponential, no THR 

exponential, w/ THR 

exponential, no THR 

exponential, w/ THR 

linear-exp., no THR 

linear-exp., w/ THR 

linear-exp., no THR 

linear-exp., w/ THR 

2a. - 3 tiss. exponential, no THR EE2 -775.32 

2b. - 3 tiss. exponential, w/ THR EE2 - 7 4 4 . 2 3  

2c. - 3 tiss. linear-exp., no THR LE2 -774 -71 

2d. - 3 tiss. linear-exp., w/ THR LE2 -743.53 



TABLE 3 

Parameter E s t i m a t e s  and (Standard Errors) . 

lh. 

a, (min) 

PXO, (fsw) 

PXO, 

PXO, 



L' 

comparison of Total Number,;of DCS Cases Obserrred 
and Predicted for Component Data Sets. 

PREDICTED DCS: 
.. . 

.;i 
If. lh. 2b. 

Nan- 
Dives 

OBS 
DCS 

Single Air 

EDU8 8 5A 
DC4W 
SUBX87 
m s w  
Total 

Repetitive Air 

EDU8 8 5AR 
DC4WR 

Total 

Single non-Air 

NMR8697 
EDU885M 
EDU885S 
EDU1180S 
Total 

Repetitive non-Air 

EDU184 
Total 

Air Saturation 

ASATEDU 
ASATNSM 
ASATNMR 
Total 

Grand Total 



R I S K  
CATEGORY 

X 2  = 
(df = 4) 

Model p r e d i c t i o n  of Total Number of DCS C a s e  
Occurrence s t r a t i f i e d  by Estimated Risk Level  

MODELS 

# 
D I V E S  

63 

1771 
1 

2 57' 

57 

235 

NULL 

D C S  
O B S  

2.0 

77 . 7 
25.0 

12.0 

21.8 

D C S  
P R E D  

1.3 

78.3 

13.4 

4.7 

42.1 

31.1 

1 '  l "1  

t'. .! o a 

# 
D I V E S  

535 

614 

643 

298 

293 

If 

DCS 
O B S  

13.9 

21.9 

27.6 

31.7 

43.4 

/, , 

DCS 
P R E D  

9.23 

22.9 

39.6 

25.4 

41.4 

7.1 

# 
D I V E S  

521 

646 

659 

325 

232 

l h .  

DCS 
O B S  

13.8 

22.0 

30.7 

35.0 

37.0 

8 

D C S  
P R E D  

9.7 

24.3 

40.5 

28.0 

36.8 

6.1 

# DCS 
D I V E S  ' O B S  

D C S  
PRED 

3.6 

34.9 

48.9 

26.3 

26.9 

9.3 



TABLE 6 

O b s e r v e d  and predicted:;bCS Onset T i m e s .  
, 

D 

Predicted DCS - 
I 

~ i m e  Cateaorv 

Before Surfacing 

Surfacing to +30 min 

+30 min to +2 hr 

+2 hr to +4 hr 

+4  hr to +24 hr 

OBS DCS NULL . - . % 

lh. 2b. 



TABLE 7 

Obsemed and predicted DCS for Data not used in Modelling 
(95% confidence limits). 

PREDICTED DCS 

If. lh. 2b. 
Man- 

Dives 
OBS 
DCS 

Single Air 
- 

DC4 D 

-- * 
Air & 0, ~ecompression 

Surface ~ecompression 

DC8ASUR 

DCSUREP 

SUREX 

Non-Air saturation 

AS ATARE 



Figure I. 

F i n r e  4. 

F i g r e  Al.  

FIGURE LEGENDS 
L. 

' ,  
# 

 ine ear-~x~ondntial Tissue Pressures and Risk Functions. 

..\% 

of The above tissue pressure curves. 

Distribution of Time of Symptoms (T2). 

Number of DCS cases reported is plotted versus time of reported 
after dive surfacing. 

Effect of Including Metabolic Gases. 

Tissue pressures are plotted for the current EEI model and for a 
model which was unable to reach the T1 time for this dive. The 

occurrence 

Tissue pressures are plotted using a 50 minute time constant, with PXOs of 
1000 and 15 fsw. The two instantaneaus risks functions are plotted for both 

exponential time constant is used for both models. The increase in tissue 

previous 
same 

pressure due to including metabolic gases allows EE1 to have a positive 
instantaneous risk beyond time TI. 

Observed and Predicted DCS for the Fitted Data. 

The number of DCS cases observed in each type-of-dive group'is shown 
the prediction and 95% confidence limits for the three selected models 
(If, 1 h,2b). 

LEl/EEl Risk Calculations. 










